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Abstract
A mapping model of arbitrarily shaped surfaces and the system image quality is constructed to
examine the optimization of the residual aberration of an off-axis optical system to construct an
off-axis optical system with very small aberrations. First, orthogonal surfaces are chosen within
the arbitrary aperture. The mapping relationship between the orthogonal surfaces and system
wavefront aberration is then established. Finally, the surfaces required for optimization are
acquired by solving the mapping relationship through singular value decomposition and the
Gauss–Newton algorithm. The residual aberration of the system is optimized using free-form
surfaces with small deviations. In this paper, the residual aberration of an off-axis optical system
with a non-circular aperture is optimized by adopting the above method, with the residual
aberration of the system reducing from 0.549 nm (root-mean-square, RMS) to 0.443 nm (RMS)
after adding a small free-form surface to a single lens, and to 0.393 nm (RMS) after adding
small free-form surfaces to two lenses. The optical system with a circular aperture is optimized
and the residual aberration of the system is reduced from 2 nm (RMS) to 0.47 nm (RMS).

Keywords: freeform optimization, optical design, aberration correction

(Some figures may appear in colour only in the online journal)

1. Introduction

The demand for high-quality imaging systems in medical dia-
gnostics, remote sensing, and extreme ultraviolet lithography
has increased with the rapid advance in optical technology.
However, perfect imaging is difficult to achieve owing to the
intrinsic defects of the imaging system, and aberrations are
inevitable [1].

In reducing the residual wavefront aberration and improv-
ing the system’s image quality, the system lenses are often
changed from rotationally symmetric surfaces to free-form
surfaces to provide a higher degree of freedom [2]. When

∗
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choosing a free-form surface to optimize, the Zernike poly-
nomials commonly used to analyze optical surface deviations
[3] and wavefront aberrations [4] lose their advantage of
orthogonality in the non-circular aperture of the off-axis
system, resulting in the polynomial coupling, whereas the
orthogonal Zernike surfaces in the non-circular domain are
mostly used for wavefront reconstruction [5]. Additionally,
traditional optimization methods for coaxial spherical sys-
tems may no longer be applicable and may need to be re-
established in guiding the optimization process. Zhu Jun’s
team the Tsinghua University has proposed a direct method
to design the freeform off-axis reflective imaging system [6]
and uses a point-by-point design method for mixed-surface-
type off-axis reflective imaging systems [7]. Wang Yongtian’s
team at the Beijing Institute of Technology has proposed a
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stepwise approximation optimization strategy for free-form
imaging systems, whereby the image quality is gradually
improved by progressively optimizing the surface from simple
to complex [8]. The team has also proposed an automatic bal-
ance optimization method for the overall image quality of the
imaging system, by adding a cyclic control layer to analyze the
imaging quality of the system and automatically assigning and
setting the field of view weights. The method thus provides a
balanced image quality throughout the field [9]. Fuerschbach
et al analyzed the main aberration types of the imaging sys-
tem according to aberration theory and set corresponding free-
form surface coefficients as variables for targeted optimiza-
tion, thus realizing progressive optimization [10]. The use of
these common surfaces and optimization methods to optimize
a small-aberration off-axis optical system and thus reduce the
residual aberration of the system faces the problems of coupled
surface polynomials and the lack of a link between the sur-
faces and the wavefront aberration of the system. These prob-
lems provide more degrees of freedom and make the system
more complex, resulting in slow and time-consuming optim-
ization and the need for constant trial and error to approach
the optimal solution. The optimization process thus lacks clear
directionality.

To solve the above problem, this paper proposes a free-
surface optimization method for optical systems based on
the mapping relationship between the non-circular orthogonal
Zernike surface and the wavefront aberration of the system.
Compared with other optimization methods using common
free-form surface shapes, the proposed method characterizes
the orthogonal Zernike surface within an arbitrary aperture
according to the orthogonal decomposition of the Gram mat-
rix, reducing the polynomial coupling within the lens aper-
ture during the optimization process. It is explained in detail
in section 2.1. Additionally, the method establishes a map-
ping relationship between each of the non-circular orthogonal
Zernike surfaces and the wavefront aberration, and solves the
coefficients of the non-circular orthogonal Zernike surface in
the optimization process by adopting singular value decom-
position (SVD) and Gauss–Newton algorithm. It is explained
in detail in section 2.2. This method is by adding the surface
which is used in the optimization to the original lenses of the
system, allowing iterative optimization. Through this method,
the residual wavefront aberration of a small aberration off-axis
optical system is reduced. Two kinds of systems are optimized
to demonstrate the proposed design method in section 3. The
validity of the mapping between the non-circular orthogonal
Zernike surface and the wavefront aberration and the effective-
ness of the method in free-form optimization is demonstrated.

2. Free-form optimization method based on the
relationship between a non-circular orthogonal
Zernike surface and wavefront aberration mapping

2.1. Characterization of non-circular orthogonal Zernike
surfaces

The orthogonal decomposition of the Gram matrix to reorgan-
ize the vectors within the lens aperture and thus generate a new

orthogonal basis function is adopted to characterize the non-
circular orthogonal Zernike surface [5, 11, 12].

According to higher algebraic theory, a linear space is an
abstraction of three-dimensional geometric space, and for any
two real-variable real-valued functions f,g on a linear space
domain R, the relation,

( f,g) =

ˆ

R

f(r)g(r)dr (1)

is an inner product on a spatial domain R. R with the inner
product ( f,g) forms an infinite dimensional Euclidean space,
and f,g is a vector of Euclidean spaces. For the n vec-
tors a1,a2, . . . ,anof the Euclidean space, the Gram matrix is
defined as z1,z2, . . . ,zn,

G(a1,a2, . . . ,an) =


(a1,a1) (a1,a2) · · · (a1,an)
(a2,a1) (a2,a2) · · · (a2,an)
· · · · · · · · · · · ·

(an,a1) (an,a2) · · · (an,an)


(2)

a sufficient condition for a1,a2, . . . ,an to be linearly independ-
ent is that the Gram matrix is positive definite [13].

Taking the Fringe Zernike polynomials as an example,
for the m vectors of the Euclidean space z1,z2, . . . ,zm consti-
tuted by the Fringe Zernike terms in the non-circular domain

R(Max(r)⩽ 1), (3)

the Gram matrix is defined as,

G(z1,z2, . . . ,zm) =


(z1,z1) (z1,z2) · · · (z1,zm)
(z2,z1) (z2,z2) · · · (z2,zm)
· · · · · · · · · · · ·

(zm,z1) (zm,z2) · · · (zm,zm)


(4)

where zm is the m Fringe Zernike polynomial evaluated at
points in the non-circular domain. We can analysis of lin-
ear correlation. If the m vectors are linear correlation, the
n linearly independent vectors can be selected to form a
new vector group A = (z1,z2, . . . ,zn)T. The vector group A
is orthogonalized to obtain an orthogonal set of vectors B =
(b1,b2, . . . ,bn)T. Concerning the orthogonal decomposition of
the Gram matrix, because the Gram matrix is real, symmetric,
and positive definite, there must exist a unitary matrix Q such
that,

Q ′GQ = diag(λ1,λ2, . . . ,λn) (5)

where λ1,λ2, . . . ,λn are eigenvalues and Q ′ is the eigenvector
matrix of G, and Q ′ = Q−1Q ′ = Q−1. The linear transform-
ation is written as,

B = Q ′A (6)

where B = (b1,b2, . . . ,bn)T, A = (z1,z2, . . . ,zn)T and Q ′ are
the linear transformationmatrices of the two vectors. It follows
from the Gram matrix of vector B [14] that,
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G(B) =


(b1,b1) (b1,b2) · · · (b1,bn)
(b2,b1) (b2,b2) · · · (b2,bn)
· · · · · · · · · · · ·

(bn,b1) (bn,b2) · · · (bn,bn)


= Q ′G(A)(Q ′) ′

= Q ′G(A)Q

= diag(λ1,λ2, . . . ,λn)

(7)

and

|G(B)| =
n∏
i=1

(bi,bi). (8)

When the equal sign is established, the generalized Hadam-
ard inequality theorem states that,

(bi,bj) = 0, i ̸= j, i, j= 1,2, . . . ,n. (9)

B is a set of orthogonal vectors in Euclidean space. At this
point, the items in the Fringe Zernike polynomials are com-
bined to form a new orthogonal basis function in the non-
circular domain. In the optimization process of the optical
system, the non-circular domain is the lens aperture. The
non-circular orthogonal Zernike surface achieves orthogonal

decomposition with B as the orthogonal vector basis function.
The basic functions of different lenses are different owing to
the different shapes of the apertures of the different lenses.

2.2. Establishment of mapping relations with wavefront
aberrations and solution of the optimized surface

In section 2.1, the orthogonal basis functions on each lens
are obtained. The correspondence between each basis func-
tion and the wave aberration of the optical system is then
established.

Each basis function takes the same coefficients and is eval-
uated at points in the non-circular domain to form the corres-
ponding surface. By adding the surface to the corresponding
lens through interacting software (CODEV), the effect of each
basis function on the wavefront aberration of different fields
is obtained, and the variation of the wavefront aberration
is described by Fringe Zernike polynomials. The sensitiv-
ity matrix S of the basis function on the corresponding lens
concerning the wavefront aberration is thus established, and
the mapping relationship between the non-circular orthogonal
Zernike surface and the wavefront aberration is obtained. The
sensitivity matrix is

S=



M1︷ ︸︸ ︷
BM11︷ ︸︸ ︷

f1

 ∆z1
· · ·
∆z37
· · ·

fn

 ∆z1
· · ·
∆z37

· · ·

BM1i︷ ︸︸ ︷
f1

 ∆z1
· · ·
∆z37
· · ·

fn

 ∆z1
· · ·
∆z37

· · ·

Mm︷ ︸︸ ︷
BMm1︷ ︸︸ ︷

f1

 ∆z1
· · ·
∆z37
· · ·

fn

 ∆z1
· · ·
∆z37

· · ·

BMmj︷ ︸︸ ︷
f1

 ∆z1
· · ·
∆z37
· · ·

fn

 ∆z1
· · ·
∆z37



(10)

where M1,M2, . . . ,Mm denote different lenses, BM11,
BM12, . . . ,BM1i denote the ith basis function corresponding
to the first lens, BMm1,BMm2, . . . ,BMmj denote the jth basis
function corresponding to the mth lens, f1, f2, . . . , fn denote
different fields, and ∆z1,∆z2, . . . ,∆z37 denote changes in the
wavefront aberration.

The difference between the wavefront aberration of the cur-
rent system and the optimized target value is denoted ∆W.
The corresponding lens basis function coefficient matrices are
denotedCM1,CM2, . . . ,CMm. Adopting SVD [15, 16] to elim-
inate orthonormal basis functions that are not sensitive to the
wavefront,

S = UDVT (11)

where U and V are orthogonal and D is square diagonal. The
pseudo inverse of S is

S−1 = VD−1UT. (12)

The required surfaces SM1,SM2, . . . ,SMm are calculated for
optimization based on the Gauss–Newton algorithm. We have

C = (S)−1 ·∆W (13)
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where

∆W=


f1

 ∆z1
· · ·
∆z37

· · ·

fn

 ∆z1
· · ·
∆z37


C=


CM1

 CM11

· · ·
CM1i

· · ·

CMm

 CMm1

· · ·
CMmj


.

(14)

Taking the mth lens as an example, the formula for calcu-
lating the required surface for optimization is,

SMm = CMm1BMm1 +CMm2BMm2 + . . .+CMmjBMmj. (15)

3. Validation

The system is optimized using the free-form optimization pro-
cess shown in figure 1 to validate the free-form optimiza-
tion method based on the mapping of the orthogonal Fringe
Zernike surface to wavefront aberrations and to demonstrate
the effectiveness of themethod in optimizing the residual aber-
rations of very-small-aberration off-axis optical systems.

3.1. Non-circular orthogonal Fringe Zernike surface for
optimizing system with non-circular aperture

The system with the parameters in table 1 shown in figure 2
is optimized. This is done in a simple-to-complex sequence.
First, a small freeform deviation is added to a single lens sur-
face. Considering the strong coupling when too many surfaces
are selected for optimization, then we choose two lens surfaces
to add small freeform deviations and validate that the method
is also effective to reduce residual aberration. The principle of
selection is to be able to correct both the residual aberrations
common to each field and the individual aberrations of each
field. The small deviation surface for optimizing the system is
at the nanoscale. The curvature of the original surface determ-
ines the reference sphere for testing. The curvature of the ori-
ginal surface of M3 is 0.003 mm−1 and the surface curvature
of the original surface of M4 is 0.002 mm−1.

3.1.1. Adding a small free-form surface to a single lens. The
lens M3 is placed close to the lens M2 as a diaphragm in the
optical system. The footprint of each field is more discrete than
that of the other lenses. When M3 is chosen for adding a small
free-form surface, it is useful for the correction of both specific
and common residual aberrations of fields.

For calculating the surfaces to establish the mapping, basis
functions should be determined. If the basis function group is
orthogonally complete, the product of each term of the basis
function group with the other terms tends to zero accord-
ing to the definition of orthogonality. The degree of non-
orthogonality determines the number of terms of basis func-
tions. It is calculated between each basis function and each
other basis function. The basis function is the set of Fringe

Figure 1. Optimization for a free-form surface.

Table 1. Basic system parameters.

Item Specification

Numerical aperture 0.33
Reduction ratio 4
Image field size 26 mm × 2 mm

Figure 2. System structure.

Zernike polynomials with different numbers of terms. Taking
M3 as an example, figure 3(a) shows the non-orthogonality
between the basis functions comprising 192 terms of Fringe
Zernike polynomials, which is close to 1. The basis functions
comprising 165 terms maintain good orthogonality. We thus
identify a set of basis functions that can be used to describe
the non-circular orthogonal Zernike surface of M3, as shown
in figure 3(c) for the 165-term basis function surface of M3.

After constructing the basis functions used to charac-
terize the non-circular orthogonal Zernike surface of M3,
the required non-circular orthogonal Zernike surface for the
optimization is solved, as shown in figure 4. The surface added
to optimize the system reduces the residual wavefront aber-
ration from 0.549 nm (root-mean-square, RMS) to 0.443 nm
(RMS) and residual aberration reduced by 19%.

When the circular orthogonal surface is used, free-form sur-
face for optimization can be obtained based on the method in
section 2.2. For example, 165 terms of the orthogonal Fringe
Zernike are used to optimize the same system. The surface
for optimization is shown in figure 5. Although the residual
wavefront aberration can be 0.444 nm (RMS), the distortion

4
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Figure 3. (a) Non-orthogonality between the basis functions
comprising 192 terms of Fringe Zernike polynomials,
(b) non-orthogonality between the basis functions comprising
165 terms of Fringe Zernike polynomials, and (c) 165-term basis
function surface of the element M3.

Figure 4. Free-form surface of M3 required for optimization.

Figure 5. Free-form surface in circular domain of M3 required for
optimization.

is 46.5 nm due to the large deviation of the surface. When the
non-circular orthogonal Fringe Zernike is used, the distortion
is 6.6 nm. The non-circular orthogonal Fringe Zernike can
reduce the deviation, at the same time it can reduce the resid-
ual aberration. The shape of the aperture determines whether
the freeform surface polynomial is circularly or non-circularly
orthogonal.

3.1.2. Adding small free-form surfaces to two lenses. To
verify the effectiveness of the method in optimizing the com-
bination of multiple lenses, two lenses are selected to be added
to small free-form surfaces. In addition to M3, the M4 is
chosen to owe to its relatively independent contribution to each
field and to further correct for residual wavefront aberrations
in each field. The number of Fringe Zernike polynomial terms
used to build the set of basis functions in the aperture of M4 is

5
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Figure 6. (a) Non-orthogonality between the basis functions
comprising 117 terms of Fringe Zernike polynomials and
(b) 117-term basis function surface of the element M4.

determined using the method described and the corresponding
set of basis functions for M4 is built, as shown in figure 6, with
117 terms used.

Using the method described, the non-circular orthogonal
Zernike surfaces of M3 and M4 for optimization are required,
as shown in figure 7. The residual wavefront aberration is
reduced from 0.549 nm (RMS) to 0.393 nm (RMS) by adding
the surfaces to the system and residual aberration reduced by
28%.

Figure 7. (a) Free-form surface of the element M3 required for
optimization and (b) free-form surface of M4 required for
optimization.

3.2. Circular orthogonal Fringe Zernike surfaces for
optimizing system with circular aperture

To verify the effectiveness of the method in the circular aper-
ture, the system with a circular aperture, as shown in figure 8,
is optimized by M6. The surface curvature of the original sur-
face of M6 is 0.001 mm−1.

Using the method described, the non-circular orthogonal
Zernike surface of M6 for optimization is required, as shown
in figure 9. The residual wavefront aberration is reduced from
2 nm (RMS) to 0.47 nm (RMS) by adding the surface to the
system and residual aberration reduced by 76%.
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Figure 8. System structure.

Figure 9. Free-form surface of the element M6 required for
optimization.

4. Summary

This paper presented a free-form optimization method for
optical systems based on themapping relationship between the
non-circular orthogonal Zernike surface and the system wave-
front aberration. The presented method effectively reduces
the residual wavefront aberration of very small-aberration off-
axis optical systems. The method characterizes the ortho-
gonal Zernike surface within an arbitrarily shaped aperture
and applies it to optimize systems. The surface can reduce
polynomial coupling and increase the freedom of the system.
The mapping between the surface and wavefront aberration
is obtained by establishing the sensitivity matrix of the basis
functions concerning the wavefront aberration, and the optim-
ized surface is solved by adopting SVD. Thismethod improves
the efficiency of free-form surface optimization and reduces
the tedious trial-and-error process. The method was applied
to the optimization of very-small-aberration off-axis optical
systems with arbitrary lens aperture, and the residual aberra-
tion of the system reduced from 0.549 nm (RMS) to 0.443 nm

(RMS) when using a single lens and to 0.393 nm (RMS) when
using two lenses. The optical systemwith a circular aperture is
optimized and the residual aberration of the system is reduced
from 2 nm (RMS) to 0.47 nm (RMS).

For dynamic range, this method allows sub-nanometer,
deep sub-nanometer wavefront aberration convergence at sur-
face deviation in the nanoscale. The spatial resolution is up to
z37 that wavefront aberration is described by Fringe Zernike
polynomials. This method is applicable in the low-frequency
range. The surface for optimization cannot have the large
deviation and it could destroy other indicators of the original
system.
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