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ABSTRACT: Van der Waals heterostructures composed of
atomically thin two-dimensional (2D) materials and three-
dimensional (3D) materials provide a multidimensional material
integration strategy, which combines materials with different
characteristics leading to a wider degree of freedom than a single
component, and offer a way for developing electronic and
optoelectronic devices with multifunctionalities, such as high-
frequency electronic devices, photodetectors, valley-spin electronic
devices, and so on. This report demonstrates the direct growth of
large-area monolayer MoS2 single-crystal nanosheets with a side
length of more than 100 μm on 3D GaN substrates by the
perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS)
seed-assisted chemical vapor deposition (CVD) method. The
seeding promoters changed the growth kinetics of MoS2 on the GaN substrate, which is different from the previously reported
epitaxial growth behavior. The size of our synthesized single-crystal MoS2 nanosheets is 2 orders of magnitude larger than the
reported epitaxially grown MoS2 on the GaN substrate. Meanwhile, the as-synthesized MoS2 by the seed-assisted CVD method has
comparable crystal quality as that of the reported epitaxially grown MoS2 on the GaN substrate. Moreover, detailed characterizations
indicate that noticeable charge transfer occurs between MoS2 and the GaN substrate, which suggests that the MoS2/GaN
heterostructure has great potential applications in the field of light-emitting diodes (LED) and valley-spin electronic devices.
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■ INTRODUCTION

In recent years, van der Waals heterostructures composed of
newly emerged two-dimensional (2D) materials and traditional
three-dimensional (3D) materials have attracted extensive
attention.1−6 The coupling of quasi-particles at the interface of
heterostructures provides a new route for developing
innovative device designs such as tunnel diodes, ultrabroad-
band photodetectors, light-emitting diodes (LEDs), and high-
power devices.7−13 As a typical III−V compound, GaN is
known as a third-generation semiconductor after silicon and
gallium arsenide. The crystal structure of GaN is a hexagonal
wurtzite configuration, as the inner Ga and N atoms are all
covalently bonded with each other, which is similar to silicon
and diamond materials. Therefore, GaN can be considered a
typical 3D material. Also, GaN is a wide direct-band-gap
semiconductor with a bandgap of 3.4 eV, which is widely used
in high-power devices, advanced wireless communication, and
high-frequency microwave devices.14,15 Good chemical stability
at high temperatures and compatibility with mature process
semiconductor technology make GaN a potential substrate to
grow 2D semiconductor materials and construct 2D/3D

heterostructures, meeting the demands of new electronic
devices with multifunctionality and further broadening the
application fields of both 2D materials and 3D GaN.9−12

Monolayer MoS2 is a typical 2D semiconductor that has been
intensively studied in the past decade. Both GaN and MoS2
belong to the hexagonal crystal system with similar lattice
constants (3.19 Å for GaN, 3.16 Å for MoS2); the in-plane
lattice mismatch is less than 1%. Furthermore, the thermal
expansion coefficients of GaN and MoS2 are very close (3.95 ×
10−6 K−1 for GaN, 4.92 × 10−6 K−1 for MoS2).

16−18 Thus, we
can anticipate that the direct growth of MoS2 on the GaN
substrate will not generate in-plane stress during the growth
process, which can guarantee the high crystal quality of MoS2.
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There are some interesting phenomena in the hybrid structure
composed of the 3D GaN and the 2D MoS2, such as the
increased polarization of MoS2 under circularly polarized light
and the band bending at the interface of the heterostruc-
tures.11,19 At present, a transfer method was used to prepare
2D/3D heterostructures. For example, Moun et al. transferred
the mechanically exfoliated MoS2 to the GaN substrates and
studied the photodetection and diode characteristics of the
MoS2/GaN heterostructure.20 However, the exfoliated MoS2
sample is not suitable for the preparation of large-scale
integrated devices. Henck et al. transferred large-area chemical
vapor deposition (CVD)-grown MoS2 nanoflakes onto GaN
substrates via the poly(methyl methacrylate) (PMMA)-assisted
method. They found a significant charge-transfer phenomenon
at the interface of the MoS2/GaN heterostructure, whereas the
wetting transfer method can cause damage to the crystal
quality of MoS2 during the chemical corrosion period and
introduce some unwanted residual impurities.19 The CVD
method has unique advantages in the preparation of large-area
2D/3D heterostructures due to its benefits of good
controllability, relatively low cost, and good crystallinity of
the obtained thin film. It is the most popular preparation
technology currently for large-area 2D materials and their
complex heterostructures.21−27 Ruzmetov and Wan et al.
reported that CVD-grown MoS2 nanosheets on GaN
substrates exhibited apparent epitaxial growth behavior; the
MoS2 domains were aligned at either 0 or 60° orientations.9−11

However, the side length of the MoS2 nanosheets obtained was
generally below 10 μm, which limits its application in the field
of large-scale devices.9

To overcome the bottleneck of size limit in CVD growth of
monolayer MoS2 epitaxially grown on traditional 3D GaN
substrates, we used perylene-3,4,9,10-tetracarboxylic acid
tetrapotassium salt (PTAS) seeds to promote CVD growth
of large-area monolayer MoS2 single crystals on GaN
substrates. A triangle-shaped monolayer MoS2 single-crystal
nanosheet with a side length of more than 100 μm was
synthesized on GaN substrates, which is 2 orders of magnitude
larger than the size of MoS2 crystal domains epitaxially grown

on the GaN substrates reported in the literature.9−11 Since the
introduced PTAS catalyst changed the surface energy of the
GaN growth substrate, the MoS2 nanosheets do not exhibit
epitaxial growth behavior on the substrate, that is, the MoS2
nanosheets have no specific orientation with GaN substrates. A
series of characterizations were conducted on the performance
of the MoS2/GaN heterostructure, including Raman spectros-
copy, photoluminescence spectroscopy (PL), X-ray photo-
electron spectroscopy (XPS), angle-resolved photoemission
spectroscopy with submicron lateral resolution (micro-
ARPES), Kelvin probe force microscopy (KPFM), and
conductive atomic force microscopy (CAFM). The results
indicate that the MoS2 grown on GaN substrates has a good
crystal quality, and there is a significant charge transfer
between MoS2 and GaN. The performance of our synthesized
large-area MoS2/GaN is comparable to that of the epitaxially
grown MoS2/GaN heterostructures. The direct growth of
MoS2/GaN heterostructures introduced in this paper
promotes the large-scale preparation of 2D/3D heterostruc-
tures and their application in the field of optoelectronic
devices.

■ EXPERIMENTAL SECTION
Growth of MoS2. The MoS2 sample was grown by the CVD

method on n-type GaN(0001)/sapphire substrates in a two-
temperature-zone furnace. The GaN(0001) film was epitaxially
grown on Al2O3 with dislocation density less than 5 × 108 cm−2

and a thickness of 4.5 μm. Before growth of MoS2, the GaN(0001)/
sapphire substrates were pretreated by drop-casting 5 μL of 100 μM
PTAS. Then, 150 mg of sulfur (Aladdin, 99.99%) and 3 mg of MoO3
(Aladdin, 99.9%) were used as the growth precursors, and high-purity
N2 gas (99.999%) was used as the carrier gas. The two zones were
separately heated to 170 and 680 °C within 38 min and maintained
for 3 min for the growth with 20 sccm N2 flow in an atmospheric
pressure.

Characterization. The detailed morphologies of MoS2 were
characterized by optical microscopy (Keyence digital microscope
VHX-600), scanning electron microscopy (SEM) (Zeiss Sigma HD),
and atomic force microscope (AFM) (Bruker, Dimension FastScan)
equipped with CAFM and KPFM test modules. The Raman and PL

Figure 1. (a, b) Optical and SEM images of MoS2 grown on GaN(0001)/sapphire substrates. (c) AFM image of the MoS2/GaN heterostructure.
(d) Height profile corresponding to the same color line marked in (c).
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spectra were performed by WITec Alpha 300R with 532 or 633 nm
laser. The laser power of 3 mW was chosen to obtain a Raman
spectrum with a good signal-to-noise ratio. The XPS measurement
was carried out by ThermoFisher ESCALAB 250Xi with an Al Kα X-
ray source. The electrodes were patterned by photolithography using
a laser direct writing machine (Microwriter ML3) followed by
deposition of 5 nm of Cr and 50 nm of Au. Micro-ARPES
measurements were conducted at the SpectroMicroscopy beamline
at the Elettra Synchrotron Light Source (Italy) utilizing a 74 eV
photon beam.28 The measurement temperature was 100 K. The
overall energy, angle, and lateral resolutions were 50 meV, 1, and ∼1
μm, respectively. Au mesh grids (40 × 40 μm2) were deposited on
MoS2/GaN by the laser direct writing machine and the lithography
technology to avoid the charging effect in photoemission. Prior to
ARPES measurements, MoS2/GaN heterostructures were annealed at
573 K in a preparation chamber.

■ RESULTS AND DISCUSSION
The growth of 2D monolayer MoS2 nanosheets in our
experiment was conducted by the CVD method on 3D GaN
substrates with special temperature control of the growth
source as described in the Experimental Section. Figure 1a,b
shows the morphology of MoS2 grown on a GaN(0001)/
sapphire substrate assisted-growth by PTAS seeding promoters
under an optical microscope and SEM. It was found that the
orientation of these MoS2 domains is randomly distributed,
and the maximum side length of triangular-shaped MoS2
domains can reach up to 103 μm, which is 2 orders of
magnitude larger than the MoS2 domains epitaxially grown on
the GaN substrate with a specific orientation by the CVD
method in previous reports.9−11 This can be ascribed to the
fact that the introduced seeds changed the surface energy of
the GaN substrate and reduced the nucleation energy of MoS2
during the growth period,29−31 making the growth of MoS2 on
GaN from thermodynamic equilibrium control with specific
orientation become kinetic rate control with a random
direction.32 Our growth strategy for the synthesis of MoS2
single crystals with a side length of up to tens to hundreds of
microns on GaN substrates has a lower growth temperature at
680 °C and a shorter growth time for 3 min compared with the
epitaxial growth of MoS2 on GaN at 800 °C for 15 min with
side length less than 10 μm without seeding promoters as
reported in the literature.9 The growth mechanism may be
described as follows. Under the growth temperature of MoS2,
the PTAS seeds decompose into small fragments, which
contain conjugate benzene rings as the parent molecule. The

plane structure of conjugate benzene rings can be absorbed on
the surface of the GaN substrates and thus change the surface
energy of GaN. At the same time, the conjugate benzene rings
can also be highly reactive centers, which can anchor the
growth source, that is, Mo and S atoms, in a plane and finally
form a nucleation center, followed by the extended growth of
MoS2 in a planar way. With prolonged growth time, we can
obtain a continuous monolayer MoS2 film as seen in the
following device sections. Further analysis of the morphology
of MoS2/GaN by AFM indicates that MoS2 is a monolayer
with a thickness of 0.65 nm, which is consistent with the
thickness of the monolayer MoS2 grown by CVD and the
mechanical exfoliated sample.31,33 From the AFM morphology
image, it can be seen that the surface of the MoS2 flake is very
clean and there are almost no impurity particles. On the other
hand, we find that there are only a few incompletely reacted
MoOx molybdenum source particles in the blank GaN area as
will be discussed by the XPS results below. Although the
fluctuation of GaN topography exceeds 5 nm, the as-grown
monolayer MoS2 domains closely attach to the GaN surface. In
view of the good chemical stability of GaN at high
temperatures, GaN can also be a suitable substrate for growing
other 2D transition-metal dichalcogenide (TMDC) com-
pounds, thereby constructing various 2D/3D heterojunctions
with more abundant properties.
The composition and crystal quality of the MoS2/GaN

heterostructure were studied with Raman spectroscopy. In
general, Raman spectroscopy is a useful characterization tool
that can quickly and nondestructively analyze the layer number
and crystal quality of 2D materials.34,35 Figure 2 shows the
Raman spectrum and mapping results of the MoS2/GaN
heterostructure. The upper panel of Figure 2a is the Raman
spectrum of the blank GaN substrate after growing MoS2.
There are three typical Raman peaks located at 141.2 cm−1 (E2,
low), 569.0 cm−1 (E2, high), and 734.3 cm−1 A1 (LO),
consistent with the Raman features of GaN with a hexagonal
wurtzite configuration as reported in the literature,36,37

indicating that the GaN substrate can be stable under the
high-temperature growth environment of MoS2. The lower
panel of Figure 2a is the Raman spectrum of the MoS2/GaN
heterostructure. In addition to the Raman peaks of GaN, two
other typical Raman peaks of MoS2 can be detected at 382.6
cm−1 and 404.0 cm−1, which belong to the in-plane vibration
mode (E1

2g) and the out-of-plane vibration mode (A1g),

Figure 2. (a) Raman spectrum of blank GaN and MoS2/GaN heterostructures. (b, c) Raman mapping of peak positions of E1
2g mode (b) and A1g

mode (c). (d, e) Raman mapping of peak intensities of E1
2g mode (d) and A1g mode (e).
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respectively. The difference between these two peaks is 21.4
cm−1, which is slightly larger than that of the monolayer MoS2
grown on SiO2/Si wafers and sapphire substrates by
CVD.29−31 Such a peak difference may be due to the thermal
effect caused by the detection laser with a power of 3 mW.38,39

On the other hand, it may be caused by the charge transfer
between MoS2 and the GaN substrates, thus changing the
doping level of MoS2 as the peak position of the A1g vibration
mode is sensitive to doping.40 Figure 2b,c shows the Raman
mapping of the peak position of the two vibration modes (E1

2g
and A1g) of a typical MoS2 domain. The peak positions of the
two Raman modes have almost no change in the entire MoS2
area, indicating that there is no local stress and local doping
within the MoS2 domain. Figure 2d,e shows the Raman
mapping of the intensity of E1

2g and A1g modes; the spatially
uniform intensity of these two Raman modes indicates that the
quality of the CVD-grown MoS2 nanosheet on the GaN
substrate is of good uniformity.
Then, we used PL spectroscopy to further evaluate the

quality of the MoS2 grown on the GaN substrate. Figure 3
shows the PL spectrum and mapping of the MoS2/GaN
heterostructure. Since monolayer MoS2 is a direct-band-gap
semiconductor, a strong PL peak is detected under 532 nm
laser radiation, as shown in Figure 3a. The PL spectrum was
fitted for better understanding the behavior of exciton in
MoS2; the peak located at 1.84 eV corresponds to the A
exciton peak in MoS2. The full width at half-maximum
(FWHM) of A exciton is only 66 meV; such a narrow peak
width indicates the high quality of the MoS2 grown on GaN.
The sharp peaks near 1.8 eV indicate the sapphire substrate.
Due to the lack of inversion symmetry and the strong spin−
orbital coupling effect in the monolayer MoS2, leading to the
splitting of the valence-band maximum,41 there are two direct
exciton emission peaks, that is, A exciton and B exciton, as
shown in the PL spectrum of MoS2, but the B exciton peak is
very weak. Recently, it has been reported that the intensity

ratio of A exciton versus B exciton (A/B) can be used to
evaluate the crystal quality of MoS2 qualitatively. The larger
the ratio of A/B, the better the quality of MoS2.

42,43 The PL
spectral shape of our synthesized MoS2 on the GaN substrate
is very similar to the suspended monolayer MoS2 and the
CVD-grown MoS2 sample on h-BN,44,45 indicating that much
less defects exist in MoS2 samples, further illustrating the
excellent quality of the MoS2 grown on the GaN substrate.
Figure 3b,c shows the PL mapping of the peak intensity and
the peak position of the monolayer MoS2 domain on the GaN
substrate. It is also found that the peak intensity and the peak
position of the entire crystal domain are relatively uniform,
indicating that the quality of the MoS2 crystal domain is
uniform. However, the very small area with a darker intensity
in the center of the mapping image can be due to the initial
nucleation point of MoS2.

46 The above optical properties
further suggest that MoS2 grown on GaN has a good crystal
quality, which may benefit from the minor lattice mismatch
ratio of MoS2 and the GaN substrate, making GaN an excellent
substrate for growing other high-quality 2D TMDC com-
pounds that are lattice-matched with GaN. In addition, the
circular polarization behavior of the MoS2/GaN heterostruc-
ture is also studied. Figure S1a shows the circularly polarized
PL spectrum of the MoS2/GaN heterostructure under a 633
nm laser (hν = 1.96 eV) at room temperature. The use of an
excitation wavelength of 633 nm here is due to the fact that
resonant excitation can increase the polarization of 2D
semiconductor materials under helicity circularly polarized
laser because of the suppressed phonon-assisted intervalley
scattering.11 The following formula can calculate the polar-
ization helicity

P I I I I( )/( )= − +σ σ σ σ+ − + − (1)

where Iσ+ and Iσ− are the intensities of the PL spectra of MoS2
under right-circularly and left-circularly light. It is found that
MoS2 on the GaN substrate has obvious valley polarization at

Figure 3. (a) PL spectrum of the monolayer MoS2 domain grown on GaN; the inset is the optical image of the MoS2/GaN heterostructure. The
scale bar is 4 μm. (b, c) PL intensity mapping (b) and peak position mapping (c) of a typical monolayer MoS2 domain on GaN corresponding to
the inset in (a).
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room temperature, which is much larger than that of MoS2
grown on the sapphire substrate in the same condition as
shown in Figure S1b, indicating that the interaction between
the GaN substrate and MoS2 can manipulate the valley helicity
of MoS2, which is due to the competition between the
intervalley scattering rate and the faster exciton decay rate in
MoS2 caused by the GaN substrate.11 The charge transfer in
the interface of the MoS2/GaN heterostructure increases the
circular polarization of MoS2, making the 2D/3D hetero-
structures composed of TMDCs and GaN have great
promising application prospects in the field of valley
electronics.
The composition of the MoS2/GaN heterostructure was

further analyzed by XPS as it is an important characterization
technique for qualitative and quantitative analyses of the
element component in samples. As shown in Figure S2a, the
Mo 3d core-level spectra can be fitted with two pair peaks. The
Mo 3d3/2 and 3d5/2 with band energies of 235.6 and 232.4 eV
correspond to the incompletely reacted MoOx particles as
mentioned above measured on blank GaN by AFM. The other
pair peaks of 3d3/2 at 232.6 eV and 3d5/2 at 229.5 eV
correspond to Mo4+ in MoS2. The spin−orbit splitting energy
of Mo4+ 3d is 3.1 eV. These binding energies of Mo and S are
consistent with the reported XPS peak values of MoS2 in the
literature.47 At the same time, we also measured the XPS
spectra of the Ga 3s core level as shown in Figure S2b, which is
in line with the Ga 3s of GaN reported in the literature,48

further indicating that GaN can be stable in the growth
environment of MoS2.
To investigate the band structure and electronic properties

of the 2D/3D hybrid MoS2/GaN heterostructure, we carried
out state-of-the-art micro-ARPES measurements.28,49,50 After
focusing the light to submicron size, we scanned the sample
surface and acquired the photoemission 2D real-space map at
the submicron lateral resolution as shown in Figure 4a, in

which regions of the triangle-shaped MoS2/GaN hetero-
structure, bare GaN, and Au mesh can be apparently discerned.
Then, we moved the light beam to the MoS2/GaN
heterostructure region and obtained the valence-band dis-
persion of MoS2 at the Γ point of the Brillouin zone. Clearly,
the valence band exhibits good holelike dispersions,19 as shown
by the false-color display of the ARPES spectrum in Figure
4b(i) and massive plots of momentum−distribution curves in
Figure 4b(ii). We note that the quality of our ARPES data is
comparable to that measured on exfoliated MoS2 nano-
flakes.51,52 Interestingly, from the high-resolution photo-
electron spectrum of the Ga 3d core-level electrons in the
MoS2/GaN heterostructure as shown in Figure 4c, we found
that Ga 3d has 200 meV red-shifted in the MoS2/GaN
heterostructure compared to the blank GaN substrate. This
shift at a lower binding energy suggests that band bending
occurs at the interface of the heterostructure as a result of
charge transfer from the 2D monolayer MoS2 to GaN.19

To explain the charge-transfer phenomenon at the MoS2/
GaN interface, KPFM was used to characterize the surface
potential mapping of the MoS2/GaN heterostructure as shown
in Figure S3. There is a significant potential difference between
the MoS2 domain and GaN, and the potential distribution is
uniform throughout the whole MoS2 domain. The contact
potential difference (CPD) between the KPFM tip and the
sample is given by

e e
(CPD) and (CPD)MoS

tip MoS
GaN

tip GaN
2

2
ϕ ϕ ϕ ϕ

=
−

−
=

−

−
(2)

where ϕtip, ϕGaN, and ϕMoS2 are the work functions of the
KPFM tip, GaN, and MoS2, respectively. The CPD between
MoS2 and GaN is given by

Figure 4. (a) Micro-ARPES photoemission real-space map of MoS2/GaN measured with the photon energy of 74 eV. Photoelectrons with
approximately the maximum kinetic energy are integrated. Regions of MoS2/GaN, bare GaN, and Au mesh are marked. (b) ARPES photoemission
spectra of the MoS2/GaN heterostructure near the Γ point of the Brillouin zone (i) and its momentum−distribution curve plots (ii), both of which
clearly show good holelike band dispersions of the valence band. (c) High-resolution photoelectron spectrum of the Ga 3d core-level electrons on
bare GaN and MoS2/GaN heterostructures corresponding to the marked dot in (a).
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It can be seen from Figure S3b that the surface potential of the

GaN substrate is about 55 mV higher than that of the

monolayer MoS2, so the work function of the GaN substrate is

55 meV larger than that of the MoS2 flake. Therefore, MoS2
forms a heterojunction with the GaN substrate and has a built-

in potential difference, indicating that a significant charge
transfer occurs at the interface between the two materials.20

The charge transport at the vertical 2D/3D heterojunction
interface is closely related to the properties of the 2D material.
The current−voltage (I−V) relationship of the MoS2/GaN
heterojunction was carried out by CAFM, as illustrated by
Figure 5a. The CAFM tip is contacted with the top surface of
the MoS2, and the other electrode is connected with blank
GaN. The I−V measurement results in Figure 5b show that the
current can vertically flow through the van der Waals gap at the

Figure 5. (a) Schematic of CAFM measurement of the MoS2/GaN heterostructure. (b) I−V measurement of MoS2/GaN by CAFM. (c) Current
mapping of a typical MoS2 domain on GaN. (d) Current difference with lateral distance across the MoS2/GaN heterostructure corresponding to
the dark line marked in (c).

Figure 6. (a) Optical image of the continuous film of the MoS2/GaN heterostructure device. (b) Current−voltage (I−V) curve of the MoS2/GaN
photodetector under dark conditions and after being illuminated by a 410 nm laser. (c, d) Band alignment of the MoS2/GaN heterostructure before
(c) and after illumination (d) under a positive bias voltage given to GaN with respect to MoS2.
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interface of the MoS2/GaN heterojunction, resulting in
obvious rectification characteristics, allowing the MoS2/GaN
heterostructure to be applied to the light-emitting diode. The
current conduction through vertically stacked 2D/3D semi-
conductor heterojunctions brings the possibility of complex
structures with specific electrical characteristics, such as
utilizing MoS2 as the epitaxial center for the growth of other
2D materials. It can be seen from Figure 5c,d that the electrical
conductivity of the entire MoS2 domain region in the MoS2/
GaN heterojunction is significantly larger than that of the
blank GaN substrate, which is consistent with the results
reported in the literature.9

Since MoS2 can absorb visible light and generate photo-
generated carriers, this 2D/3D heterojunction can be further
applied to photodetectors. As shown in Figure 6a,b, the I−V
curves present a rectifying behavior, which can be explained by
the built-in potential between MoS2 and GaN indicated by the
KPFM results. Since the Fermi level of GaN is at a lower
energy level than that of MoS2, the built-in electric field is
directed from MoS2 to GaN. The band alignment under bias
voltage was illustrated based on the KPFM analysis, as shown
in Figure 6c.20,53,54 When a positive voltage is applied to GaN
with respect to MoS2, the built-in potential will be offset,
leading to a decrease in the effective barrier and more electrons
can transport from MoS2 to GaN, resulting in a high value of
the current. Similarly, a low value of the current is observed
owing to the reinforcing of the built-in potential when reverse-
biased. The photoresponse of the MoS2/GaN heterostructure
is illustrated by illuminating the device by a 410 nm laser as the
energy is located between the bandgap of MoS2 and GaN with
a power density of 1 mW/cm2; the photoresponsivity (R) can
illustrate the figure-of-merit of a photodetector by the
following equation

R
I I

P
illuminated dark

illuminated
=

−
(4)

where Iilluminated, Idark, and Pilluminated are the current after
illumination, dark current, and the illuminated power of laser
light falling on the active area of the device, respectively. The
current was enhanced upon irradiation, which can be due to
the increase of photogenerated carriers transferred from MoS2
to GaN under a bias voltage. The calculated R of the MoS2/
GaN heterostructure is 2.2 × 103 A/W at the bias voltage of 3
V; this value is higher than that of photodetectors based on
monolayer MoS2 field-effect transistors (FETs),

55 which might
have contributed to the traps induced by the interface of the
heterostructure. When the photogenerated holes are captured
by the traps, hindering the recombination of excitons, then
electrons are extracted from the source to maintain the charge
neutrality of the channel, resulting in an ultrahigh photo-
responsivity. However, the value of photoresponsivity is a little
lower than the multilayer MoS2/GaN heterostructure due to
the stronger absorption in multilayer MoS2 samples.20,54 We
further analyze the external quantum efficiency (EQE) of the
MoS2/GaN heterostructure-based photodetector, which refers
to the photoconversion efficiency, and can be expressed by the
following formula

h c R
e

EQE
λ

= × ×
× (5)

where h is the Planck constant, c is the speed of light, R is the
photoresponsibility as calculated based on eq 4, e is the charge

of the electron, and λ is the wavelength of the illumination
laser.54 The EQE is calculated to be 6.6 × 105% at the bias
voltage of 3 V. A comparison of the performance parameters of
the MoS2/GaN photodetector with previous reports is
outlined in Table S1,20,53−56 which means that the MoS2/
GaN heterostructure shows potential application prospects in
photodetectors.

■ CONCLUSIONS
In summary, we demonstrated the utilizing of the PTAS
seeding promoter-assisted CVD method to synthesize large-
area monolayer MoS2 single-crystal nanosheets with side
length more than 100 μm on GaN substrates, which is 2 orders
of magnitude larger than the reported epitaxially grown MoS2
nanosheets on GaN substrates. The introduction of the PTAS
seeds changed the surface energy of the GaN substrate and
promoted the nucleation and rapid growth of MoS2. A series of
characterization results indicate that the seed-assisted CVD-
grown large-area monolayer MoS2 nanosheets on GaN have a
good crystal quality. Their quality is comparable to the
reported monolayer MoS2 epitaxially grown on GaN. Our
work provides a valuable guide for the large-area growth of
2D/3D heterostructures and their applications in LED, valley-
spin electronic devices, and photodetectors, which are helpful
for electrical designers and fundamental research in multifunc-
tional devices.
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