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The development of high-performance and Earth-abundant catalysts is imperative for the oxygen evol-

ution reaction (OER), and mesoporous oxyhydroxides show huge potential as advanced catalysts toward

the OER due to a large specific surface area and porous structure. Here, we adopt a facile template

method to synthesize bimetallic Mn–Fe oxyhydroxides. meso-Mn1Fe1Ox shows a large BET specific

surface area of 212.4 m2 g−1 and an average pore diameter of 13.1 nm, which favor the exposure of many

active sites for the reaction. meso-Mn1Fe1Ox exhibits excellent OER performance with a low overpotential

of 275 mV at 10 mA cm−2, a small Tafel slope of 52 mV dec−1, and good long-term stability, and is

superior to most Mn-based electrocatalysts. Kinetic studies indicate that Fe and Mn sites should synergis-

tically catalyze the OER. Theoretical calculations reveal that the surface doping of Fe onto MnOOH can

moderately destabilize the surface bridge O atoms and promote the generation of surface oxygen

vacancies that can act as highly active sites for the OER.

Introduction

The oxygen evolution reaction (OER), which is essentially slug-
gish, plays a crucial role in renewable energy technologies
including reversible fuel cells, rechargeable metal/air batteries,
and water splitting.1–6 Ru/Ir-Based materials are the most
active OER catalysts in acidic media, but the fancy price and
rareness impede their large-scale commercial application.7,8

So far, a great deal of effort has been made in the fabrication
of cost-efficient alternatives, such as transition metal sulfides,9

selenides,10 phosphides,11 borides,12 carbides,13 nitrides,14

oxides/hydroxides/oxyhydroxides,15 and single-atom cata-
lysts.16 Among these catalysts, transition metal oxyhydroxides
have received much attention due to their higher OER stability
than B-, C-, P-, S-, and Se-containing counterparts.17 Therefore,
the development of Earth-abundant and inexpensive tran-
sition-metal oxyhydroxides is highly desirable for water split-
ting application.18,19 Manganese is the third most abundant
transition metal in the crust of the Earth, which has a much
lower price than cobalt and nickel.20 In addition, manganese

has excellent redox properties, which make it have good
electrocatalytic application potential. However, compared with
Ni-, Co-, and Fe-based oxides and hydroxides, Mn-based oxides
usually show worse OER performance.21,22 Therefore, it is
alluring and challenging to fabricate high-performance Mn-
based catalysts for the OER.23

In nature, the oxygen evolution center CaMn4O5 in photo-
system II shows high water oxidation activity with the turnover
frequency (TOF) of 100–400 s−1.24 We found that mononuclear
Mn coordinated with four N atoms in graphene exhibited high
chemical and electrochemical water oxidation activity with an
overpotential (η10) of 337 mV at 10 mA cm−2.25 Li et al. found
that γ-MnO2 showed outstanding OER stability at potentials
between 1.6 V and 1.75 V vs. RHE in acidic media, but it would
be dissolved into the electrolyte at higher potentials due to the
formation of MnO4

−.26 For unary Mn-based oxides, such as
MnO, α-, β-, ε-, δ- and λ-MnO2, Mn2O3, Mn3O4, and Mn5O8, the
electrochemical water oxidation activity is much lower than
that of Co-based and Ni-based oxides.27 Although the OER
activity of Mn-based oxides can be significantly enhanced by
introducing vacancies and lattice strains, their electrocatalytic
performance is still lower than those of Co-based and Ni-based
oxides.28–30

The Fe-doping strategy is very efficient at improving the
OER activity of various transition metal oxides, especially for
Co-based and Ni-based oxides.31,32 Fe doping into transition
metal oxide/hydroxide systems can increase the conductivity,
improve OER dynamics, adjust redox states and structural
transformation of host materials, and modulate the acidity
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and superexchange interaction, thus enhancing the OER
activity. Pan et al. found that hollow porous Mn1.2Fe0.8O3 with
low crystallinity showed excellent OER activity.33 Kuang et al.
fabricated ultrathin low-crystallinity Fe–Mn–O nanosheets
onto carbon cloth, which exhibited a low η10 of 273 mV for the
OER.34 Li et al. supported Mn3O4/Fe2O3 nanosheets onto
nickel foam using an in situ hydrothermal method, which
demonstrated an ultralow η10 of 157 mV for the OER.35 Lhoste
et al. found that Mn–Fe-based oxyfluorides can maintain the
OER activity at 10 mA cm−2 for more than 10 h in 0.5 M
H2SO4.

36 However, since the strength of the OH–Mn2+δ is
higher than that of the OH–Fe2+δ, resulting in lower OER
activity on the Mn sites,37 the actual active sites of Fe–Mn-
based oxides/hydroxides are still not clear because the theore-
tical overpotentials on Fe or Mn sites are very high.

Herein, we fabricated porous Mn–Fe oxyhydroxides using
polyethylene oxide–polypropylene oxide–polyethylene oxide
(P123) as the template, which exhibited excellent OER perform-
ance, comparable to that of the state-of-the-art IrO2 catalyst.
The Mn/Fe ratio significantly influenced the OER activity and
the lowest reaction barrier and the optimal electrocatalytic per-
formance can be achieved on Mn1FenOx with Mn/Fe = 1 : 1.
Kinetic studies showed that Mn1Fe1Ox exhibited a lower energy
barrier (32.8 kJ mol−1) than MnOx (59.6 kJ mol−1) and FeOx

(47.0 kJ mol−1). Theoretical calculations revealed that the
surface di-μ-oxo bridged Fe–Mn should be the active site for
efficient OER.

Results and discussion
Structure characterization

Mesoporous Mn–Fe hydroxides can be facilely fabricated by a
template method using P123 as the template (Fig. 1a). For
mesoporous FeOx, there are three distinct peaks in the XRD
pattern, which are centered at 27.4, 36.5, and 47.3°. For meso-
porous MnOx, the main XRD peaks are located at 24.2, 31.5,
41.4, and 51.8°. For meso-Mn1Fe1Ox, no obvious peaks can be
observed, indicating an amorphous structure. For meso-
Mn1FenOx (n < 1), diffraction peaks due to MnOx can be still
observed (Fig. S1†), while for meso-Mn1Fe1.2Ox, there are no
obvious diffraction peaks. The meso-Mn1Fe1Ox exhibits typical
type IV isotherms, indicating a typical mesoporous structure
(Fig. 1b). The BET specific surface area of meso-FeOx, meso-
MnOx, meso-Mn1Fe0.8Ox, meso-Mn1Fe1Ox and meso-
Mn1Fe1.2Ox is calculated to be 387.2, 151.1, 256.8, 212.4, and
188.7 m2 g−1, respectively, and the average pore diameter is
2.2, 13.6, 13.4, 13.1, and 12.8 nm. From the SEM images
(Fig. 1c and Fig. S2†) and TEM images (Fig. S3†), irregular
nanoparticles are typically observed for meso-FeOx, meso-
MnOx, and meso-Mn1FenOx. The HRTEM image (Fig. 1d) and
the SAED pattern (Fig. S4†) further indicate no obvious crystal-
line structure and the existence of mesopores. From the
element mapping images, Fe, Mn, and O elements are evenly
dispersed in meso-Mn1Fe1Ox (Fig. 2 and Fig. S5†). The Fe/Mn
ratio in meso-Mn1Fe1Ox was determined to be ca. 1.05 by

Fig. 1 (a) Synthetic illustration of mesoporous Mn–Fe hydroxides. (b)
XRD patterns of meso-FeOx, meso-MnOx, meso-Mn1Fe1Ox, and referred
samples. (c) N2 adsorption–desorption isotherms of meso-Mn1Fe1Ox

(inset: pore size distribution). (d) SEM image of meso-Mn1Fe1Ox. (e)
HRTEM image of meso-Mn1Fe1Ox.

Fig. 2 (a) SEM image of meso-Mn1Fe1Ox used for element mapping.
(b–d) Element mapping.
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SEM-EDS measurement (Fig. S6†) and ca. 1.03 by ICP
measurement.

The surface composition and metal valence states of meso-
Mn1Fe1Ox were analyzed by XPS. The XPS survey spectrum
reveals the prominent signals of the expected elements, i.e.,
Fe, Mn, and O (Fig. 3a). The Fe 2p3/2 spectrum indicates the
existence of Fe2+ 2p3/2 and Fe3+ 2p3/2 at 710.9 and 713.1 eV,
respectively (Fig. 3b).38 Moreover, the surface relative content
of Fe3+/Fe2+ is estimated to be ca. 1.2/1. The Mn 2p3/2 spectrum
can be deconvolved into three peaks centered at 640.9, 641.7,
and 642.8 eV (Fig. 3c), attributed to Mn2+, Mn3+, and Mn4+,
respectively.39 The O 1s spectrum can be fitted into lattice Fe/
Mn–O (529.8 eV) and defective O species (532.5 eV) (Fig. 3d).40

OER performance

The OER electrocatalytic properties of meso-Mn1Fe1Ox, the
monometallic counterparts (meso-FeOx and meso-MnOx), and
IrO2 were evaluated in 1 M KOH. The meso-Mn1Fe1Ox catalyst
shows a much lower onset potential and higher current
density compared with meso-FeOx and meso-MnOx (Fig. 4a),
indicating an enhanced intrinsic OER activity due to the syner-
gic effect between Fe and Mn. Specifically, the overpotential
(η10) of meso-Mn1Fe1Ox at 10 mA cm−2 is only 275 mV, which
is distinctly lower than that of meso-FeOx (391 mV) and meso-
MnOx (475 mV), and is comparable to that of IrO2 (272 mV).
The influence of the Fe/Mn ratio on the OER performance was
investigated. The results indicate that Fe and Mn with an
atomic ratio of 1 : 1 exhibited the best OER performance
(Fig. S7†), with a lower η10 than that of meso-Mn1Fe0.4Ox

(325 mV), meso-Mn1Fe0.6Ox (303 mV), meso-Mn1Fe0.8Ox

(289 mV), and meso-Mn1Fe1.2Ox (356 mV). The Tafel plots in
Fig. 4b show that the Tafel slope for meso-Mn1Fe1Ox is 52 mV
dec−1, smaller than that for meso-FeOx (106 mV dec−1) and
meso-MnOx (176 mV dec−1) and comparable to that for IrO2

(55 mV dec−1), indicating high OER efficiency for meso-
Mn1Fe1Ox.

2 The meso-Mn1Fe1Ox shows a high turnover fre-
quency (TOF) value of 0.029 s−1 per total Fe and Mn atoms and
mass activity of 98.6 A g−1 at an overpotential of 300 mV, far
larger than meso-FeOx (0.00047 s−1 and 1.6 A g−1) and meso-
MnOx (0.00023 s−1 and 0.78 A g−1).41 The OER performance of
meso-Mn1Fe1Ox is better than that of the best MnFe-based oxy-
hydroxides previously reported (Fig. 4c and Table S1†), for
instance Mn–Fe oxide/CC (η10 = 730 mV),42 Mn0.5Fe2.5O4NP/
MC (η10 = 560 mV),43 MnFe2O4NP/MC (η10 = 510 mV),43 Fe/Mn–
N–C (η10 = 360 mV),44 Fe1.1Mn0.9P (η10 = 440 mV),39 MnFe2O4/
NF (η10 = 310 mV),45 and MnFe2O4 (η10 = 582 mV),46 and even
exceeds that of the state-of-the-art RuO2 catalyst (η10 =
340 mV).47

The cyclic voltammogram (CV) of meso-FeOx displays a very
weak redox wave at E1/2 = 1.396 V due to the one-electron redox
reaction of the Fe2+/Fe3+ couple (Fig. 4d), while the CV curve of
meso-MnOx exhibits a weak redox wave at E1/2 = 1.392 V due to
the one-electron redox reaction of the Mn3+/Mn4+ couple.25

The CV curve of meso-Mn1Fe1Ox demonstrates a distinct redox
wave at E1/2 = 1.38 V (Fig. S8†), different from the monometal-
lic Fe/Mn oxyhydroxides, implying a cooperative mechanism
between Fe and Mn during OER electrocatalysis. The kinetic
barrier on these catalysts can be derived from the Arrhenius

formula Ea¼� 2:3R
@logðikÞ

@
1
T

0
B@

1
CA, where ik is the kinetic current

at η = 300 mV, T is the temperature, and R is the universal gas
constant (Fig. S9†).48 meso-Mn1Fe1Ox exhibits a low kinetic
barrier of 32.7 kJ mol−1, much smaller than meso-FeOx

(65.8 kJ mol−1) and meso-MnOx (56.7 kJ mol−1) (Fig. 4e), indi-
cating that a synergic action should be involved between Fe
and Mn for accelerating the OER kinetics.

To assess the active sites in meso-FeOx, meso-MnOx, and
meso-Mn1Fe1Ox, the electrochemically active surface area
(ECSA) was compared (Fig. S10–S12†). meso-FeOx shows an
ECSA of 28.0 cm2, which is close to that of meso-MnOx

(27.5 cm2), but much lower than that of meso-Mn1Fe0.4Ox

Fig. 3 (a) XPS survey spectrum of meso-Mn1Fe1Ox. (b) Fe 2p XPS spec-
trum. (c) Mn 2p XPS spectrum. (d) O 1s XPS spectrum.

Fig. 4 (a) LSV curves of meso-FeOx, meso-MnOx, IrO2, and meso-
Mn1Fe1Ox. (b) Tafel slopes. (c) Comparison of overpotentials at 10 mA
cm−2 and Tafel slopes. (d) CV curves at a scan rate of 100 mV s−1. (e)
Arrhenius plots. (f ) Chronopotentiometric curve.
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(155.3 cm2), meso-Mn1Fe0.6Ox (184.2 cm2), meso-Mn1Fe0.8Ox

(206.8 cm2), meso-Mn1Fe1Ox (405.0 cm2), and meso-
Mn1.2Fe1Ox (142.1 cm2), indicating that the efficient active
sites can be greatly increased by the cooperation between Fe and
Mn. Moreover, the charge-transfer ability of these catalysts
was measured by electrochemical impedance spectroscopy
(Fig. S13†). By fitting the Nyquist plots, the charge transfer resis-
tance (Rct) of meso-Mn1Fe1Ox is only 3.6 Ω cm2, much lower
than that of meso-FeOx (6.9 Ω cm2), meso-MnOx (6.8 Ω cm2),
meso-Mn1Fe0.4Ox (4.8 Ω cm2), meso-Mn1Fe0.6Ox (4.6 Ω cm2),
meso-Mn1Fe0.8Ox (4.2 Ω cm2), and meso-Mn1Fe1.2Ox (5.3 Ω cm2).
The fast charge-transfer ability of meso-Mn1Fe1Ox facilitates OER
kinetics in good agreement with the aforementioned results.

The OER durability of meso-Mn1Fe1Ox was evaluated by
chronopotentiometry measurement (Fig. 4f). After continuous
operation at a constant current density of 10 mA cm−2 for 27 h,
the potential remains constant, indicating excellent stability.
The faradaic efficiency was found to be close to 100%, indicat-
ing that the anode current is from the OER. The structure of
meso-Mn1Fe1Ox after the OER test was analyzed by XRD
(Fig. S14†), suggesting that the amorphous structure was
retained after the stability test. The morphology and compo-
sition of meso-Mn1Fe1Ox after the OER test were characterized
by TEM, SEM, and EDS. As shown in Fig. S15,† mesopores can
be still seen in the used meso-Mn1Fe1Ox. The morphology did
not change obviously, and the Fe/Mn ratio was close to 1 : 1 as
determined by EDS (Fig. S16†). The surface composition and
metal valence state of meso-Mn1Fe1Ox after the OER stability
test were analyzed by XPS (Fig. S17†). Fe and Mn elements can
be detected on the catalyst surface. The relative surface content
of Fe3+/Fe2+ increased from 1.2/1 in the initial sample to 1.5/1 in
the used sample, while the Mn2+ in the initial sample was com-
pletely oxidized to a higher valence state (i.e. Mn4+) after the
OER, suggesting that Mn4+ is a key species for the OER.

Theoretical investigation

To rationally understand the excellent OER activity trend for
meso-Mn1Fe1Ox, we theoretically probe the origin of OER
activity enhancement by comparing the OER overpotentials
(ηOER) of the unary γ-MnOOH (010) surface and binary Fe-
doped γ-MnOOH (010) surfaces since γ-MnOOH is the most
stable MnOOH polymorph which exhibited significant OER
activity.49 We first analyze three different monoatomic sites on
pure and alloyed γ-MnOOH (010) surfaces. The free-energy dia-
grams (FEDs) of the OER are constructed for these monometal-
lic sites and are shown in Fig. 5. The Fe site on the γ-MnOOH
(010) surface is an uncoordinated site with 5 Mn–O coordi-
nation and it possesses a high ηOER of about 1.19 V, which can
be attributed to the weak binding of *O and hence a large
potential is required for *OH oxidation to *O (Fig. 5a). In
addition, the OER activity for the Mn site cannot be improved
when an Fe dopant occupies its neighboring site as shown in
Fig. 5b. The surface Fe dopant is not the active site for the
OER either because it binds all OER intermediates very weakly
or its ηOER is 1.11 V due to the difficult *OH formation as can
be seen in Fig. 5c.

Since monometallic sites have poor OER activities owing
to their weak binding of *O or *OH, we further examine the
surface oxygen vacancy (Ov) sites and see if these sites have
more balanced adsorption of OER intermediates. The
surface Ov site coordinates to two metal ions. The FEDs of
OER on these sites are shown in Fig. 6. On the pure
γ-MnOOH (010) surface, the Ov site has an ηOER of 1.16 V
(Fig. 6a), which is close to the above discussed monometal-
lic Mn site on the pure γ-MnOOH (010) surface. However,
the potential-determining step is now switched to the O–O
coupling step due to enhanced *O adsorption and relatively
weaker *OOH adsorption, i.e. a high value of ΔG*

OOH −
ΔG*

O. The change of the potential-determining step indi-
cates that the Ov site does modulate the binding of *O but

Fig. 5 Free-energy diagrams of the OER on different active sites:
MnOOH (a), Fe-MnOOH Mn (b), and Fe-MnOOH Fe (c).
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makes *O binding overly strong. For Ov sites that are in
between mixed with the Mn and Fe ions, the strong *O
binding can be alleviated and ηOER is reduced to 0.96 V as
shown in Fig. 6b. The Fe–Fe Ov site has a similar ηOER as
compared to the Mn–Fe Ov site as shown in Fig. 6c.
Therefore, it is concluded that the surface doping of Fe can
moderately destabilize the surface bridge O atoms on the
γ-MnOOH (010) surface and facilitate the formation of
surface oxygen vacancies that can serve as highly active sites
for the OER.

Conclusions

In summary, a facile template method was adopted to syn-
thesize mesoporous Mn–Fe oxyhydroxides with a high specific
surface area and porous structure, which are advantageous to
expose more actives for the OER. meso-Mn1Fe1Ox exhibits
efficient catalytic performance for the OER in alkaline media
with a η10 of 275 mV, which surpasses most Mn-based electro-
catalysts reported previously. Moreover, meso-Mn1Fe1Ox is a
durable OER electrocatalyst, which can retain its catalytic per-
formance even after 27 h of long-term operation without any
deactivation. Kinetic studies revealed that both Fe and Mn
should synergistically catalyze the OER. DFT calculations con-
firmed that the MnOOH surface doped with Fe can favorably
destabilize the surface bridge O atoms and accelerate the for-
mation of surface oxygen vacancies, which are highly active for
the OER.
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