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Abstract: In this paper, we demonstrate the use of the modified phase retrieval as a method for
application in the measurement of small-slope free-form optical surfaces. This technique is a solution
for the measurement of small-slope free-form optical surfaces, based on the modified phase retrieval
algorithm, whose essence is that only two defocused images are needed to estimate the wave front
with an accuracy similar to that of the traditional phase retrieval but with less image capturing
and computation time. An experimental arrangement used to measure the small-slope free-form
optical surfaces using the modified phase retrieval is described. The results of these experiments
demonstrate that the modified phase retrieval method can achieve measurements comparable to
those of the standard interferometer.

Keywords: free-form; metrology; surfaces measurement; phase retrieval

1. Introduction

With the rapid development of national defense, aerospace, and other fields, the de-
mand for high-precision and high-quality photoelectric products is increasing, and these
photoelectric products are gradually developing toward miniaturization. Using free-form
surfaces, the imaging quality of the optical imaging system can be greatly improved; the illu-
mination uniformity of the optical illumination system can be evidently improved; and the
transmission efficiency of the information transmission system can also be remarkably
improved. With the recent advances in optical design and fabrication, the free-form optical
surface is commonly used because of its better performance and compactness [1–3].

Because the free-form optical surface has more degrees of freedom for correcting
optical aberrations, the high precision free-form optical surface metrology remains difficult
and is still a challenge [4–6]. Therefore, in recent years, many scholars have studied the
optical testing methods of free-form surfaces. Thus, a number of metrology methods have
been developed [7–9], and these methods are roughly divided into contact metrology and
non-contact metrology. Because it is easy to scratch the surfaces with contact metrology,
non-contact metrology is preferred for high-precision optical surfaces. The recognized
interferometer cannot measure the free-form surfaces. This is not only because the standard
interferometry has some typical disadvantages, such as high sensitivity to vibrations or
temperature fluctuations, hindering its usage to strictly controlled laboratory conditions,
but also because the fringes are too dense, and the interference fringes cannot be generated.

In order to solve the problem of free-form optical surface metrology, we introduce
a feasible non-contact measurement method called Phase Retrieval (PR), a high-precision
method and an alternative to interferometry for optical testing, with the advantages of
compactness, low-cost, and a stable system. PR has emerged as a potential solution for
free-form surfaces metrology [10–13]. As PR is a method of wave-front sensing and a simple
experimental arrangement in optical metrology, it has been used in system measurement
and alignment; it has, for example, been used in the Hubble Space Telescope and the
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James Webb Space Telescope [14,15]. Besides, PR has also been applied to test spherical mir-
ror surfaces and rotationally symmetric aspherical surfaces [16,17]. As we know, algorithm
is the soul of PR. Some PR algorithms have robustness, multiple solutions, and stagnation;
for example, the convergence speed of the fastest gradient search in the PR algorithm is not
the fastest, and it usually falls into a local minimum. In addition, the conjugate gradient
search method in the PR algorithm is more robust than the fastest gradient search method.
Thus, we introduce a new PR algorithm, which potentially has the advantage of improving
the efficiency of phase recovery in order to solve the limitations of the traditional PR in its
iterative uncertainty and slow convergence speed [18,19].

In this paper, we will first introduce the theory and the application of PR and then the
improved PR algorithm in Section 2. In Section 3, the results and analysis of the experiment
are presented. The conclusion is finally drawn in Section 4.

2. Theory of PR
2.1. The Principle of PR

PR technology is based on the theory that the diffraction of coherent light propagates.
PR generally involves estimating a complex-valued phase distribution from known in-
tensity distributions at some properly selected planes. It is an inverse problem in optics,
which uses the Fourier transform relationship between the pupil and the in-focus plane
to iteratively estimate the phase which is suffering from non-uniqueness. Figure 1 shows
the schematic layout of the PR principle. When a beam propagates along the optical axis,
the diffraction field distribution is formed at a certain propagation distance. The reference
wave emitted from the light source is incident on the measured mirror. After the reflection
of the output light field, the complex amplitude distribution of the optical wave front
contains the error information of the measured mirror. Using these intensity images and
the PR algorithm, one can accurately recover the surface error of the measured mirror [20].
The detector is placed at the focal plane of the wave front reflected or transmitted from
the surface under testing and will take a number of images, including those in focus and
defocused from the focal plane in both directions. The wave front can be estimated with
the known pupil size and the defocus amounts of the detectors [21].
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Figure 1. The principle of the Phase Retrieval system.

Assuming that the aperture of one measured optical surface is D, the focal length is Z,
and the laser wavelength is λ. The generalized pupil function is f (x), whose amplitude
is | f (x)|, and the phase is θ, which can be obtained with Zernike polynomial fitting:
θ(x) = ∑

n
αnZn(x), where the real number αn represents the first nth terms of the polynomial

coefficients and Zn indicates the nth terms of the Zernike polynomials.
We could get:

f (x) = | f (x)| exp[iθ(x)] (1)

where x is an M-dimensional spatial coordinate, and θ is wave-front distortion.



Micromachines 2022, 13, 82 3 of 9

For a linear optical system with the defocus δ in the focal plane, the impulse response
function F(u) can be described as:

F(u) = |F(u)| exp[iψ(u)] = F{| f (x)|exp[ε(x, δ)]} (2)

where x is the spatial coordinate of the pupil, u is the coordinates of the image and both of
them are two-dimensional vector field coordinates. ψ is the phase of the impulse response,
F is the two-dimensional Fourier transform, and ε(x, δ) is the wave-front aberration caused
by the defocus δ.

For one PR system, | f (x)| in Equation (1) is the priori condition of a known optical
system corresponding to the size and shape of the pupil. |F(u)|2 is the image collected
by the detector. We estimate αn and then obtain θ in Equation (1) with a number of
measurements at different defocuses.

2.2. The Modified Gradient Search Algorithm of PR

In this paper, we present a modified gradient search algorithm to solve the phase
recovery problem [22,23]. Let gm,k, θm,k, Gm,k, ϕm,k be the estimated values of f , δ, F, ψ when
the mth images iterate k times, gk represents the combined estimate value with every gm,k

to f when iterated k times, which is gk(x) = 1
M

M
∑

m=1
gm,k(x).

The initialization is:

a. θm,k = 0, εm(x) = ε(x, δm) = (πδm‖x‖2

λZ2 ), gk(x) = | f (x)|, m ∈ [1, M],
b. Gm,k(u) =

∣∣Gm,k(u)
∣∣ exp[iϕm,k(u)] = F{gk(x) exp[iεm(x)]}, m ∈ [1, M],

c. Gm,k
′(u) = |F(u)| exp[iϕm,k(u)], m ∈ [1, M],

d. gm,k
′(x) =

∣∣gm,k
′(x)

∣∣ exp[iθm,k
′(x)] = F−1[Gm,k

′(u)] exp[−εm(x)], m ∈ [1, M],
e. gm,k+1(x) = | f (x)| exp[iθm,k+1(x)] = | f (x)| exp[iθm,k

′(x)], m ∈ [1, M],

f. gk+1(x) = 1
M

M
∑

m=1
gm,k+1(x).

Repeat from steps b to steps f until the extrusion of the condition, which is the
limitation of the iteration times or the function of the object descended to the appointed
value. The function of the object is described as [24]:

Bk = E2
FK = N−2

M

∑
m=1

∑
u

∣∣Gm,k(u)− Gm,k
′(u)

∣∣2
where N represents the width of the collected images. According to b and c, the phase
Gm,k(u) and the phase Gm,k

′(u) are equal, so we can get:

Bk = E2
FK = N−2

M

∑
m=1

∑
u
[
∣∣Gm,k(u)

∣∣− |F(u)|]2 (3)

We apply the mathematical optimization method with Equation (3) as the function
of the object and the unknown quantity about each partial derivative together with the
substitution gradient search algorithm, finally obtaining the estimation of the wave-front
distortion corresponding to θ, when Bk is smallest. The most important application of the
gradient search algorithm is the correct description of the function of the object and the
partial derivatives of each variable. We first discuss the partial derivative g(x), which is
as the unknown variables. We get the derivative from B to g(x), respectively, and get the
derivative from Bk to the real part of ∂greal and the imaginary part of ∂gimag

∂greal Bk ≡ ∂Bk
∂greal.k(x) = 2N−2

M
∑

m=1
∑
u
[
∣∣Gm,k(u)

∣∣− |F(u)|] ∂|Gm,k(u)|
∂greal,k(x)

∂gimagBk ≡ ∂Bk
∂gimag.k(x) = −i2N−2

M
∑

m=1
∑
u
[
∣∣Gm,k(u)

∣∣− |F(u)|] ∂|Gm,k(u)|
∂gimag,k(x)

(4)
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where

∂|Gm,k(u)|
∂greal,k(x) = ∂

∂greal,k(x)∑
y

gk(y) exp[iεm(x)] exp[−i2πuy
N ] = exp[iεm(x)] exp[−i2πux

N ]

∂|Gm,k(u)|
∂gimag,k(x) =

∂
∂gimag,k(x)∑

y
gk(y) exp[iεm(x)] exp[−i2πuy

N ] = exp[iεm(x)] exp[−i2πux
N ]

(5)

and

∂|Gm,k(u)|
∂greal,k(x) =

∂[|Gm,k(u)|2]
1/2

∂greal,k(x) = 1
2|Gm,k(u)|

∂|Gm,k(u)|2
∂greal,k(x) =

G(u) exp[−iεm(x)+i2πux/N]
2|G(u)| + c.c.

∂|Gm,k(u)|
∂gimag,k(x) =

∂[|Gm,k(u)|2]
1/2

∂gimag,k(x) = 1
2|Gm,k(u)|

∂|Gm,k(u)|2
∂gimag,k(x) =

G(u) exp[−iεm(x)+i2πux/N]
2|G(u)| + c.c.

(6)

Thus, Equation (4) can be changed to:

∂greal Bk = N−2
M
∑

m=1
∑
u
[Gm,k(u)− |F(u)|Gm,k(u)/

∣∣Gm,k(u)
∣∣] = −iG(u) exp[−iεm(x)+i2πux/N]

2|G(u)| + c.c.

∂gimagBk = −iN−2
M
∑

m=1
∑
u
[Gm,k(u)− |F(u)|Gm,k(u)/

∣∣Gm,k(u)
∣∣] = −iG(u) exp[−iεm(x)+i2πux/N]

2|G(u)| + c.c.
(7)

where c.c. represents the former plural conjugate.
Using Gm,k

′(u) = |F(u)| exp[iφm,k(u)], m ∈ [1, M] to define Gm,k
′(u), we could get:

Gm,k
′(u) = |F(u)Gm,k(u)|

|Gm,k(u)| .

Thus, Equation (7) can be expressed as:

∂greal Bk = 2Real∑
m
[gm,k(x)− gm,k

′(x)]

∂gimagBk = 2Imag∑
m
[gm,k(x)− gm,k

′(x)]
(8)

We consider θ(x) as the derivative of the unknown value. From Equation (3) we get
the derivative from Bk to θ(x):

∂θ Bk =
∂Bk

∂θk(x)
= 2N−2∑

m
∑
u
[
∣∣Gm,k(u)

∣∣− |F(u)|]∂∣∣Gm,k(u)
∣∣

∂θk(x)
(9)

Because of

∂
∣∣Gm,k(u)

∣∣
∂θk(x)

=
∂

∂θk(x)∑y
| f (y)| exp[iθ(y)] exp[iεm(x)] exp[

−i2πuy
N

] = igk(x) exp[iεm(x)] exp[
−i2πux

N
] (10)

Then, we could get:

∂
∣∣Gm,k(u)

∣∣
∂θk(x)

=
Gm,k(u)(−i)g∗k (x) exp[−iεm(x)] exp[i2πux/N] + c.c.

2
∣∣Gm,k(u)

∣∣
Thus, we could get:

∂θ Bk = ∑
m

igm,k
∗(x)[gm,k

′(x)− gm,k(x)] + c.c.

= −2Imag∑
m
[gm,k

∗(x)gm,k
′(x)]

= −2| f (x)|∑
m

∣∣gm,k
′(x)

∣∣ sin[θm,k
′(x)− θm,k(x)]

(11)
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We consider the Zernike coefficient α(x) as the derivation of the unknown value. From
Equation (3), we get the derivative from Bk to α(x):

∂Bk
∂αn,k

= ∑
x

∂B
∂θk(x)

∂θk(x)
∂αn,k(x)

(12)

Take ∂θk(x)
∂αn,k(x) = ∂

∂αn,k
[

m
∑

n=1
αn,kZn(x)] = Zn(x) into Equation (12). We get the objective

function, which is calculated as:

∂αn Bk = −2∑
m

∑
x
| f (x)|

∣∣gm,k
′(x)

∣∣ sin[θm,k
′(x)− θm,k(x)]Zn(x) (13)

With the objective Equation (3) and its impact on the Zernike coefficient derivative
Equation (13), we can use the mathematical optimization algorithm, such as Limited-
memory BFGS algorithm, to solve various Zernike wave-front coefficient values [25–27].

3. Experimental Demonstrations

Here, we demonstrate the measurement ability in small-slope free-form surfaces with
the modified phase retrieval discussed in Section 2. Figure 2a shows the diagram of the
measuring installation with the course of the clearance beams. In addition, we built the
experimental setup to measure the thin, deformable mirror surface (in Figure 2c), shown in
Figure 2b. The size of this measured mirror is (35 mm (length) × 35 mm (width) × 15 mm
(thickness)), and there are three screws on the back surface of mirror which were used to
apply different forces in order to change the surface shape. The collimated laser beam (with
the wavelength of 632.5 nm) from the WYKO interferometer passed through the beam
splitter and reached the measured surface. The reflected light from the measured surface
was directed to the focusing lens, with a focal length of 150 mm, by the beam splitter and
then reached the detector. The detector was placed on a computerized moving stage which
enabled the detector to take images as it moved away from the focal plane.

In the experiment, the beam size was limited to 10 mm by a stop. Firstly, we built
the experiment system, fixed the thin measured mirror in the stage, observed the fringes
in WYKO interferometer to maximize the contrast of the interference fringes, added the
splitting prism in the optical path, and adjusted them to be coaxial with the measured
mirror and pinhole. Secondly, we adjusted the position of the lens and the camera so
that the light beam reflected from the measured surface through the prism and entered
into the camera. We captured seven images with the camera, and the defocus amounts
were 0, ±1.2, ±1.7, and ±2.2 mm. Thirdly, we disposed the collected images with the
modified PR algorithm to obtain the mirror surface information. In order to make an
effective comparison with the WYKO interferometer, we did not move the position of
the experimental setup and measured the deformed surface again. We first measured a
reference mirror with 1/20 wave flatness to remove the system errors. The measurement
data with the flat mirror are treated as the system errors and subtracted from them when
measuring the free-form surfaces. The seven images with different defocuses solved by
modified PR are shown in Figure 3a. Figure 3b shows the estimated surface shape recovered
by the modified PR with the two images in Figure 3a. The process of obtaining Figure 3b
took 5.50 s, and Figure 3c shows the estimated surface shape recovered by the modified PR
with all seven images. The process of obtaining Figure 3c took 75.35 s, which means that the
improved PR algorithm was 15 times as fast. Figure 3d shows the difference between the
estimated surface shapes recovered by the modified PR with all seven images and the two
images. We could see that the difference was very small. This experiment demonstrates
that the proposed modified PR algorithm is feasible in the surface metrology.
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Figure 2. (a) The diagram of the measuring installation with the course of the clearance beams; (b) the
experimental setup of the PR system; and (c) the thin measured mirror. The left is the front surface of
the thin measured mirror and the right is the back surface of the thin measured mirror. Three screws
were used to apply different forces to the measured mirror to change the surface shape.

To demonstrate the feasibility of the proposed method in free-form surface metrology,
we apply different forces to the thin mirror, shown in Figure 2c, and take two defocused
images for each force to estimate the free-form mirror surface with the improved PR
algorithm. Figure 4a,b are, respectively, the mirror surface estimated by PR and the mirror
surface measured with the WYKO interferometer. Comparing the results of the modified
PR with the results of WYKO interferometer, the RMS difference is less than 2.777 nm,
which shows that the proposed improved PR method is feasible for measuring free-form
surfaces. The difference in the PV is relatively large, partially due to the following reasons.
Firstly, there is a smoothing process when using the WYKO interferometer, which the
solution process of the modified PR method does not have. Secondly, during the solution
process we calculated the whole mask circular area with the modified PR, but Figure 4b
was obtained after matting (removing boundary Burr) with the WYKO interferometer.
Therefore, although the RMS of the whole mask cannot be greatly affected, it will be greatly
different from the PV.
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Figure 3. (a) Seven 128 pixels * 128 pixels defocused images, from left to right, the defocus is,
respectively, −2.2 mm, −1.7 mm, −1.2 mm, 0 mm, 1.2 mm, 1.7 mm, and 2.2 mm; (b) the solved
result of the estimated surface shape with two images in (a) (the defocus amounts are −1.7 mm
and 1.7 mm, respectively) is RMS = 0.047774 µm and PV = 0.25158 µm; (c) the solved result of the
estimated surface shape with all seven images in (a) is RMS = 0.04484 µm and PV = 0.23882 µm; and
(d) the difference between the measurement results with two images and with all seven images.
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Figure 3b from the two images took 5.50 s and the process of obtaining Figure 3c with all
seven images took 75.35 s, which means that the improved PR algorithm is 15 times faster.
Besides, Figure 4a,b, respectively, show the estimated surface recovered by PR and the
measured surface with the WYKO interferometer; the differences between our technique
and the WYKO interferometer in RMS and PV are very small, which demonstrated that our
improved PR method could achieve as considerable an accuracy as the WYKO interferome-
ter. The above two points proved the feasibility and effectiveness of our technology in the
measurement of small-slope free-form surfaces.
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4. Conclusions

In this paper, we have presented and shown experimentally with an improved PR
algorithm based on the traditional gradient search algorithm to improve efficiency of phase
recovery. The feasibility of the proposed method has been demonstrated by comparing the
measurement results of the deformed thin mirror with the measurement results from WYKO
interferometer. This work has additionally shown that PR technology is a viable and realistic
method in small-slope free-form surfaces measurement. Now, we are doing research on
large-slope free-form surfaces measurement with transverse translation diversity phase
retrieval, and our new research will perhaps be shown in the near future.
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