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Abstract: To combine the advantages of linear active disturbance rejection control (LADRC) and
nonlinear active disturbance rejection control (NLADRC) and improve the contradiction between the
response speed and control precision caused by the limitation of parameter α in NLADRC, a linear-
nonlinear switching active disturbance rejection control (SADRC) strategy based on linear-nonlinear
switching extended state observer (SESO) and linear-nonlinear switching state error feedback control
law (SSEF) is proposed in this paper. First, the reasons for the performance differences between
LADRC and NLADRC are analysed from a theoretical point of view, then a linear-nonlinear switching
function (SF) that can change the switching point by adjusting its parameters is constructed and
then propose SESO and SSEF based on this function. Subsequently, the convergence range of
the observation error of the SESO is derived, and the stability of the closed-loop system with the
application of SSEF is also demonstrated. Finally, the proposed SADRC control strategy is applied
to a 707 W permanent magnet synchronous motor (PMSM) experimental platform, and both the
dynamic and static characteristics of SADRC are verified. The experimental results show that the
proposed SADRC control strategy can well combine the performance advantages of LADRC and
NLADRC and can better balance the response speed and control precision and has a better capacity
for disturbance rejection, which has potential application in engineering practise.

Keywords: active disturbance rejection control (ADRC), linear-nonlinear switching active disturbance
rejection control (SADRC), permanent magnet synchronous motor (PMSM), speed controller

1. Introduction

PMSMs are increasingly used in modern alternating current servo systems because of
their high performance, light weight, and high power density [1]. The classical control of a
PMSM is a cascade control structure using a proportional-integral (PI) controller, where PI
controllers are used for the outer loop speed controller and inner loop current controller. PI
controllers have the advantages of simple structure, high steady-state accuracy, and good
stability and are widely used in linear time-invariant systems [2]. However, a PMSM is
a typical nonlinear multivariable coupled system, accompanied by various uncertainty
perturbations, such as external unknown load, internal friction, and nonlinear magnetic
field, which makes it difficult for PI controllers to meet the requirements of higher control
performance [3].

In recent years, research on high performance and high precision control has con-
tinuously expanded. Sliding mode control [4,5], model predictive control [6,7], iterative
learning control [8], neural network control [9,10], fuzzy control [11,12], ADRC [13,14] and
many other control algorithms have been proposed and improved and applied to PMSM
control. These control algorithms have improved the control performance of PMSMs in
various aspects. ADRC is widely used in various industrial applications because of its
robustness and independence from the controlled object model [15].
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ADRC was first proposed by Han [16] and later by Han’s collaborator Gao, who
proposed a method for ADRC parameter tuning [17,18]. In recent decades, an increasing
number of scholars have devoted themselves to the study of ADRC. Yang et al. applied
the hyperbolic tangent function to the tracking differentiator (TD) of ADRC to simplify its
structure, improve the tracking accuracy, and reduce the effect of load perturbations on the
system [19]. Qu et al. proposed an improved LADRC through a correction of perturbation
compensation and an improved expansion state observer (ESO). The tracking performance
and dynamic stiffness of the LADRC were significantly improved [20].Qu et al. proposed
an enhanced linear active disturbance rejection controller (ELADRC) consisting of two
linear expansion state observers (LESOs) and a proportional current controller, and exper-
imentally verified the effectiveness of the proposed ELADRC [21]. Shi et al. integrated
extended state filters into the ADRC system for signal filtering, which solved the problems
of time delay and noise [22]. Li et al. proposed a new control method based on NLADRC
and proportional-integral control (PI). In this control framework, a feedforward control
based on a nonlinear tracking differentiator (NTD) is designed to improve the tracking
performance of the system. Experiments show that the method can better suppress the
low-frequency mechanical resonance when applied to a large telescope [23]. In addition,
some scholars have obtained ADRC with higher control performance by combining it with
other advanced control algorithms. Qu et al. proposed a new sliding mode current con-
troller based on active disturbance rejection. First, a fast response sliding mode controller
was designed based on the upper bound of the internal disturbance. Then, an ESO was
designed to estimate the internal disturbance of a PMSM in real time, and the estimated
internal disturbance was used to update the control law of the sliding mode control in real
time. The improved active disturbance rejection sliding mode current controller improves
the steady-state and transient current tracking performance and enhances the robustness
to internal disturbances [24]. Gao et al. proposed a compound control scheme that com-
bines the advantages of a fractional-order proportional-integral-differential controller and
LADRC. The compound control method was experimentally verified to have satisfactory
performance in terms of rapidity and robustness [25]. Overall, ADRC has good control
performance, but the tuning of its parameters is relatively complicated and lacks systematic
theoretical support. In this case, research on ADRC parameter tuning is also necessary.
In this regard, Lu et al. proposed a new dual-loop drive system based on position-speed in-
tegrated ADRC. A fuzzy parameter self-tuning method was proposed to solve the problem
of poor load adaptation due to difficult ADRC parameter tuning [26].

Existing studies on ADRC reveal that LADRC has the advantages of easy parameter
tuning and that the capacity of disturbance rejection does not degrade with the increase in
the disturbance amplitude, while NLADRC has higher control precision [27]. Currently,
studies have started to combine LADRC and NLADRC to exploit their respective per-
formance advantages. Hao et al. proposed a hysteretic switching strategy to estimate
and compensate for the total disturbance. In addition, a parameter tuning strategy for
SADRC was given due to the limitation of switching conditions [28]. Lin et al. proposed a
new SADRC class, which combines LESO and nonlinear extended state observer (NLESO)
through the ESO observation error to enhance the robustness of a PMSM control system [29].

In this study, SADRC based on a new SF is designed. The new SF can achieve the
function of using LADRC under large perturbations but using NLADRC under small
perturbations. It can adjust the parameters introduced in the SF to adjust that the error in
what range then SADRC switching is performed. After that, the stability and convergence
of SADRC with the new SF are demonstrated. Finally, the effectiveness of the proposed
SADRC as a speed controller is verified through experiments.

The remainder of this paper is organized as follows. Section 2 provides a mathematical
model of a PMSM. Section 3 introduces the principle of ADRC and then theoretically
analyses the causes of the different performances between LADRC and NLADRC. Then,
the proposed SADRC is given. Section 4 proves the convergence and stability of the
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proposed SADRC. Section 5 describes the experimental results and analysis of applying the
proposed SADRC to a PMSM. Conclusions are drawn in Section 6.

2. Mathematical Model of a PMSM

The control object in this study is a PMSM. Assuming symmetrical windings and
neglecting core saturation and disregarding eddy current losses and hysteresis losses,
the mathematical model of a PMSM can be obtained according to the motor control theory
in [30].

The stator voltage equations in the d-q synchronous rotating coordinate system are
given as follows:

ud = Rid +
dψd
dt
−ωeψq (1)

uq = Riq +
dψq

dt
+ ωeψd (2)

where uq, ud, iq, and id are the stator voltage and current in the d-q coordinate system,
respectively. ωe is the electric angular velocity, and R is the stator resistance. ψd = Ldid +ψ f
and ψq = Lqiq are the stator flux linkages in the d-q coordinate system, where Ld and Lq
are the inductances in the d-q coordinate system and ψ f is the flux amplitude of the
permanent magnet.

The electromagnetic torque equation is expressed as follows:

Te =
3
2

np
(
ψdiq − ψqid

)
(3)

where Te is the electromagnetic torque and np is the number of pole pairs.
The motion equation is as follows:

J
dωm

dt
= Te − TL − Bωm (4)

where J is the moment of inertia, ωm is the mechanical angular velocity, TL is the load
torque, and B is the viscous friction coefficient.

3. Design of a Linear-Nonlinear Switching Active Disturbance Rejection Controller
3.1. Active Disturbance Rejection Control Algorithm

ADRC was proposed by Han [16]. It is a control algorithm with the function of
estimating disturbances and compensating them in real time. ADRC consists of a TD, ESO,
and state error feedback control law (SEF). Its block diagram is shown in Figure 1.

Figure 1. ADRC block diagram.

The control object in this study is a first-order system, so taking the first-order system
as an example, the control object is expanded into a system of the following form according
to the mathematical model of a PMSM.{

ẋ1 = b0 · u + x2
ẋ2 = −h

(5)
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where u = iqre f is the input variable of the system, iqre f is the reference value of iq, x1 = ωm

and x2 = − f + (b− b0)iqre f are the state variables of the system, b =
3npψ f

2J is the control
gain, b0 is the estimated value of b, and f (xi, ω) is the total disturbance of the system, which
consists of internal disturbance and external disturbance ω.

Since the system has inertia, the output variables of the system can only change slowly
from zero initial states, while the initial value of the control variable is a nonzero variable
reference value. Therefore, the larger the initial value of the control variable is, the larger
the initial value of the system error, which causes a contradiction of rapidity and overshoot.
To reduce this initial error and solve the contradiction between rapidity and overshoot,
a TD is introduced as a transition process in ADRC, and its equation is as follows [16]:{

v̇1 = v2

v̇2 = −rsign
(

v1 −ωre f +
v2|v2|

2r

) (6)

where ωre f is the speed reference value, v1 is the tracking value of ωre f , v2 is the derivative
of v1 and r is the speed factor.

An ESO is an important part of ADRC. It can observe the internal and external distur-
bances affecting the controlled output in real time and compensate for the disturbances to
eliminate the effects of the disturbances. Thus, ADRC has the function of anti-interference.
The ESO equation is defined as follows:{

ż1 = z2 − β1 ϕ1(e) + b0u
ż2 = −β2 ϕ2(e)

(7)

where e = z1 − y is the observation error of the ESO, zi is the estimate of the corresponding
xi, ϕi(e) is a function of the observation error e, βi is the gain coefficient of the ESO,
and i ∈ {1, 2}.

The control law in (7) is defined as:

u =
u0 − z2

b0
(8)

where u0 is the output variable of the SEF. For the first-order control object, its general form
can be expressed as:

u0 = k1g
(
e′
)

(9)

where k1 is the gain coefficient of the SEF, e′ = v1 − z1 is the feedback error, and g(e′) is a
function of the feedback error e′.

3.2. Linear-Nonlinear Switching Active Disturbance Rejection Control

ADRC can be divided into LADRC and NLADRC. The main difference between the
two is the selection of the observation error function ϕi(e) in the ESO and the feedback
error function g(e′) in the SEF.

In LADRC, ϕi(e) = e, i ∈ {1, 2}, and g(e′) = e′. In NLADRC, ϕi(e), i ∈ {1, 2}, and
g(e′), i ∈ {1, 2} are usually taken as nonlinear functions. A typical nonlinear function
f al(x, α, δ) can be expressed as follows:

f al(x, α, δ) =

{ x
δ1−α |x| ≤ δ

|x|αsign(x) |x| > δ
(10)

where α and δ are undetermined parameters, and usually α < 1. In this case, the function
f al has the characteristic of large error with a small gain and small error with a large gain.
δ is the linear range to avoid the occurrence of minimal error with a maximum gain caused
by the nonlinear function.

After studying [28,29], it was found through simulation and experimental results that
LESO has the characteristics of easy parameter tuning and the anti-disturbance ability will
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change little with changing disturbance amplitude. In contrast, NLESO parameter tuning
is relatively complicated, and the anti-disturbance ability is limited with increasing distur-
bance amplitude, but NLESO has better control precision. In other words, the performance
of LESO is more advantageous under large error, while the performance of NLESO is more
advantageous under small error. To explore the specific reasons for the different perfor-
mances between LESO and NLESO, this study focuses on analysing the characteristics
of the linear and nonlinear f al functions from the differences in their formulas. It was
found that the performance of the nonlinear f al function changes with the values of its
parameters. Among them, the function performance is more significantly influenced by the
parameter α. The smaller α is, the higher the control precision of NLESO, but at the same
time, the response speed will be slower. Figure 2 compares the linear and nonlinear f al
functions with different α values. The comparison shows that as α decreases, the gain of
function f al in the case of large errors decreases, which is the main reason for the slower
response speed.

Figure 2. Comparison of the linear and nonlinear f al functions with different α values.

To improve the contradiction between control precision and response speed, it is
necessary to ensure that the control precision will not be degraded while improving the
phenomenon that the gain of the function f al decreases with decreasing α in the case of
large error. Therefore, this study combines linear and nonlinear functions to retain and
improve their respective performance advantages and constructs an SF as follows:

f als(x, α1, δ1, δ2) =


x

δ2
α1 δ1

1−α1
|x| ≤ δ1∣∣∣ x

δ2

∣∣∣α1
sign(x) δ1 < |x| < δ

α1
α1−1
2

x |x| ≥ δ

α1
α1−1
2

(11)

where 0 < α1 < 1, 0 < δ1 < δ2 < 1. A comparison of the linear function, f al(x, α, δ) and
f als(x, α1, δ1, δ2) is shown in Figure 3. From Figure 3, the introduction of δ2 improves the
gain in the nonlinear range. The introduction of δ2 also reduces the steady-state error of the
ESO, as seen in the proof of SESO convergence in the next section, i.e., the introduction of the
parameter δ2 can effectively improve the contradiction between the control precision and
the response speed. In addition, the value of δ2 can be used to adjust the linear-nonlinear
switching point of the function f als(x, α1, δ1, δ2).
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Figure 3. Comparison of the linear function, f al(x, α, δ) and f als(x, α1, δ1, δ2).

In order to analyze the variation of f als(x, α1, δ1, δ2) under the influence of various
parameters more intuitively, the three-dimensional diagram shown in Figure 4 is given.

Referring to (11) defines |x| ≤ δ1 as linear region 1, defines δ1 < |x| < δ

α1
α1−1
2 as nonlinear

region, defines |x| ≥ δ

α1
α1−1
2 as linear region 2. The linear-nonlinear switching point between

linear region 1 and nonlinear region is defined as switching point 1, and the linear-nonlinear
switching point between nonlinear region and linear region 2 is defined as switching point 2.
From Figure 4a , we can see that α1 affects the position of the switching point 2, while
affects the gain of the linear region 1 and the nonlinear region. With the increase of α1,
the gain of linear region 1 decreases, the gain of nonlinear region becomes larger, and the
value of switching point 2 also becomes larger. From Figure 4b , we can see that δ1 affects
the position of switching point 1 and the gain of linear region 1 at the same time. As δ1
increases, the value of switching point 1 becomes larger and the gain of linear region 1
becomes smaller. From Figure 4c , it can be seen that δ2 affects the position of switching
point 2, and affects the gain of both linear region 1 and nonlinear region. As δ2 increases,
the value of switching point 2 decreases, and the gain of both linear region 1 and nonlinear
region decreases.

(a) (b) (c)

Figure 4. Effect of different parameter changes on f als. (a) Three-dimensional diagram of the effect
of parameter α1. (b) Three-dimensional diagram of the effect of parameter δ1. (c) Three-dimensional
diagram of the effect of parameter δ2.
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The newly constructed f als function is applied to ESO and SEF to form SESO and
SSEF, respectively, and the SADRC based on SESO and SSEF is proposed. Its structure is
shown in Figure 5, where the expression of SESO is as follows:{

ż1 = z2 − β1e + b0u
ż2 = −β2 f als(e, α1, δ1, δ2)

(12)

where e = z1 − y is the observation error of SESO. The control law in (12) is defined as:

u =
u0 − z2

b0
(13)

where u0 is the output variable of the linear-nonlinear switching state error feedback control
law (SSEF). The SSEF in this study is a PI controller, and its expression is:

u0 = kp f als
(
e′, α1, δ1, δ2

)
+ ki

∫ e′

0
f als

(
e′, α1, δ1, δ2

)
de′ (14)

where e′ = v1 − z1 is the feedback error of the SSEF and kp and ki are the gain coefficients
of proportion and integration, respectively.

Figure 5. SADRC block diagram.

4. Stability and Convergence of Linear-Nonlinear Switching Controllers
4.1. Convergence of Linear-Nonlinear Switching Extended State Observer

To prove the convergence of SESO, the following assumptions are made.

Assumption 1. The total disturbance f (xi, ω), i ∈ {1, 2} is continuous and derivable concerning
its independent variable xi, where ω is external disturbance.

Assumption 2. h is the derivative of the total disturbance f along the trajectory, which satisfies
h0 = sup

t∈(0,+∞)

f (ẋi, ω) < +∞ .

Theorem 1. For the observation error system ei(t), i ∈ {1, 2} of (12) and some positive def-
inite function trajectory V(ei), i ∈ {1, 2} about the error system there exist positive constants
ε1 > ε0, such that if ei(t) ∈ Ω1 = {ei(t) | V(ei) < ε1}, then it will converge to the set
Ω0 = {ei(t) | V(ei) < ε0}.

Proof. Equation (12) minus (5) yields the observation error system of SESO as follows:{
ė1 = e2 − β1e1
ė2 = h− β2 f als(e1, α1, δ1, δ2)

(15)

For convenience of presentation, f als(x, α1, δ1, δ2) is abbreviated as f als(x) in the subse-
quent proof. For the error system (15), a linear transformation of the following form
is performed: {

η1 = e1
η2 = e2 − β1e1

(16)
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Then, the system equivalent to (15) is obtained as follows:{
η̇1 = η2
η̇2 = h− β2 f als(η1)− β1η2

(17)

The equivalent system and the original system have the same set of zeros and poles, so
the equivalent system has the same convergence as the original system [31]. Therefore,
the Lyapunov function of (17) is constructed as follows:

V(η) = V1(η1) + V2(η2) (18)

where
V1(η1) = β2

∫ η1

0
f als(η1)dη1

=


∫ η1

0 β2abη1dη1 |η1| ≤ δ1∫ η1
0 β2b|η1|α1 sign(η1)dη1 δ1 < |η1| < δ

α1
α1−1
2∫ η1

0 β2η1dη1 |η1| ≥ δ

α1
α1−1
2

(19)

V2(η2) =
1
2

η2
2 (20)

The parameters in V1(η1) satisfy a = 1
δ

1−α1
1

, b = 1
δ

α1
2

. The derivative of V(η) is

V̇(η) =
∂V
∂η1

η̇1 +
∂V
∂η2

η̇2 = η2(h− β1η2) (21)

By mathematical derivation, if |η2| > h0
β1

can guarantee V̇(η) < 0, i.e., the trajectories of the

system will eventually enter the range|η2| ≤ h0
β1

, h0
β1

is the error bound for η2. Substituting
(11) into (17), the formula of η̇2 is obtained as follows:

η̇2 =


h− β2abη1 − β1η2 |η1| ≤ δ1

h− β2b|η1|α1 sign(η1)− β1η2 δ1 < |η1| < δ

α1
α1−1
2

h− β2η1 − β1η2 |η1| ≥ δ

α1
α1−1
2

(22)

On the η1 axis, i.e., η2 = 0, we can obtain

η̇2 =


h− β2abη1 |η1| ≤ δ1

h− β2b|η1|α1 sign(η1) δ1 < |η1| < δ

α1
α1−1
2

h− β2η1 |η1| ≥ δ

α1
α1−1
2

(23)

When the system reaches the equilibrium point, i.e., η̇2 = 0, the equilibrium point of the
system (17) in the range |η1| ≤ δ1 is

η1 =
h

β2ab
, η2 = 0

According to Assumption 2, |η1| ≤ h0
β2ab , which proves that the steady-state error

of system (17) in the range |η1| ≤ δ1 will eventually converge to the range |η1| ≤ h0
β2ab ,

|η2| ≤ h0
β1

.
Similarly, it can be calculated that when |e1| ≤ δ1, the steady-state error of NLESO

applying the nonlinear function (10) is |e1| ≤ h0
β2a0

, |e2| ≤ h0
β1

, where a0 = 1
δ1−α , let α = α1,
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then a = a0. Since b = 1
δ

α1
2

> 1, δ2 reduces the steady-state error of SESO and improves the

control precision.

When δ1 < |η1| < δ

α1
α1−1
2 , the equilibrium point of system (17) is

η1 =

(
|h|
β2b

) 1
α1

sign(η1), η2 = 0

According to Assumption 2, |η1| ≤
(

h0
β2b

) 1
α1 , which proves that the steady-state error

of system (17) in the range δ1 < |η1| < δ

α1
α1−1
2 will eventually converge to the range

|η1| ≤
(

h0
β2b

) 1
α1 , |η2| ≤ h0

β1
.

Similarly, it can be calculated that when |e1| > δ1, the steady-state error of NLESO

applying the nonlinear function (10) is |e1| ≤
(

h0
β2

) 1
α , |e2| ≤ h0

β1
. Since b = 1

δ
α1
2

> 1, δ2

reduces the steady-state error of SESO and improves the control precision.

When |η1| ≥ δ

α1
α1−1
2 , the equilibrium point of system (17) is

η1 =
h
β2

, η2 = 0

According to Assumption 2, |η1| ≤ h0
β2

, which proves that the steady-state error of sys-

tem (17) in the range |η1| ≥ δ

α1
α1−1
2 eventually converges to the range |η1| ≤ h0

β2
, |η2| ≤ h0

β1
.

In summary, according to the Lyapunov stability theorem and its implications, when
the error is not zero, taking the positive definite function V(ηi) in the form of (18), there exist
sets Ω1 and Ω0 satisfying the condition such that if the estimation error ηi(t) ∈ Ω1 −Ω0,
then V̇(ηi) < 0. That is, ηi in the set Ω1 will gradually converge to the set Ω0 along
the trajectory V(ηi), as shown in Figure 6, i.e., Theorem 1 is proved. The above proof
process also gives the final steady-state error convergence range of the error system, and it
can be seen that δ2 reduces the steady-state error convergence range and improves the
control precision.

Figure 6. Boundary of the observation error.

4.2. Closed-Loop Stability

According to the controller Equations (13) and (14), the SSEF controller is composed
as follows:

u =

(
kp f als

(
e′, α1, δ1, δ2

)
+ ki

∫ e′

0
f als

(
e′, α1, δ1, δ2

)
de′ − z2

)/
b0 (24)
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Let
s1 = v1 − x1 (25)

In (25), the derivative of s1 is:
ṡ1 = v̇1 − (b0u + x2) (26)

where v̇1 is continuous and bounded. According to the errors (15) and (25) can be easily
obtained e′ = s1 − e1. In addition there are

ṡ1 = v̇1 − kp f als
(
e′, α1, δ1, δ2

)
− ki

∫ e′

0
f als

(
e′, α1, δ1, δ2

)
de′ + e2 (27)

where, e2 = z2 − f .

Theorem 2. There exists appropriate positive coefficient kp and ki, which makes the feedback error
closed-loop system stable under the control of the controller (24).

Proof. The Lyapunov function is constructed as follows:

V
(
e′
)
=

1
2

e′2

=
1
2
(s1 − e1)

2
(28)

The derivative of V(e′) is

V̇
(
e′
)
= e′ ė′

= e′
(

v̇1 − kp f als
(
e′, α1, δ1, δ2

)
− ki

∫ e′

0
f als

(
e′, α1, δ1, δ2

)
de′ + e2 − ė1

)
= −e

(
kp f als

(
e′, α1, δ1, δ2

)
+ ki

∫ e′

0
f als

(
e′, α1, δ1, δ2

)
de′
)
+ (s1 − e1)(v̇1 + β2e1)

(29)

It is worth noting that −e
(

kp f als(e′, α1, δ1, δ2) + ki
∫ e′

0 f als(e′, α1, δ1, δ2)de′
)
≤ 0. By

Theorem 1, we know that both e1 and e2 are bound. Moreover, s1 is also bounded in practice.
Letting M1=|(s1 − e1)(v̇1 + β2e1)|, one obtains that M1 is also bounded, and therefore,

rewriting (29) yields V̇(e′) ≤ −e
(

kp f als(e′, α1, δ1, δ2) + ki
∫ e′

0 f als(e′, α1, δ1, δ2)de′
)
+M1.

Therefore, there exists suitable kp and ki to ensure V̇(e′) ≤ 0. In summary, when V̇(e′) ≤ 0,
V(e′) is a positive definite function, and there exists suitable kp and ki to ensure its deriva-
tive V(e′) is negative definite, which satisfies Lyapunov’s stability theorem, i.e., Theorem 2
is proved. �

5. Experimental Results and Discussion
5.1. Experimental Platform

To further verify the performance of the SADRC proposed in this paper, experimental
verification is performed on a 707 W PMSM drive platform. Figure 7 shows the overall
structure of the PMSM servo system with the application of SADRC. The field-oriented
control (FOC) method is used to control the PMSM, SADRC is used as the speed controller
to output the reference current iqre f of the current loop, and PI is used as the current
controller to output the control voltage uq.

The 707 W PMSM driver platform is shown in Figure 8, and the corresponding
technical parameters of the PMSM are shown in Table 1. A hysteresis brake is used to
generate the load torque. An absolute encoder is installed at the end of the shaft to measure
the digital position to obtain the speed of the PMSM. The core component of the controller
is a DSP-TMS320F280049, and the control algorithms are implemented in digital signal
processing (DSP) using a C program. The core components of the driver are a DRV8350
three-phase smart gate driver and a power MOSFET.
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Figure 7. Structure diagram of the PMSM servo system based on SADRC.

Figure 8. Photograph of the experimental platform.

Table 1. PMSM parameter.

Symbol Description Value

P Rate power 707 W
R Armature resistanc 0.12 Ω
Ld Inductance of d axis 0.2 mH
Lq Inductance of q axis 0.2 mH
Kt Torque coefficient 0.46 Nm/A
np Number of pole pairs 10
J Inertia 221× 10−5 Kg ·m2

5.2. Parameter Tuning

The only parameter that needs to be tuned in the TD is the speed factor r. The value of
r directly affects the tracking speed of the TD. The larger r is, the faster v1 will be to keep
up with ωre f . Finally, r = 105.

There are two types of parameters to be tuned in the ESO: the gain βi and the param-
eters in the functions f al(x, α, δ), f als(x, α1, δ1, δ2). The gain βi is selected by referring to
the idea of determining the ESO parameters with the concept of bandwidth proposed by
Gao [18], and Equation (7) is rewritten in the following form:{

ż1 = z2 − β1λ1(e)e + b0u
ż2 = −β2λ2(e)e

(30)



Sensors 2022, 22, 9611 12 of 18

where λ1(e) =
ϕ1(e)

e , λ2(e) =
ϕ2(e)

e . The transfer function of the disturbance observation
z2 is

z2 =
β2λ2(e)sy− β2λ2(e)b0u
s2 + β1λ1(e)s + β2λ2(e)

(31)

The ESO can well suppress the perturbation of u. Meanwhile, to simplify the analysis,
ignoring the influence of u and λi(e), the denominator of (31) is formulated to (s + ω0)

2,
which can make the second-order system ESO better observe the perturbation. That
is, β1 = 2ω0, β2 = ω2

0, and ω0 is the bandwidth of the ESO. Finally, according to the
experimental requirements, ω0 = 100 rad/s, i.e., β1 = 200, β2 = 104. The values of α
and α1 directly affect the gain and control precision. The smaller α and α1 are, the smaller
the gain in the nonlinear range will be, and the more likely it is to cause high-frequency
oscillation at the same time, but the control precision will become higher. δ and δ1 are the
linear ranges of the function. δ2 affects the position of the linear-nonlinear switching point
of the function f als. Considered comprehensively, α = 0.5, δ = 0.03, α1 = 0.5, δ1 = 0.03,
and δ2 = 0.5.

The SEF uses the PI controller, and the parameters to be tuned are the gain kp, ki and
the parameters in the functions f al(x, α, δ) and f als(x, α1, δ1, δ2). The parameters in the
functions f al(x, α, δ) and f als(x, α1, δ1, δ2) are tuned in a similar way to the parameters in
the ESO. Finally, kp = 18, ki = 6, α = 0.5, δ = 0.03, α1 = 0.5, δ1 = 0.03, and δ2 = 0.5.

b0 is the estimated value of b. According to the parameters of the PMSM, b = 208 is
calculated. However, in the actual experiment, the value of b changes in real time due to
model uncertainty, the perturbation of motor parameters, etc. The value of b0 reflects the
compensation capability of ADRC; the smaller b0 is, the faster the disturbance compensation
response, but it is also more likely to cause overshoot and oscillation of the disturbance
observation. Considered comprehensively, b0 = 0.5b = 104.

5.3. Speed Step Experiment

The first experiment compares the performance in the case of a speed step change.
The speed ωm response curves and phase current ia waveforms of the LADRC, NLADRC,
and SADRC are given in Figure 9 for the case where the reference speed ωre f changes
from 20 r/min to 120 r/min at 1 s. The σ labelled in the figure is the speed overshoot,
and ts is the adjustment time. The speed overshoot and adjustment time of the three
algorithms are shown in Table 2. The experimental results show that LADRC has a speed
overshoot of 2.7 r/min and a tuning time of 0.574 s, which is less than NLADRC, which has
almost no overshoot, but its adjustment time is 0.851 s, slower than LADRC. The SADRC
control strategy combines the advantages of both LADRC and NLADRC. It has almost no
overshoot and a faster adjustment time of 0.262 s.

(a)

Figure 9. Cont.
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(b)

(c)

Figure 9. Speed step experiment from 20 r/min to 120 r/min: (a) LADRC (b) NLADRC (c) SADRC.

Table 2. Performance comparison of speed step experiment.

LADRC NLADRC SADRC

Speed overshoot (r/min) 2.7 0 0
Adjustment time (s) 0.574 0.851 0.262

5.4. Steady-State Performance

The second experiment compares the speed response at steady-state. The speed
waveforms of the LADRC, NLADRC, and SADRC control strategies at steady-state are
shown in Figure 10. It can be clearly seen that the LADRC control strategy has a larger speed
fluctuation under steady-state conditions, and NLADRC and SADRC have the weakest
speed fluctuation in comparison. Table 3 gives the maximum speed, minimum speed
and range of the steady-state waveforms of LADRC, NLADRC, and SADRC shown in
Figure 10 to measure the steady-state performance of the three control strategies. The range
of LADRC, NLADRC, and SADRC are 3.090 r/min, 2.975 r/min, and 2.747 r/min. As can
be seen from the figures and tables, SADRC has the most stable speed waveform in the
steady-state case, followed by NLADRC, then LADRC.
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(a)

(b)

(c)

Figure 10. Speed waveforms at steady-state for the three control strategies: (a) LADRC (b) NLADRC
(c) SADRC.

Table 3. Performance comparison of steady-state experiment.

LADRC NLADRC SADRC

Maximum speed (r/min) 121.079 121.307 121.079
Minimum speed (r/min) 117.989 118.332 118.332

Range (r/min) 3.090 2.975 2.747

5.5. Step Load Experiment

The third experiment compares the anti-disturbance performance of the LADRC,
NLADRC, and SADRC control strategies under step load disturbance. Figure 11 shows
the waveforms of the speed ωm and phase current ia at a speed of 120 r/min with a step
load torque of 1 N·m. The maximum speed fluctuation ∆ω and the adjustment time ∆t
are labelled in Figure 11, and the maximum speed fluctuation and the adjustment time of
the three algorithms are shown in Table 4. The maximum speed fluctuations of LADRC,
NLADRC and SADRC are 15.4 r/min, 36.9 r/min and 9.8 r/min, respectively, and the
adjustment times are 0.530 s , 0.789 s and 0.406 s, respectively. From the experimental
results, it can be concluded that the NLADRC has the largest speed fluctuation and the
longest adjustment time under a step load disturbance of 1 N·m, followed by LADRC,
and finally SADRC. In other words, SADRC has the best anti-disturbance performance
among the three control strategies. Between LADRC and NLADRC, LADRC has better
anti-disturbance performance than NLADRC under a 1 N·m step load disturbance.
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(a)

(b)

(c)

Figure 11. Experiment of the three control strategies under a step load of 1 N·m: (a) LADRC
(b) NLADRC (c) SADRC.

Table 4. Performance comparison of step load experiment.

LADRC NLADRC SADRC

Maximum speed fluctuation (r/min) 15.4 36.9 9.8
Adjustment time (s) 0.530 0.789 0.406

5.6. Sinusoidal Signal Tracking Experiment

The fourth experiment compares the tracking performance of LADRC, NLADRC,
and SADRC algorithms under sinusoidal reference signals. Figure 12 shows the comparison
of speed waveform and reference waveform under the control of the four algorithms.
From the experimental results, the tracking signal of NLADRC is more accurate in terms
of amplitude, but there is a tracking time delay. The tracking capability of LADRC and
SADRC is relatively strong. Under the control of LADRC and SADRC, the tracking effect
of motor speed is closest to the reference speed.
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(a)

(b)

(c)

Figure 12. Tracking waveforms of the three control strategies under sinusoidal signal: (a) LADRC
(b) NLADRC (c) SADRC.

5.7. Comprehensive Comparison

Figure 13 shows a comprehensive comparison of the LADRC, NLADRC, and SADRC
under the three experimental conditions. The speed overshoot and adjustment time in
the speed step experiment, the range in the steady-state experiment, and the maximum
speed fluctuation and adjustment time in the step load experiment are selected as the
comparison items. Among them, the comparison items marked in red can be regarded
as the dynamic performance reference index of the algorithms, and the comparison items
marked in blue can be regarded as the steady-state performance reference index of the
algorithms. From the comprehensive comparison in Figure 13, it is clear that LADRC
has better dynamic performance than NLADRC, and NLADRC has better steady-state
performance than LADRC. SADRC has both the performance advantages of LADRC
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and NLADRC, and its performance is improved in most aspects compared with LADRC
and NLADRC. Therefore, the SADRC control strategy proposed in this paper is feasible
and effective.

Figure 13. Comprehensive performance comparison of the LADRC, NLADRC and SADRC.

6. Conclusions

In this paper, SADRC based on an SF is proposed. The novel SF constructed in
this study can adjust the switching point by adjusting the value of the newly introduced
parameter δ2. The SADRC algorithm can effectively combine the LADRC advantages of
fast response and anti-disturbance performance that are not limited by the increase of
disturbance amplitude and the NLADRC advantages of high accuracy. The SADRC control
strategy is comprehensively compared with LADRC, and NLADRC on a 707 W PMSM
platform. The experimental results show that SADRC has the smallest speed fluctuation
and the least adjustment time compared with the other two control strategies under step
change of speed and applied step load disturbance. Under steady-state conditions, SADRC
has the most stable speed fluctuation. The SADRC also has superior tracking performance
in sinusoidal tracking experiments. Therefore, the proposed SADRC better combines and
improves the performance advantages of LADRC and NLADRC, and its feasibility and
effectiveness have been verified.
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