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A B S T R A C T   

Mitochondrial dynamics and hypochlorous acid (HOCl) are involved in many physiological and pathological 
processes. Therefore, the development of real-time analysis tools for biological studies involving mitochondrial 
dynamics and HOCl is highly significant. Herein, we report a fluorescent probe, RIC, consisting of rhodamine, 
imidazolium salt, and coumarin, which has high selectivity and sensitivity toward HOCl. RIC has an inherently 
blue fluorescence signal and can be anchored in mitochondria, which enables it to reveal changes in mito-
chondrial dynamics. This mitochondria-anchoring characteristic also facilitates the real-time detection of HOCl 
in mitochondria. To our knowledge, RIC is the first probe to detect mitochondrial dynamics and HOCl in real 
time. The detection limit of HOCl is as low as 3.8 nM, and RIC analyzes endogenous and exogenous HOCl in live 
cells. The detection capacity is pH-insensitive in the physiological pH range of mitochondria, and the HOCl- 
sensing process is completed within seconds in cuvettes. Furthermore, we prove that the molecular design 
strategy provides a general synthetic method for constructing new multifunctional probes for HOCl.   

1. Introduction 

Hypochlorous acid (HOCl), an important reactive oxygen species 
(ROS), is involved in many cellular processes. Abnormal HOCl levels 
generated by myeloperoxidase and dual oxidase cause many diseases, 
including kidney disease, metabolic syndrome, atherosclerosis, pulmo-
nary inflammation, rheumatoid arthritis, cardiovascular disease, skin 
inflammation, neuronal disease, and cancer [1–3]. Therefore, the 
sensing of HOCl levels in physiology and pathology is crucial. As a 
mature and progressive technology, fluorescence imaging has super 
temporal and spatial resolution and allows real-time analysis in bio-
logical environments. To provide analysis tools for the early detection of 
HOCl-related diseases and further explore the critical roles of HOCl in 
cellular signaling pathways, numerous fluorescent probes targeting 
HOCl have been synthesized and applied to cells, tissues, zebrafish, and 
mice [4–33]. 

Recently, the significance of fluorescent probes for detecting mito-
chondrial HOCl levels has been demonstrated in physiology and pa-
thology [34–45]. Most of the existing probes in this respect are cationic 

dyes and accumulate in the negative mitochondrial matrix, which is a 
result of plasma and mitochondrial membrane potentials (MMPs). Once 
MMP declines (i.e., mitochondria are depolarized), they may leak out of 
mitochondria to some extent. This leads to a decreased probe concen-
tration and varied probe localization, which are roadblocks to real-time 
detect mitochondrial HOCl, thus, limiting practical applications. 

To solve the problem of dye leakage from mitochondria, a few 
methods have been proposed to construct mitochondria-immobilized or 
-anchoring probes [46–55]. As the word suggests, probes with the 
concept “mitochondria-anchoring” can be retained in depolarized 
mitochondria, which guarantees the relatively constant concentration 
and localization of the probes and can help to trace mitochondria by the 
inherently robust fluorescence signal. Recently, our research group re-
ported a mitochondria-anchoring probe, ZED, for the simultaneous 
detection of thiols, HOCl, and mitochondrial status in cancer cells [56]. 
ZED reacted with thiols to transform into ZED-1 (Scheme 1) in live cells, 
and ZED-1 was anchored in the mitochondria. Compared with other 
mitochondria-immobilized probes, there is no known fixed group in the 
structure of ZED-1, and ZED-1 is probably anchored via interactions 
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with the hydrophobic lipid bilayer in mitochondrial inner membrane 
[53], given that ZED-1 has an organic molecular chain of atoms between 
the rhodamine and coumarin. Meanwhile, the positively charged imi-
dazolium salt group may also interact with cardiolipin (an abundant and 
negatively charged component of the lipid bilayer) in mitochondrial 
inner membrane through electrostatic interactions [57]. ZED-1 has an 
inherently blue fluorescence signal (I450) that traces polarized mito-
chondria. However, I450 was sensitive to mitochondrial pH (MpH) 
fluctuations (normally 7–8) [58] and could not provide a sufficient 
signal-to-background ratio when MpH decreased along with the decline 
in MMP. Accordingly, ZED could barely trace depolarized mitochondria 
in the absence of permeability transition pore openings. 

Common mitochondrial dynamics (mitochondrial fission and fusion) 
are associated with many aspects of mitochondrial function, and a va-
riety of diseases are related to disturbed mitochondrial dynamics [59]. 
In addition to detecting HOCl, the inherently robust 
mitochondria-tracing fluorescence signals from mitochondria-anchoring 
HOCl probes can monitor mitochondrial dynamics by revealing changes 
in mitochondrial morphology [60], reflecting alterations in mitochon-
drial functions and disease states. Similar to their ability to detect 
mitochondrial morphology, mitochondria-tracing HOCl probes have the 
potential to detect other mitochondrial dynamics, such as mitochondrial 
movements within a cell [61], interactions with other organelles [62], 
and autophagy [63,64], confirming the high significance of studying 
these probes. However, no studies have demonstrated the syntheses and 
applications of such unimolecular probes that trace both polarized and 
depolarized mitochondria, and no analytical method involving multiple 
probes that can achieve the same functions has been reported so far. 

To the best of our knowledge, ZED-1 is one of the few mitochondria- 
anchoring HOCl probes with an inherent fluorescence signal. 

Considering difficulties in molecular design and preparation, it is much 
easier to obtain new mitochondria-tracing HOCl probes by modifying a 
known structure than by designing a new one. Although there has been 
another report on the HOCl probe that can be retained in depolarized 
mitochondria [65], the mitochondria-tracing capacity of this molecule 
still needs to be carefully investigated. Therefore, in order to solve the 
urgent problem of a current lack of such probes, we altered the structure 
of ZED-1 to obtain another mitochondria-anchoring HOCl probe (RIC, 
Scheme 1). The blue fluorescence signal of RIC is free from MpH fluc-
tuations and is, thus, unlike ZED, capable of tracing both polarized and 
depolarized mitochondria. RIC can also reveal dynamic changes in 
mitochondrial morphology, confirming the mitochondria-tracing 
capacity. 

Apart from the mitochondria-tracing capacity, RIC has great sensi-
tivity (detection limit = 3.8 nM) and selectivity toward HOCl. In addi-
tion, RIC analyzes endogenous and exogenous HOCl with excellent 
detection capacities in live cells. Furthermore, we demonstrate the 
universality of this “alteration” design strategy from the additional 
successful syntheses of RIN and RIC-F (Scheme 1), which presents a 
general synthetic method for obtaining new multifunctional probes for 
HOCl. 

2. Materials and methods 

2.1. General information 

Unless otherwise noted, all solvents and reagents used in this study 
were of reagent grade, purchased from commercial suppliers, and used 
without further purification. Water was twice distilled in all experiments 
before use. Bruker instruments were employed to record 1H NMR (400 

Scheme 1. The synthetic routes and molecular structures of compounds. (A) The molecular structure of RI. (B) The synthetic routes of RIC, RIC-F, and RIN. 
Conditions: (a) R.T., EDCI, TEA, DMAP. (b) 100 ◦C, TEA. (c) R.T., HATU, DIEA. (C) The molecular structures of ZED-1, RIC, RIC-F, and RIN. 

N. Zhu et al.                                                                                                                                                                                                                                     



Dyes and Pigments 201 (2022) 110227

3

MHz), 13C NMR (100 MHz), and LC-HRMS (high-resolution mass spectra 
combined with liquid chromatography). An Edinburgh FLS920 spec-
trofluorometer equipped with both continuous (450 W) and pulsed 
xenon lamps was used to analyze the fluorescence samples. Fluorescence 
imaging of live cells was performed using a confocal laser scanning 
microscope (Nikon, Japan). A BioTek microplate reader was used for 
cytotoxicity assays. Thin silica gel plates and silica gel (mesh 200–300) 
were used for TLC analysis and flash column chromatography, 
respectively. 

2.2. The syntheses and characterizations of RIC, RIN, and RIC-F 

The synthetic routes of RIC, RIN, and RIC-F are shown in Scheme 1. 

2.2.1. The synthesis and characterization of RIC 
7-(Diethylamino)-2-oxo-2H-1-benzopyran-3-carboxylic acid (7-ami-

nocoumarin, 13 mg, 0.05 mmol) was placed in a round-bottomed flask 
and 2 mL of DMF was then added. The mixture was sonicated for a few 
minutes to dissolve the 7-aminocoumarin. 3-(3-Aminopropyl)-1-(2- 
((3′,6′-bis(diethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl) 
amino)-2-oxoethyl)-1H-imidazole-3-ium chloride (rhodamine-imidazo-
lium salt, RI, 33 mg, 0.05 mmol) was added and the mixture was stirred. 
To the stirred solution, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide 
hydrochloride (EDCI, 11.5 mg, 0.06 mmol) was added, following the 
addition of 4-dimethylaminopyridine (DMAP, 0.6 mg, 0.005 mmol) and 
triethylamine (TEA, 21 μL, 0.15 mmol). The mixture was allowed to 
react overnight at room temperature, and this was monitored by TLC to 
confirm completion. Next, the DMF solution was washed with water and 
extracted with CH2Cl2. The organic phase was then dried using anhy-
drous Na2SO4 and concentrated under a vacuum. The residue was 
redissolved in CH2Cl2 and purified by flash column chromatography 
with eluents of CH2Cl2 and CH3OH to obtain RIC (34.2 mg, 76% yield) 
as a red solid. 1H NMR (DMSO‑d6, 400 MHz) δ [ppm]: 10.24 (s, 1H), 
9.11 (s, 1H), 8.72 (t, J = 6.0 Hz, 1H), 8.65 (s, 1H), 7.83 (dd, J = 9.1 Hz, 
1H), 7.79 (t, J = 1.8 Hz, 1H), 7.68 (d, J = 6.8 Hz, 1H), 7.61–7.51 (m, 
2H), 7.39 (t, J = 1.8 Hz, 1H), 7.04 (d, J = 6.8 Hz, 1H), 6.81 (dd, J = 9.1, 
2.4 Hz, 1H), 6.62 (d, J = 2.4 Hz, 1H), 6.52 (s, 1H), 6.50 (s, 1H), 6.35 (d, 
J = 2.6 Hz, 2H), 6.32 (d, J = 2.6 Hz, 2H), 4.99 (s, 2H), 4.26–4.19 (m, 
2H), 3.49 (q, J = 6.9 Hz, 4H), 3.37–3.23 (m, 8H), 2.04 (t, J = 6.8 Hz, 
2H), 1.14 (t, J = 7.0 Hz, 6H), 1.08 (t, J = 6.9 Hz, 12H). 13C NMR 
(DMSO‑d6, 100 MHz) δ [ppm]: 164.59, 164.44, 164.02, 162.49, 161.32, 
156.72, 153.44, 152.34, 148.91, 148.51, 137.83, 134.01, 132.34, 
129.54, 129.04, 128.34, 124.36, 123.80, 123.20, 122.46, 114.95, 
113.99, 111.41, 108.19, 104.37, 102.32, 97.54, 65.57, 49.71, 47.45, 
44.11, 36.43, 30.19, 12.92. LC-HRMS (m/z): Found for C50H57N8O6

+

([M]+): 865.4424; Calcd.: 865.4396. 

2.2.2. The syntheses and characterizations of RIN and RIC-F 
Details of the syntheses and characterizations of RIN and RIC-F are 

presented in the Supporting Information. 

2.3. Fluorescence measurements in cuvettes 

Concentrated solutions of ROS, ions, and GSH were prepared ac-
cording to the methods of previous studies [66− 69]. Dry DMSO was 
used to prepare stock solutions of 5 mM of RIC, RIN, and RIC-F. Freshly 
prepared solutions were stored at − 20 ◦C and used within 1 week. Before 
adding concentrated solutions of analytes, the stock solutions were 
directly diluted with 1000 times PBS buffer (50 mM) and then allowed to 
stand for an appropriate time at room temperature. The fluorescence 
spectra of the solutions were measured in 1 cm quartz cells. 

2.4. Cytotoxicity assays 

Cells were cultured in high-glucose Dulbecco’s modified Eagle’s 
medium (DMEM) without phenol red, supplemented with 1 mM sodium 

pyruvate, 1 mM GlutaMAX™ (a dipeptide formed by alanine and 
glutamine), and 10% fetal bovine serum at 37 ◦C under an atmosphere of 
95% air and 5% CO2. Cells were then inoculated into 96-well plates at a 
density of 1 × 105/well and cultured overnight. After that, cells in the 
experimental groups were treated with complete medium (0.1% DMSO) 
containing 5, 10, and 15 μM RIC for 30 min. The control groups were 
treated with complete medium (0.1% DMSO) for 30 min. Cells were then 
washed three times with PBS (pH 7.4, 10 mM) and fresh medium was 
added. After growing for one night, cell counter kit 8 reagent was added 
to the wells and maintained for another 2 h. The absorbance at 450 nm 
was measured using a microplate reader. The optical densities (ODs) of 
the six wells in the control and experimental groups were tested, and the 
average value of each group was recorded as the OD control and OD 
experimental group, respectively. Cell viability was calculated using the 
following formula:  

Cell viability = OD experimental group/OD control group × 100%                

2.5. Confocal imaging in live cells 

Cells were inoculated at suitable densities in glass-bottom dishes to 
ensure they reached exponential phase before the confocal experiments. 
After growing for the same amount of time in the dishes, the cells were 
treated with ZED-1, RIC, RIN, RIC-F, and other commercial reagents in 
complete medium for the indicated time. Before the reagents were 
added each time, the cells were washed carefully with PBS buffer (pH 
7.4, 10 mM) three times, and fresh FluoroBrite™ DMEM was added to 
the dishes before pictures were captured in situ using a confocal laser 
scanning microscope. The relative pixel intensities of the pictures were 
then calculated using ImageJ software. 

3. Results and discussion 

To date, reports on the skeleton structures of mitochondria- 
anchoring probes, which have an inherent fluorescence signal, that are 
available to construct new mitochondria-tracing HOCl probes are rare. 
Therefore, we attempted to obtain these novel probes by changing the 
molecular structure of ZED-1, which has an inherently blue fluorescence 
I450 signal sensitive to MpH alterations and a turn-on red fluorescence 
produced by the reaction of rhodamine hydrazides with HOCl. To this 
end, we changed the MpH-sensitive molecule from 7-hydroxycoumarin 
to 7-aminocoumarin, 4-aminonaphthalimide, and Pacific Blue, consid-
ering their excellent sensing behaviors in biological environments in the 
literature [70− 74]. Three fluorophores (RIC, RIN, and RIC-F) probably 
insensitive to MpH alterations due to the presence of MpH-insensitive 
amino groups and ortho-difluorinated hydroxyl group, which has a 
lower pKa, were obtained (Scheme 1). The synthetic routes showed that 
the primary amine of RI could react with fatty acids, aromatic acids, and 
other succinimidyl esters to obtain products with moderate yields, 
demonstrating the good nucleophilic capability of the amine. In addi-
tion, all three new probes were capable of detecting HOCl in buffer so-
lutions (Fig. S1), indicating that the HOCl receptor unit has a relatively 
universal recognition ability in the absence of other HOCl-sensitive 
groups. Thus, the successful syntheses of the compounds also show 
that this “alteration” design strategy provides a general synthetic 
method to construct new multifunctional HOCl probes through the 
combination of RI and other functional fluorophores that are tolerated 
in condensation reactions. 

With these compounds in hand, we first tested the mitochondria- 
targeting capacity to screen out probes for further research. Although 
Mito-Tracker Red CMXRos (MTR, a commercial dye for mitochondrial 
morphology) has a non-negligible spectral overlap with the red fluo-
rescence of the probes utilized to sense native HOCl in cancer cells, the 
red fluorescence of MTR was much brighter than that of the probes. 
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Therefore, MTR could be used for mitochondrial colocalization experi-
ments involving the probes. As shown in Figs. S2 and S3, the blue (I480) 
and green (I550) inherent fluorescence from coumarin and naph-
thalimide of RIC and RIN, respectively, overlapped well with MTR in 
cytoplasm. Nevertheless, I550 was also retained in other punctate 
structures outside cytoplasm, which was probably caused by slower 
membrane permeability rates, enabling the accumulation of RIN in 
subcellular regions on the surfaces of the cells. In contrast, in addition to 
staining punctate regions, the blue fluorescence of RIC-F was retained in 
the edges of the cells (Fig. S4), indicating that RIC-F could not pass 
through the plasma membrane. Above all, we chose RIC as the probe 
discussed in this article for the real-time detection of mitochondrial 
dynamics and HOCl. 

The cytotoxicity assays showed that RIC had little influence on cell 
viability up to 15 μM (Fig. S5), and we chose incubating cells with RIC 
for 30 min as the culture condition because of the sufficient accumula-
tion of RIC in mitochondria. Before we aimed to check the ability of RIC 
to trace mitochondrial dynamics, the mitochondria-anchoring property 
was investigated. As shown in Fig. 1a and b, I480 remained at nearly 80% 

intensity after the cells were further treated with carbonyl cyanide 3- 
chlorophenylhydrazone (CCCP, a reagent that reduces both MpH and 
MMP) for 30 min, demonstrating that RIC was mitochondria-anchoring. 
Cells stained with Mito-Tracker Green FM (MTG, a commercial immo-
bilized tracker for mitochondria) were used as the control group. When 
treating cells with CCCP under the same conditions, a similar loss of 
intensity was observed in MTG-stained cells (Fig. 1c and d), showing 
that RIC had a comparable mitochondria-anchoring capacity to MTG. 
Since MTG is also a probe that detects dynamic changes in mitochon-
drial mass [75], we deduced that this loss of intensity was probably 
caused by the decrease in mitochondrial mass during the CCCP 
treatments. 

A comparative experiment with I450 was then carried out to test our 
design idea that RIC was insensitive to MpH alterations probably due to 
the presence of MpH-insensitive amino group. As illustrated in Fig. 2, 
I450 declined sharply upon the addition of CCCP, whereas I480 decreased 
gradually by a small amount. After the same CCCP treatment for 60 s, 
I450 declined to 40% intensity, but I480 remained at over 90% intensity. 
According to previous studies, lower dosages of CCCP can cause com-
plete uncoupling of mitochondria and reduce MpH to the minimum 
within 60 s [76]. Therefore, the comparison of the fluorescence in-
tensities within 60 s shows that RIC is insensitive to MpH alterations and 
proves the correctness of our design idea. The insensitivity ensures the 
brightness of RIC in live cells and guarantees that RIC can always offer a 
sufficient signal-to-background ratio during sensing applications. Be-
sides, the gradual reduction in I480 after 60 s also demonstrates a dy-
namic decrease in mitochondrial mass. 

Next, we utilized RIC to monitor the changes in mitochondrial 
morphology to verify the feasibility of our design strategy for con-
structing mitochondria-tracing HOCl probes. The mitochondria- 
targeting property of RIC was further confirmed by co-staining cells 
with MTR (Fig. 3a–c) and the Pearson’s correlation coefficient was 
calculated as 0.90 (Fig. S6).The images also showed filamentous struc-
tures of normal mitochondria. When the cells were treated with 10 μM 
CCCP for 10 min to induce mitochondrial damage, some of the mito-
chondria changed into punctate structures (Fig. 3d–f), indicating 
changes in mitochondrial morphology caused by mitochondrial swelling 
in the presence of CCCP [77]. At the end of this mitochondrial process, 
I480 also overlapped with MTR (Pearson’s correlation coefficient was 
0.89; Fig. S7), showing that RIC real-time detected mitochondrial 
morphology similar to MTR. To confirm the mitochondria-tracing ca-
pacity of RIC, a high dosage of CCCP was used to induce greater mito-
chondrial damage. As shown in Fig. 3g–i, RIC presented fragmented 
mitochondria after the CCCP treatment, which was consistent with the 
fuzzy morphological structure demonstrated by the red fluorescence of 
MTR. As expected, RIC also had a good overlay with MTR when 

Fig. 1. Confocal experiments in RAW264.7 cells. (A) 
Images of the cells. (a) Cells incubated with 5 μM RIC 
for 30 min. (b) Cells from (a) further treated with 30 
μM CCCP for 30 min. (c) Cells incubated with 1 μM 
MTG for 10 min. (d) Cells from (c) further treated 
with 30 μM CCCP for 30 min. (B) Relative pixel in-
tensity of the related images in (A). The results are 
presented as mean ± standard deviation (n = 3). (a, 
b) and (c, d) were excited at 405 and 488 nm and 
collected within 417–477 and 499–529 nm, respec-
tively. Scale bar: 5 μm.   

Fig. 2. The dynamic changes of fluorescence intensity in MCF-7 cells. Two 
separate groups of cells were incubated with 5 μM ZED-1 and RIC for 30 min, 
respectively. And the cells were then treated with 30 μM CCCP for 180 s. The 
fluorescence was excited at 405 nm and collected within 417–477 nm. The 
results are presented as mean ± standard deviation (n = 3). 
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mitochondrial fragmentation occurred, and the Pearson’s correlation 
coefficient was calculated as 0.82 (Fig. S8). These results suggest that 
RIC has a great mitochondria-tracing property comparable to MTR and 
can real-time detect mitochondrial dynamics. 

Subsequently, we tested the HOCl-sensing properties of RIC. RIC has 
good water solubility due to the hydrophilic imidazolium salt; thus, we 
carried out fluorescence experiments in PBS buffers containing 0.1% 
DMSO. RIC detects HOCl via a known mechanism (Fig. 4) [49,56]. In 
brief, the hydrazides of RIC reacted with HOCl, generating a red 

fluorescence (I580) from Rhodamine B (Fig. S9). I580 almost reached its 
maximum intensity within 5 s (Fig. 5A), showing a fast response of RIC 
in detecting HOCl. Since HOCl reacts with a large number of biological 
species in cells and, therefore, has a relatively short lifetime, this fast 
response is important for RIC to sense mitochondrial HOCl. In addition, 
the reactivity of RIC toward HOCl was not altered significantly in 
neutral and slightly alkaline solutions (Fig. 5B), indicating that the HOCl 
detection capacity of RIC is not susceptible to MpH fluctuations. The 
sensing performances of RIC toward HOCl decreased in acid solutions 

Fig. 3. Confocal experiments in MCF-7 cells. (a–c) 
Cells incubated with 5 μM RIC for 30 min and then 
treated with 200 nM MTR for 10 min (d–f) Cells from 
(a–c) further treated with 10 μM CCCP for 10 min 
(g–i) Cells from (d–f) further treated with 100 μM 
CCCP for 20 min. Blue and red channels were excited 
at 405 and 543 nm and collected within 417–477 and 
553–618 nm, respectively. Scale bar: 5 μm. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   

Fig. 4. The sensing mechanism of RIC toward HOCl in PBS buffers.  
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(Fig. S10), showing that RIC mainly reacted with OCl− in buffers. The 
fluorescence titration experiments showed that I580 had a linear rela-
tionship with HOCl (Fig. 5C), and the detection limit was calculated to 
be as low as 3.8 nM (3σ/k, where σ is the standard deviation of the blank 
fluorescence measurements and k is the slope of the fluorescence in-
tensities over the concentrations of HOCl). Similar to I580, I480 also 
increased and had a linear relationship with HOCl concentrations 
(Fig. S11), which was probably a result of the structure change. 

As shown in Fig. 5D, I580 dramatically increased only in the presence 
of HOCl, indicating the high selectivity of RIC toward HOCl. The 
selectivity ensures that RIC is capable of detecting HOCl in complex 
biological environments containing multiple analytes. In contrast to 

I580, there was no obvious enhancement of I480, and I480 retained most of 
the intensity upon the addition of biologically relevant analytes 
(Fig. S12). The relative stability of I480 indicated that the inherent blue 
fluorescence of RIC is also not susceptible to fluctuations in analyte 
concentrations in biological environments, confirming the 
mitochondria-tracing capacity of RIC. 

Based on these results, we deduced that RIC is able to detect mito-
chondrial HOCl, which can be ascribed to its mitochondria-anchoring 
capacity, fast response, high selectivity and sensitivity, and MpH- 
insensitive detection capability. Hence, we tested whether RIC could 
analyze endogenous and exogenous HOCl in live cells. As depicted in 
Fig. 6a–c, I580 increased with exogenous HOCl concentrations from 0 to 

Fig. 5. The fluorescence experiments of 5 μM RIC in the presence of different analytes in PBS buffers (pH 8.0, 0.1% DMSO), excitation at 543 nm, slit width: 4/4 nm. 
(A) Time-dependent experiments involving 30 μM HOCl. (B) pH-dependent experiments involving 6 μM HOCl. (C) Fluorescence titration experiments involving 0–6 
μM HOCl. (D) Different analytes, 0: blank; 1–7: 10 μM NO, ONOO− , H2O2, O2

− , TBHP, •OH, and 1O2; 8: 5 μM HOCl; 9–18: 100 μM Mg2+, Cu2+, K+, Na+, Fe2+, Ca2+, 
Zn2+, NO2

− , NO3
− , HS− ; 19–20: 1 mM Cl− , GSH. Partial results are presented as mean ± standard deviation (n = 3). 

Fig. 6. Confocal experiments in cancer and macro-
phage cells. (A) Images of the cells. MCF-7 cells 
incubated with 5 μM RIC for 30 min and then treated 
with (a) 0, (b) 20, and (c) 40 μM HOCl for 30 min, 
respectively. (d) RAW264.7 cells incubated with 5 μM 
RIC for 30 min. (e) RAW264.7 cells pretreated with 
LPS (100 ng, 4 h), IFN-γ (30 ng, 4 h), and PMA (10 ng, 
30 min) and then incubated with 5 μM RIC for 30 
min. (f) RAW264.7 cells pretreated with NAC (1 mM, 
1 h) and then incubated with 5 μM RIC for 30 min. 
(B) Relative pixel intensity of the related images in 
(A). The results are presented as mean ± standard 
deviation (n = 3). Red channels were excited at 543 
nm and collected within 553–618 nm. Scale bar: 20 
μm. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web 
version of this article.)   
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40 μM, indicating that RIC semiquantitatively detected exogenous HOCl 
in cancer cells. Next, we performed endogenous HOCl experiments in 
RAW264.7 cells. When incubated with RIC alone, I580 was maintained at 
a moderate level in the cells (Fig. 6d), and the fluorescence was 
enhanced when the cells were pretreated with lipopolysaccharide (LPS), 
interferon gamma (IFN-γ), and phorbol 12-myristate 13-acetate (PMA) 
to induce cells to produce more HOCl (Fig. 6e) [78], demonstrating that 
RIC is able to sense endogenous HOCl in macrophage cells. As expected, 
I580 was also decreased after another group of cells was pretreated with 
N-acetylcysteine (NAC) to weaken the native production of HOCl 
(Fig. 6f) [79], confirming that RIC detected endogenous HOCl in 
macrophage cells. Meanwhile, some of the mitochondria in MCF-7 cells 
became fragmented after HOCl treatment (Fig. S13), whereas most of 
the mitochondria in RAW264.7 cells remained in punctate structures 
(Fig. S14), indicating that the mitochondrial morphology of cancer cells 
is more susceptible to HOCl than that of macrophages. Photo-stability 
experiments with RIC and HOCl showed negligible changes in I480 and 
I580 after 10 rounds of laser scanning (Fig. S15), thus demonstrating the 
efficient photo-stability of RIC under normal test conditions. 

Finally, we tested whether the mitochondria-anchoring character-
istic of RIC facilitated the real-time detection of HOCl in mitochondria. 
First, colocalization experiments of I580 and MTG were performed 
(Fig. S16). The pictures, scatter plot, and intensity profile indicated that 
I580 was retained in mitochondria after HOCl treatment, and the Pear-
son’s correlation coefficient was calculated as 0.82. Theoretically, the 
mitochondria-anchoring characteristic of RIC and the retention of I580 in 
mitochondria should show that the red fluorescence signal could reflect 
the fluctuations in mitochondrial HOCl concentrations. To test this hy-
pothesis, we performed real-time HOCl detection experiments in MCF-7 
cells. 

Excluding the effect of mitochondrial depolarization on the HOCl- 
sensing performance of RIC would have been difficult because HOCl 
can also depolarize mitochondria. Therefore, we aimed to verify that the 
alteration of different degrees of MMP caused by the addition of CCCP 
has a low impact on the real-time HOCl detection. Previous studies 
indicate that HOCl caused only a negligible reduction of MMP in the first 
5 min [81], whereas CCCP caused complete mitochondrial depolariza-
tion within 1 min [76,80]. Therefore, we added 10 μM CCCP at 3 min 
during the sensing application to quickly depolarize mitochondria, 
which should have induced a marked change of MMP within minutes. 
We also confirmed the alteration of MMP using TMRM (a commercial 
dye for MMP). As shown in Fig. S17, the red fluorescence of TMRM faded 
in the presence of CCCP, confirming a marked change of MMP after the 
addition of CCCP at 3 min. When HOCl was added to the cells, I580 
increased sharply at the beginning and then gradually, as shown in 

Fig. 7, which was in agreement with the cellular HOCl uptake rates re-
ported in a previous study [81]. In contrast to marked change in MMP, 
the dynamic fluorescence intensity curve of I580 was not altered much 
upon the addition of CCCP, for example, the slopes between 2.5, 3, and 
5 min showed that MMP had a low impact on the real-time detection of 
HOCl. Meanwhile, when mitochondrial depolarization happened in the 
presence of both HOCl and CCCP, a serious dye leakage should have 
occurred and the intensity curve should have stopped increasing 
immediately due to the fast response of RIC toward HOCl, if RIC did not 
have the mitochondria-anchoring property. Therefore, these results 
suggest that the mitochondria-anchoring characteristic of RIC facilitates 
the real-time detection of mitochondrial HOCl in live cells. 

4. Conclusions 

Considering the current lack and real significance of mitochondria- 
tracing HOCl probes, we designed and synthesized three dyes and 
selected RIC for real-time detection of mitochondrial dynamics and 
HOCl in live cells. Owing to its mitochondria-anchoring capability and 
steady inherent fluorescence signal, RIC traced both polarized and 
depolarized mitochondria and real-time detected CCCP-induced 
morphological changes of mitochondria in MCF-7 cells. In addition, 
the fast response, high selectivity and sensitivity, and MpH-insensitive 
detection of HOCl enabled RIC to real-time detect endogenous and 
exogenous HOCl in mitochondria. All the sensing characteristics pre-
sented in this article suggest that RIC is a powerful tool for potential 
research in biology involving both mitochondrial dynamics and HOCl. 
The molecular design strategy also offers a general method for synthe-
sizing new multifunctional probes for mitochondrial HOCl. 
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