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A B S T R A C T   

Rapid identification of marine microorganisms is critical in marine ecology, and Raman spectroscopy is a 
promising means to achieve this. Single cell Raman spectra contain the biochemical profile of a cell, which can be 
used to identify cell phenotype through classification models. However, traditional classification methods 
require a substantial reference database, which is highly challenging when sampling at difficult-to-access loca-
tions. In this scenario, only a few spectra are available to create a taxonomy model, making qualitative analysis 
difficult. And the accuracy of classification is reduced when the signal-to-noise ratio of a spectrum is low. Here, 
we describe a novel method for categorizing microorganisms that combines optical tweezers Raman spectros-
copy, Progressive Growing of Generative Adversarial Nets (PGGAN), and Residual network (ResNet) analysis. 
Using the optical Raman tweezers, we acquired single cell Raman spectra from five deep-sea bacterial strains. We 
randomly selected 300 spectra from each strain as the database for training a PGGAN model. PGGAN generates a 
large number of high-resolution spectra similar to the real data for the training of the residual neural network. 
Experimental validations show that the method enhances machine learning classification accuracy while also 
reducing the demand for a considerable amount of training data, both of which are advantageous for analyzing 
Raman spectra of low signal-to-noise ratios. A classification model was built with this method, which reduces the 
spectra collection time to 1/3 without compromising the classification accuracy.   

1. Introduction 

Marine litter in the ocean has received much attention in recent 
decades. The importance of bacteria in marine debris, including some 
potentially beneficial microorganisms for the ecosystem, cannot be 
overlooked [1]. However, few methods exist for identifying microor-
ganisms in marine litter. The majority of traditional methods involve 
complicated sample processes and are destructive [2]. For example, 
living cells must be lysed to extract DNA or proteins for identification. In 
addition, these methods are difficult to use for in-situ identification, 
limiting the exploration of the real-world samples [3]. As a result, 
methods for rapid, culture-free, non-destructive microbial identification 
at the single-cell level are required. Raman spectroscopy is a 
non-invasive method to identify single microbial cells in situ and study 

their metabolism [4]. Single-cell Raman spectra contain abundant 
biochemical information of bacteria, thus have been used as a “chemical 
fingerprint” for bacterial species identification [5]. However, sponta-
neous Raman signals of biological molecules are very weak due to the 
low Raman scattering efficiency (10− 8 scattering probability) [6] and 
susceptibility to interference from (auto)fluorescence. Therefore, long 
Raman acquisition ranging from 1 s to 10s’ seconds from immobilized 
cells is often needed [7–9], which could compromise cell viability. 

Acquiring spectra of cells in liquid is preferred but facing challenges 
associated with Brownian motion and cell motility. These difficulties 
have been solved with the advent of optical tweezers. Optical tweezers 
employ a highly concentrated laser beam to apply pNs optical stresses to 
single cells, allowing them to be trapped and manipulated [10,11]. Xie 
et al. realized the combination of Raman spectroscopy and optical 
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tweezers technology for cell classification without damaging them [12]. 
Conventional multivariate analytic methods, including principal 

component analysis (PCA), hierarchical cluster analysis (HCA), linear 
discriminant analysis (LDA), K-Nearest Neighbor (KNN), and nonlinear 
support vector machine (SVM), are frequently utilized for the classifi-
cation of Raman spectra [4]. Linear models (PCA-LDA) have been the 
most popular [13–15]. However, the spectral response to the substance 
is not linear due to sample variations, acquisition settings, and in-
struments, resulting in reduced precision of the model’s prediction. SVM 
is regarded as superior to the others, but its accuracy is affected when 
processing massive data sets and a high number of classes [16]. Complex 
procedures, poor performance, and limited robustness remain prevalent 
challenges in most Raman classification approaches. Furthermore, var-
iations in microbial Raman spectra are subtle and can be easily masked 
by the background noise [17]. To obtain high identification accuracy, a 
high signal-to-noise ratio (SNR) is necessary, usually requiring a long 
acquisition. 

Deep learning has shown significant benefits in the image processing 
[18], speech recognition [19], and natural language processing [20]. It 
can extract hidden features from the original data and offers an 
end-to-end feature extraction [21]. Deep learning can reduce nonlinear 
effects and improve the model interpretability [22]. Lu et al. combined 
laser tweezers Raman Spectroscopy with convolutional neural network 
(CNN) for microbial identification [9]. Ho et al. demonstrated that 
ResNet could accurately classify Raman spectra with very low SNRs [8]. 
However, such models still necessitate a large number of reference data 
for the training [23]. 

Compared to CNN-based supervised algorithms, Semi-supervised 
methods based on generative adversarial networks (GAN) can deliver 
accurate taxonomic results with fewer samples [24]. Teng et al. 
discovered that the GAN-based spectrum generation method could 
expand the spectrum database effectively [25]. Yu et al. confirmed that 
GAN could produce Raman spectra similar to those of real samples [26]. 
However, the generation of high-resolution Raman spectral images via 
GANs is not stable – this limitation has been recently addressed using 
Progressive Growing of Generative Adversarial Nets (PGGAN) [27]. 

Here, we developed a new approach for classifying bacteria by 
coupling laser tweezers Raman spectroscopy (LTRS) with PGGAN and 
ResNet. Via optical tweezers Raman spectroscopy, we acquired Raman 
spectra of individual bacteria cells, which were used in PGGAN to 
generate a large amount of high-resolution Raman spectra to train 
ResNet and generate a taxonomic model. This approach does not require 
collecting a significant quantity of experimental spectra and addresses 
the issues associated with low SNRs. 

2. Materials and methods 

2.1. Test materials and screening 

Peng et al. (2019) reported that large debris dumps were prevalent in 
the Xisha Trough region in the northern South China Sea [28]. The 
manned submersible found a pile of Polyethylene (PE) debris in a sub-
marine canyon northwest of the South China Sea, about 150 km from the 
nearest coast. This plastic debris is mainly located in two large scouring 
areas in the steep middle reaches of the canyon [29]. The PE debris 
samples were collected using the manipulators in the manned sub-
mersible Shenhaiyongshi during cruises of R/V TS07. The 
human-occupied vehicle (HOV) Shenhaiyongshi was developed by the 
China Shipbuilding Industry Corporation and delivered to the Institute 
of Deep-sea Science and Engineering, the Chinese Academy of Sciences. 
Approximately 1 g of the PE debris was first used for cell cultivation 
using a seawater simulated medium, resulting in a mixture of the mi-
crobial community. This mixture was further cultured in a liquid me-
dium and on an agar plate in the presence of a PE film (YiYao, China) to 
enrich PE-enrich bacteria. Each piece of the PE film is 50 × 50 mm size 
and 0.25 g (10 pieces were used) and was sterilised in 70% ethanol for 
30 min thoroughly washed before use. The culture medium consists of 
0.05% yeast extract, 0.2% (NH4)2SO4, 2.6% NaCl, 0.05% KCl, 0.3% 
Na2HPO4, 0.2% KH₂PO4 and 1% trace elements (0.1% FeSO4 ⋅7H2O, 
0.1% MgSO4 ⋅7H2O, 0.01% CuSO4 ⋅5H2O, 0.01% MnSO4 ⋅5H2O, and 
0.01% ZnSO4 ⋅7H2O) in 10 mM phosphate buffer (pH 7.5). Cultures were 
incubated at 30◦C, 250 rpm. Visible colonies were further purified 
several times. The purity of five bacterial strains was confirmed by a 
repeated 16S rRNA sequencing [30]. 

2.2. Sequencing and phylogenetic analysis 

After cells were cultured into the late log phase, DNA was extracted 
from cells using the Bacterial DNA Kit (Omega, D3350, USA). The 
quality of extracted DNA was checked by 1% agarose gel electrophoresis 
and spectrophotometry (optical density at 260 nm/280 nm ratio). The 
16S rRNA gene sequence was amplified with the Bacteria primer set 27F 
(AGAGTTTGATCMTGGCTCAG) and 1492R (TACGGY-
TACCTTGTTACGACTT). Sequencing was performed using the Illumina 
ABI 3730XL sequencing platform (Illumina, Inc., CA, USA). Raw 
sequencing data were processed using the pipeline tools QIIME (version 
v.1.8.0) and MOTHUR (version v.1.30.1). The obtained sequences were 
aligned with organisms present in the GenBank database using the 
BLAST field [30]. Genome sequences of Halomonas sp., Pseudomonas sp., 

Fig. 1. LTRS setup. The red path rep-
resents the 785 nm laser beam, which is 
utilized as both an optical tweezer and a 
Raman excitation beam. The pink route 
indicates Raman scattering of the ma-
terial. Green represents real-time imag-
ing light in confocal microscopy 
(Optical component abbreviations in 
Supplementary Information Table S1). 
Conceptual measurement schematic: 
Single cells can be captured and Raman 
signals obtained by focusing the 
exciting laser source to a spot size with 
limited diffraction. (For interpretation 
of the references to colour in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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Acinetobacter sp., Fictibacillus sp., and Staphylococcus sp. have been 
deposited at GenBank under the accession numbers OK632277, 
OK632278, OK632279, OK632280 and OK632281. Some of those bac-
teria can grow on the surface of PE materials, suggesting a potential 
ability of these microorganisms to utilize, at least partly, PE as a po-
tential carbon source. The sequence reads have been deposited at the 
NCBI Short Read Archive (SRA) under the accessions SUB10570764. 

2.3. LTRS system 

To obtain the Raman spectra of various microorganisms at the single- 
cell level, we built up a laser tweezers Raman spectroscope, which 
combines a confocal Raman spectrometer with optical tweezers. The 
schematic diagram of our LTRS system is shown in Fig. 1. The system 
consists of an optical tweezer laser, a confocal Raman spectrometer, an 
imaging system, and other optical components. The laser beam emitted 
by a 785 nm continuous laser with adjustable power (I0785SU0100PA; 
785 nm; IPS) is guided to the objective lens (LUNOLFLN40XW; nu-
merical aperture = 0.8; Olympus) through Dichroic mirrors (DM1, DM2) 
and mirror (M1), forming a single-beam gradient force optical trap. The 
same laser beam was used to excite Raman scattering of the captured 
microbial cells. The Raman scattering focuses on the commercial 
confocal Raman spectrometer entrance through the reflector and 
dichroic mirrors. 

The confocal Raman spectrometer is equipped with an 1800 
grooves/mm grating and projects the Raman scattered light on a 
thermoelectric-cooled CCD camera (2000 × 256 pixel; iVac316; 
ANDOR). The LED emits green light with a wavelength of 550 nm, which 
is irradiated on the sample by an aspheric mirror, and the transmitted 
light passes through the objective lens to form parallel light. The parallel 
light is reflected by the reflector lens and dichroic mirror and then 
further converged through the imaging lens onto the CCD camera. We 
use a short-pass filter to block laser light in front of the camera to pre-
vent laser-induced camera damage. 

2.4. Data processing 

The Raman spectral signal will be affected by the drift of the exci-
tation laser, the thermal stability noise of the CCD detector, the thermal 
noise in the electronic circuit, etc. In addition, the position and orien-
tation of the sample placement will also make the spectral signal mixed 
with noise, which will interfere with the valuable information of the 
spectrum and affect the prediction effect. Therefore, pre-processing of 
the obtained raw Raman spectral signal is needed. We removed cosmic 
rays from the spectrum. We use the “subbackmod” function in the Bio-
data toolbox [31] for baseline correction, and we use the “mapminmax” 
function for normalization. Examples of raw and preprocessed spectra 
are shown in Fig. S1. 

After pre-processing, the spectra are fitted using PGGAN, and 1000 
high-resolution Raman spectra similar to the experimental ones are 
generated after sufficient interaction training. The 1000 spectra gener-
ated are fed into ResNet and sufficiently trained to obtain an accurate 
classification model. 

3. Results and discussion 

3.1. Raman Spectroscopy acquisition 

Raman spectra of individual cells randomly selected from five bac-
terial strains were collected, including Acinetobacter sp., Fictibacillus sp., 
Halomonas sp., Pseudomonas sp., and Staphylococcus sp. To reduce the 
effect of spectral noise, at least 300 single cell Raman spectra from each 
bacterial strain were randomly selected as the training data set for the 
PGGAN model. To reduce the interference of the culture medium, cells 
are centrifuged and washed with DI water for Raman spectrum acqui-
sition. Each cell is excited for 10 s at a power of 30 mW after the 

objective (Fig. 2). 

3.2. Data generation of PGGAN 

We trained our networks according to the setup described by Kay 
Gregor Hartmann et al. [32]. PGGAN consists of a generator G and a 
discriminator D, which compete to improve performance based on the 
available training data. The generator consists of a fully connected layer 
and 6 up-sampling blocks, each of which contains 1 up-sampling layer 
and 2 convolutional layers of size 9. The discriminator consists of 6 
discriminant blocks, each containing 2 convolutional layers of size 9 and 
1 down-sampling layer. We use leaky ReLU [33] in the discriminator and 
generator. 2000 epochs were trained at each resolution stage, and an 
additional 2000 epochs were trained at each stage for fading. ADAM 
optimizer [34] was used to train the network, using the following 

Fig. 2. Raman spectra of five marine microorganisms. LTRS obtained at least 
300 spectra for each strain. The solid line represents the average value of the 
Raman spectrum, and the standard deviation is represented by shadow. 

Fig. 3. (A) PGGAN process training to Fictibacillus sp. (B) Spectra obtained from 
low to high resolution after training. a. 24 pixels; b. 48 pixels; c. 96 pixels; d. 
192 pixels; e. 384 pixels; f. 768 pixels; g. Real spectra were obtained using a 
Raman spectrometer. 
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parameters: the learning rate at 0.001; exponential decay rates at β1 =

0 and β2 = 0.99. We started with low-resolution images and gradually 
increased the resolution by adding layers to the network (Fig. 3A). This 
progressive nature enables the training to find the image distribution’s 
large-scale structure before focusing on smaller-scale characteristics 
[27]. The generated spectrum is getting closer and closer to the real one 
as the number of training sessions increases (Fig. 3B, a-f). As shown in 
Fig. 4, for each strain, the average spectra of the generated spectra and 
the real spectra are indistinguishable by the naked eye. 

Collecting 1000 experimental Raman spectra would take a skilled 
researcher about 10 h. In contrast, we only need to acquire 300 

experimental Raman spectra (i.e. 3 h) to generate 1000 spectra of 
equivalent quality for modelling. Although generating the spectra takes 
about 2 h, the program runs automatically without supervision. 

3.3. ResNet taxonomic model identifies microbial species with high 
accuracy 

The CNN architecture is adapted from the ResNet architecture [35], 
which has been used in various computer vision tasks. ResNet can pro-
vide high accuracy when classifying low SNR Raman spectra [8]. Fig. 5 
shows a block diagram of the network, including an initial convolution 
layer, six residual layers, and a fully connected (fc) classification layer. 
We trained our networks according to the setup described by Ho C S [8]. 
We use the Adam optimizer across all experiments [34]. 

To evaluate the effectiveness of the classification model and avoid 
the problems caused by unreasonable data set partitioning, we introduce 
a 5-fold cross-validation method. First, we divided the data of each 
bacterium into 5 sub-groups equally. Four groups were used to train the 
classification model, and one group was used as the test data. To prevent 
the neural network from overfitting, the data of all four groups were 
further randomly recombined into two parts:80% data for training and 
20% data for validation. These generated five ResNet classification 
models. Through this cross-validation, the model with the highest ac-
curacy is selected as the final model. 

Using receiver operating characteristic (ROC) curves, we assessed 
the specificity and sensitivity of classifying the five strains (Fig. S2). The 
AUC (area under the ROC curve) of all five strains is greater than 0.99, 
indicating that our ResNet model has high specificity and sensitivity for 
classifying different bacterial species. During the ResNet training pro-
cess, we drew the loss and accuracy curves simultaneously (Fig. S3). The 
training and validation losses have converged, and the difference be-
tween them is small, reaching a good fit. 

We used the trained ResNet taxonomic model to classify each bac-
terial cell in the test dataset. The trained ResNet taxonomic model 
predicts each test set and assigns it to a species category. Our ResNet 
taxonomic model used the average value to identify a bacterial species 
with an accuracy of 99.8 ± 0.2%. As shown in Fig. 6, Fictibacillus sp., 
Halomonas sp., Pseudomonas sp., Staphylococcus sp., and Acinetobacter sp. 

Fig. 4. Comparison between the generated and the real spectra: the blue line is 
the generated spectrum. The red line is the real spectrum. The grey shaded part 
is the area formed by the maximum and minimum values of the generated 
spectrum. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 5. Deep learning model architecture. A one-dimensional residual network with a total of 25 convolutional layers was used.  
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have been identified with great accuracy. In comparison, when linear 
discriminant analysis (PCA-LDA), support vector machine (PCA-SVM) 
and KNN were used, the accuracy rates were 98 ± 2%, 98 ± 2%, and 95 
± 5%, respectively (Figs. S4A, B, C). In addition, with the CNN model 
alone, the classification accuracy reached 97 ± 3% (Fig. S5A). However, 
we combined the model obtained by PGGAN and CNN to predict cell 
type and successfully achieved a classification accuracy of 98 ± 2% 
(Fig. S5B). Meanwhile, the ROC curve of the models was calculated 
(Figs. S5C and D). It is worth noting that PGGAN can also be combined 
with other deep learning methods to improve classification accuracy. 
These results demonstrate that Raman spectroscopy, combined with 
PGGAN and ResNet, can accurately identify microorganisms at the 
single-cell level. 

4. Conclusions 

This study presents a novel method for bacterial identification using 
PGGAN and ResNet combined with laser tweezers Raman spectroscopy. 
We show that PGGAN can rapidly generate a large number of high- 
resolution Raman spectra for most existing deep learning approaches 
and increase their prediction accuracy. Via this approach, only 1/3 of 
the total spectra need to be experimentally acquired and thus signifi-
cantly reducing time and labour. ResNet can accurately classify Raman 
spectra with low SNRs. When combined with PGGAN’s high-resolution 
data, ResNet can quickly, efficiently, and accurately classify single cell 
Raman spectra. 

Our method provides an effective means to solve the challenges 
associated with the need for substantial training data and Raman spectra 
of low SNRs. Currently, this technique illustrates the ability to rapidly 
identify individual bacterial cells in solution without detrimental effects 
on cells. It is envisaged that when combined with microfluidics, it would 
allow for fast, accurate, and non-invasive cell sorting. Importantly, this 
approach doesn’t need complicated sample treatments and thus holds 
great potential for challenging in-situ investigations, such as microbial 
identification and sorting, benefitting a wide range of microbiology and 
healthcare areas. 
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