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Abstract: Infrared small-target detection has widespread influences on anti-missile warning, precise
weapon guidance, infrared stealth and anti-stealth, military reconnaissance, and other national
defense fields. However, small targets are easily submerged in background clutter noise and have
fewer pixels and shape features. Furthermore, random target positions and irregular motion can lead
to target detection being carried out in the whole space–time domain. This could result in a large
amount of calculation, and the accuracy and real-time performance are difficult to be guaranteed.
Therefore, infrared small-target detection is still a challenging and far-reaching research hotspot. To
solve the above problem, a novel multimodal feature fusion network (MFFN) is proposed, based on
morphological characteristics, infrared radiation, and motion characteristics, which could compensate
for the deficiency in the description of single modal characteristics of small targets and improve
the recognition precision. Our innovations introduced in the paper are addressed in the following
three aspects: Firstly, in the morphological domain, we propose a network with the skip-connected
feature pyramid network (SCFPN) and dilated convolutional block attention module integrated
with Resblock (DAMR) introduced to the backbone, which is designed to improve the feature
extraction ability for infrared small targets. Secondly, in the radiation characteristic domain, we
propose a prediction model of atmospheric transmittance based on deep neural networks (DNNs),
which predicts the atmospheric transmittance effectively without being limited by the complex
environment to improve the measurement accuracy of radiation characteristics. Finally, the dilated
convolutional-network-based bidirectional encoder representation from a transformers (DC-BERT)
structure combined with an attention mechanism is proposed for the feature extraction of radiation
and motion characteristics. Finally, experiments on our self-established optoelectronic equipment
detected dataset (OEDD) show that our method is superior to eight state-of-the-art algorithms in
terms of the accuracy and robustness of infrared small-target detection. The comparative experimental
results of four kinds of target sequences indicate that the average recognition rate Pavg is 92.64%, the
mean average precision (mAP) is 92.01%, and the F1 score is 90.52%.

Keywords: infrared small-target detection; radiation characteristics; multimodal feature fusion

1. Introduction

As key technology in cross-boundary and high-precision conflicts and other national
defense fields, infrared thermal imaging technology has advantages over passive detection,
such as round-the-clock activity and high reliability. Infrared target detection is still one
of the most popular research hotspots in military reconnaissance fields. Currently, most
infrared small-target detection algorithms are based on a single morphological feature.
These low-contrast targets have fewer pixels and lack shape and structure features; however,
they are usually interfered with and submerged in the relatively strong background clutter
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and noise. It is difficult to meet the performance index of detection accuracy. Therefore,
breakthroughs in infrared small-target detection are still an arduous and important scientific
research task. The research findings could be widely applied in anti-missile warning, precise
weapon guidance, missile tracking, and stealth aircraft identification systems.

Target detection algorithms based on deep learning can be divided into two cate-
gories: Detection methods based on region extraction, and detection methods based on
regression [1]. The method based on region extraction represented by a region convolu-
tional neural network (R-CNN) [2], spatial pyramid pooling network (SPPNet) [3,4], fast
R-CNN [5], faster R-CNN [6,7], (region-based fully convolutional network) RFCN [8,9],
mask R-CNN [10,11], and cascade R-CNN [12,13] is also called the two-stage detection
method. The method based on regression represented by you only look once (YOLO) [14,15],
the single shot multi-box detector (SSD) [16], RetinaNet [17,18], CornerNet [19,20], and
EfficientDet [21,22] is also called the one-stage detection method. Firstly, the two-stage de-
tection method extracts the region proposals, and then classifies and predicts the locations
of the region proposals by regression. The one-stage detection method regards the whole
image to be detected as one region proposal and directly inputs it into the convolutional
neural network to regress the target position and classification of the image [23]. Deep
convolution neural networks (DCNNs) use more convolution layers and parameters to fit
large-scale datasets. These networks use many technical methods of modern deep convolu-
tion neural networks for the first time, including the Relu nonlinear activation function, a
dropout mechanism that could prevent overfitting, and a data augmentation mechanism to
improve model accuracy. R-CNN draws lessons from the sliding window concept. Firstly,
approximately 2000 region proposals are extracted from a given image. For each region, a
fixed-length feature vector is extracted by a convolutional neural network. Finally, each
extracted region is classified by support vector machines (SVMs). The regional scores are
adjusted and filtered by bounding box regression and non-maximum suppression (NMS),
and location regression is carried out in the fully connected network. The mAP on the
general target detection dataset VOC2007 is 58.5%. The performance of R-CNNs has been
improved compared with the traditional target detection algorithm, but the training and
testing speed is slow, and the real-time performance is hard to ensure. He et al. proposed a
SPPNet network in which the problem of the input fixed-size image was solved, and the
accuracy of the benchmark detection model was improved. SPPNet is 24~102 times faster
than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC
2007 [3]. Girshick et al. proposed a fast R-CNN network in which the region of interest
(ROI) pooling layer was used to optimize regional feature selection. The fast R-CNN trains
the very deep VGG-16 network 9 times faster than R-CNN, is 213 times faster at test-time,
and achieves a higher mAP on PASCAL VOC 2012 [5]. Ren et al. proposed a faster R-
CNN [6] network in which a regional proposal network (RPN) is introduced to replace the
selective search algorithm that hinders the improvement of accuracy. In the framework
of faster R-CNN, the convolution features of all images are shared in the whole detection
process. RPN improves the detection speed by simultaneously predicting the bounding
box and category confidence at each location. The faster R-CNN consists of four parts: The
convolution layer, RPN network, ROI pooling layer, and classification and regression layer.
The faster R-CNN, which takes VGG-16 as the backbone network, achieved a mAP of 73.2%
on the Pascal VOC 2007 dataset. Nevertheless, there are still several problems, such as its
unsuitability for small-target detection and limitations of the detection speed and accuracy.
Dai et al. proposed an RFCN network in which a position-sensitive score graph was used
to reduce the translation invariance of objects. RFCN achieved a competitive mAP of 83.6%
and a test-time speed of 170 ms per image on the PASCAL VOC datasets with the 101-layer
ResNet [8]. He et al. proposed a mask R-CNN network in which bilinear interpolation
was used to fill in the pixels on non-integer positions to improve the accuracy of target
detection. Mask R-CNN extends the faster R-CNN by adding a branch for predicting
an object mask in parallel with the existing branch for bounding box recognition. It is
simple to train and adds only a small overhead to the faster R-CNN, running at 5 fps [10].
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Cai. et al. proposed a cascade R-CNN network, which consisted of a sequence of detectors
trained with increasing IoU thresholds, to be sequentially more selective against close
false positives. The average precision performance from multiple popular detectors to the
cascade R-CNN is improved by 2% to 4% [12].

Liu et al. proposed an SSD algorithm to balance the detection accuracy and speed. SSD
takes VGG-16 as the backbone network for feature extraction. With the hierarchical feature
extraction idea, SSD divides the single-level network into six levels and extracts feature
maps of different semantic levels in each stage for target classification and bounding box
regression. The combination of a multi-scale feature map and anchor mechanism improves
the detection ability of the algorithm for targets with different scales. In addition, according
to the bounding boxes obtained by anchors on different scales, SSD adopts the prediction
mechanism to distinguish the classification and location of the target. Although the Map of
SSD on the VOC2007 dataset reaches 79.8%, it is not ideal for the identification of small
targets. Redmon et al. proposed a single-stage target detector called YOLO. The YOLO
architecture consists of 24 convolution layers and 2 fully connected (FC) layers. The feature
map of the top level is used for the bounding box prediction, which directly estimates the
probability of each category. In the YOLO framework, each image is divided into an S × S
grid cell, which is only responsible for predicting the target of the grid center. Feature
extraction, classification, and regression are imputed into one convolutional network for
simplification, in which the generation stage of the region proposal is omitted. However, it
is easy to miss detections in the overlapping occlusion environment in the YOLO algorithm,
and it is not fully applicable to small-target detection. Redmon et al. then developed the
YOLO v3 [24] network, in which a deeper Darknet-53 residual network combined with
a feature pyramid network (FPN) is used for feature extraction, and a feature map with
three scales is used to predict the bounding box with the number of anchors increasing at
the same time. The multi-scale prediction mechanism significantly improves the detection
performance of small targets. The map of the YOLO v3 framework was 57.9% on the
COCO dataset. Bochkovskiy et al. proposed the YOLO v4 [25] framework, in which a
CSPDarkNet-53 backbone network is adopted instead of DarkNet-53. Spatial pyramid
pooling and path aggregation network (SPP + PAN) are used instead of FPN so as to
fuse the feature information of feature maps of different sizes. The SPP module adds the
receptive fields, and the PAN module performs multi-channel feature fusion. The mosaic
data augmentation mechanism and DropBlock regularization are adopted. Compared with
YOLO v3, the YOLO v4 framework not only ensures the performance of speed, but also
greatly improves the detection accuracy of targets. However, the YOLO series detectors
have poor accuracy performance on small targets due to the influence of space constraints
in bounding box prediction. Lin et al. proposed a RetinaNet network in which a novel focal
loss was proposed to address the class imbalance. Compared to recent two-stage methods,
RetinaNet achieves a 2.3-point gap above the top-performing Faster R-CNN [17]. Law et al.
proposed a CornerNet network in which we detected an object bounding box as a pair
of keypoints, the top-left corner and the bottom-right corner, using a single convolution
neural network. CornerNet achieves a 42.2% AP on MS COCO [19]. Tan et al. proposed
EfficientDet in which a weighted bi-directional feature pyramid network was proposed
to allow easy and fast multi-scale feature fusion. It achieves state-of-the-art 52.2 AP on
COCO test-dev with 52 M parameters and 325B FLOPs, being 4~9 times smaller and using
13~42 times fewer FLOPs than the previous detector [21].

Although target detection based on convolutional neural networks has made great
progress compared with traditional target detection, most of the above target detection
algorithms are suitable for area targets and are not fully applicable to the detection of small
targets. The research on small-target detection is still challenging in the field of computer
vision. The detection is disadvantaged due to the low resolution, blurred image, less
information, weak feature expression ability, and fewer extracted features of small targets.
In the local contrast measure (LCM) method, target signal enhancement and background
clutter suppression are achieved simultaneously [26]. Infrared small-target detection is
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realized by the gray difference between the small target and the surrounding background.
We introduce the concept of contrast to quantitatively describe the gray difference. When
the maximum gray value of the central cell is divided by the mean gray value of the ith
surrounding cell, the quotient is obtained, which is called the contrast. If the contrast is
larger than 1, the central cell is more likely to be the target. Additionally, the target signal
enhancement is achieved by replacing the gray value of the central cell with the product
of the contrast and the maximum gray value of it. CLP Chen et al. presented the local
contrast measure method to enhance the targets. The experimental results show that this
method significantly outperforms the conventional methods of top-hat and the average
gray absolute difference maximum map (AGADMM), with a detection rate of 86.67%. It
is not only simple but also suitable for infrared small-target detection. Yimian Dai et al.
presented attentional local contrast networks (ALCNets) for infrared small-target detection,
which modularizes this method as a depthwise, parameterless, nonlinear feature refinement
layer in an end-to-end network, in which bottom-up attentional modulation is exploited,
integrating the subtle smaller-scale details of low-level features into high-level features of
deeper layers [27]. The ALCNet outperforms the other 10 state-of-the-art methods, with an
IoU of 0.757 and nIoU of 0.728 for the SIRST dataset. In the sparse and low-rank recovery
method, an image is decomposed into a low-rank matrix, representing the background,
and a sparse matrix, indicating the target region. The augmented Lagrange method (ALM)
and alternating direction multiplier method (ADMM) are used for solving this model. Hu
Zhu et al. presented a target detection method based on low-rank tensor completion with
the top-hat regularization (TCTHR) model [28] for infrared small-target detection based on
low-rank tensor completion and ring top-hat regularization, which can be solved efficiently
using ADMM. This model has achieved better infrared small-target detection performance
than classic methods, with a high mean accuracy level of 93.4% and a low false alarm rate
of 3.2% in seven experimental real image sequences. Yujie He et al. presented a low-rank
and sparse representation model, named LRSR, for infrared small-target detection, which
transforms the detection task into a separation process of background, noise, and target
components by solving LRSR [29]. This presented method has yielded a high detection rate
of 91% in 1063 experimental original sequences.

According to the characteristics of small targets, multi-scale prediction is usually
adopted in small-target detection. Small targets are detected using low-level features or
amplified high-level features through up-sampling and deconvolution and fused with low-
level features. Generative adversarial networks (GANs) [30] are used for data augmentation
of the original samples and quality improvements for small targets. However, these
methods are not independent of each other. One or multiple methods can be used in one
algorithm to improve the performance of small-target detection. Huaichao Wang et al.
proposed a detection method based on fully convolutional networks in spatial and graph
matching in temporal small-target detection [31]. This method can detect small targets from
complex moving backgrounds with high precision and a low false-alarm rate. Moran Ju et al.
presented an efficient network for real-time small-target detection with a scale-matching
strategy introduced to select suitable scales and anchor size and an adaptive receptive
field fusion module added to increase the context information [32]. The comparative
results indicate that this method achieves 74.5% Map at 50.0 fps on VEDAI dataset and
45.7% Map at 51.1 fps on a small-target dataset. Jinming Du et al. proposed an interframe
energy accumulation enhancement mechanism-based end-to-end spatial–temporal feature
extraction and target detection framework [33]. This method could effectively detect small
targets by enhancing the target’s energy and suppressing the strong spatially nonstationary
clutter. Qingyu Hou et al. proposed an infrared small-target detection U-net (ISTDU-Net),
which not only introduces feature map groups in network down-sampling and enhances
the weights of small-target feature-map groups but also introduces a fully connected layer
in jump connection to suppress backgrounds with similar structures [34]. The infrared
small targets under a complex background are detected with a low false alarm rate, and
the area under curve (AUC) value is 0.9977.
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It is extremely difficult to detect infrared small targets that are seriously submerged in
background clutter and noise due to the low resolution, blurred image, less information,
weak feature expression ability, and fewer extracted features. Otherwise, the performance
of infrared small-target detection would be greatly influential. Research on small-target
detection is still a challenge. The abovementioned small-target detection methods focus
on how to obtain more and deeper morphological feature information. However, infrared
small targets lack shape features, and they are too dim to be detected only by morphological
features. To solve the above problem, a novel multimodal feature fusion network (MFFN)
is proposed based on the morphological characteristics, infrared radiation, and motion
characteristics, which could compensate for the deficiency of the description of single modal
characteristics of infrared small targets. In our framework, a novel backbone network is
proposed to enhance the feature extraction ability of infrared small targets with weak
intensity and low contrast. In addition, we propose a prediction model of atmospheric
transmittance based on deep neural networks (DNNs) in the radiation characteristic domain.
The overall flow chart of the model we proposed for infrared small-target detection is shown
in Figure 1.
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Figure 1. Overall flow chart of the infrared small-target detection method we proposed. This
framework consists of a radiation characteristics prediction network, a data preprocessing network,
a feature extraction network, and a feature fusion and classification network. The detection result
contains the classification and localization of the targets.

The main contributions of our work are summarized as follows:

• A multimodal feature fusion network (MFFN) is proposed based on morphological
characteristics, infrared radiation, and motion characteristics.

• In the morphological domain, we propose a network with the skip-connected feature
pyramid network (SCFPN), in which, through the fusion of small-target features and
context multi-scale features, the missed detection rate of small targets is reduced and
the detection accuracy is improved.

• In the radiation characteristic domain, we propose a prediction model of atmospheric
transmittance based on a DNN. Through radiation characteristic inversion and atmo-
spheric transmission correction, the infrared radiation intensity of the target itself is
obtained. The atmospheric transmittance is predicted effectively without being limited
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by the complex environment and improves the accuracy of radiation characteristic
measurements.

• A dilated convolutional-neural-network-based bidirectional encoder representation
from transformers (DC-BERT) structure combined with an attention mechanism is
proposed for the feature extraction of radiation and motion characteristics.

• We produce a new engineering medium-sized infrared dataset for small targets and
verify our method on it. The experimental results on our private dataset and other
general datasets show that our method is superior to the state-of-the-art algorithms in
obtaining the mean average precision (Map).

The rest of this article is organized as follows. In Section 2, we elaborate on the pro-
posed framework in detail. The results of the ablation study and performance comparison
experiments carried out on our private self-established dataset to verify the effectiveness
of our network are presented in Section 3. In Section 4, the discussions of our proposed
improvements are provided in a broader context. Finally, we summarize the research
content, and the conclusions are drawn in Section 5.

2. Data and Methods
2.1. Dataset

Based on the target characteristic database accumulated by our research group in
air defense and antimissile experiments over the past ten years, we have developed an
engineering medium-sized dataset, called the optoelectronic-equipment-detected dataset
(OEDD), for performance evaluation experiments on four categories of small-target detec-
tions: Large and medium aircraft, small aircraft, floating balls, and birds. Partial images
of the four categories of targets are shown in Figure 2, in which the red boxes indicate the
locations of the targets. Each frame of the images has corresponding measurement data,
which include the radiation intensity, speed, acceleration, longitude, latitude, elevation,
distance, azimuth, and pitch angle of the targets. The dataset samples, which totaled
20,673, are composed of two parts: Image data and measurement data. Among them, the
number of each category of targets is approximately 5000, and the input image resolution
is 640 × 512 with an 8-bit depth of each pixel. In order to ensure the balance and diversity
of the samples, the single variable factor method is used to select the small-target images
and the corresponding measurement sequences under different sky backgrounds (such as
cloud or no cloud and target with or without occlusion), different weather, different target
positions, and different time conditions. The pixels of most targets in the sample images are
not more than 15 × 15, and there are also some point-target samples whose pixels are less
than 9 × 9. The OEDD is used for training, validation, and testing. The dataset proportion
of the training set, verification set, and testing set is 7:2:1.
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2.2. Data Preprocessing

For the private multi-source infrared small-target dataset, data preprocessing includes
Two parts: (1) Original data augmentation and (2) original image denoise.

Due to the imbalance in the number of samples and the large similarity of samples
in each category in the original characteristic database obtained in years of experiments,
it is necessary to enhance the original data by means of data augmentation to generate
similar but different sample data to expand the size of the dataset in order to reduce
the dependence on the original samples and improve the generalization capability of the
model in the training process. The enhancement of multidimensional original data of small
targets collected by our infrared optical equipment includes image data augmentation and
radiation characteristic data augmentation. The original image data augmentation adopts
the mosaic data augmentation mechanism to enrich the background and small targets of
the detected object by randomly cutting, flipping, translating, and modifying the brightness
of the original image.

Referring to the relatively complete measured radiation data of the targets, the time-
sequential variation curve of radiation intensity is simulated. In order to ensure complete-



Remote Sens. 2022, 14, 3570 8 of 31

ness and consistency with the actual data, the cubic spline interpolation matching method
is used to add additive Gaussian white noise to the target radiation simulation information.
The formula is as follows:

p(z) = 1√
2πσ

e−
z2

2σ2

Zi ∼ N(µ, σ), µ = 0

Yi = Xi + Zi

(1)

The simulation data are obtained according to the established procedure, but the real
data are affected by many uncertain factors. The noise is introduced to make the simulation
data closer to the truth. The simplest additive Gaussian white noise added to this additive
and independent noise model is only one of the numerous kinds of noise; thus, it would
lead to potential weaknesses and problems of undermining the authenticity of the original
data. Here, we added the Rayleigh noise, Gamma noise, exponential noise, and impulse
noise to this simulation experiment. The probability density functions of the above four
kinds of noise are listed sequentially in Equation (2) to Equation (5).

pRayleigh noise(z) =

{
2
b (z− a)e−(z−a)2/b, z ≥ a
0, z < a

µ = a +
√

πb
4 , σ2 = b(4−π)

4

(2)

pGamma noise(z) =

{
abz(b−1)

(b−1)! e−az, z ≥ 0
0, z < 0

µ = b
a , σ2 = b

a2

(3)

pexponential noise(z) =
{

ae−az, z ≥ 0
0, z < 0

µ = 1
a , σ2 = 1

a2

(4)

pimpulse noise(z) =


Pa, z = a
Pb, z = b
0, others

(5)

The standard deviation values expressed with the mathematical symbol σ are used to
illustrate the dispersion of the simulation data compared with the true values. The standard
deviations of the simulation data of the four kinds of targets in our dataset are shown in
Table 1. We conducted six groups of simulation experiments on each kind of target and
obtained σ1s-σ6s for the above five types of noise. Notably, radiation characteristic data
obtained from the actual measurements are regarded as the true values to compute the
following standard deviations.

From Table 1, we can see that the average standard deviations in the Gaussian white
noise model of the three kinds of targets, i.e., the large and medium aircraft, floating balls,
and the birds, are superior to the other four noise models, with values of 3.183%, 3.422%,
and 3.215%, respectively. In addition, the average standard deviation of the Gaussian
white noise model of the small aircraft is 3.235%, which is only 0.09% lower than that of
the Gamma noise model. Finally, we can draw the conclusion that the obtained radiation
characteristic data with added Gaussian white noise are closer to the true data. In this way,
the robustness of the original data augmentation is improved.

Here, the Gaussian white noise is added to the procedure-obtained characteristic data;
a simulation result is shown in Figure 3.
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Table 1. The standard deviations of the simulation data of the four kinds of targets into which the
five mentioned types of noise are added.

Target Types of
Simulation Data Types of the Noise σ1 (%) σ2 (%) σ3 (%) σ4 (%) σ5 (%) σ6 (%) Average

σ (%)

Large and
medium aircraft

Gaussian white noise 3.17 3.16 3.19 3.17 3.21 3.20 3.183

Rayleigh noise 3.23 3.18 3.20 3.22 3.17 3.17 3.195

Gamma noise 3.21 3.19 3.22 3.21 3.18 3.20 3.202

Exponential noise 3.17 3.19 3.18 3.20 3.21 3.18 3.188

Impulse noise 3.22 3.21 3.19 3.20 3.19 3.22 3.205

Small aircraft

Gaussian white noise 3.24 3.23 3.222 3.25 3.21 3.26 3.235

Rayleigh noise 3.25 3.26 3.23 3.24 3.22 3.28 3.247

Gamma noise 3.22 3.23 3.25 3.22 3.23 3.24 3.232

Exponential noise 3.24 3.25 3.24 3.28 3.22 3.21 3.240

Impulse noise 3.26 3.27 3.25 3.24 3.23 3.24 3.248

Floating ball

Gaussian white noise 3.44 3.43 3.41 3.42 3.41 3.42 3.422

Rayleigh noise 3.46 3.48 3.47 3.45 3.5 3.49 3.475

Gamma noise 3.46 3.44 3.47 3.43 3.45 3.48 3.455

Exponential noise 3.47 3.46 3.48 3.44 3.43 3.49 3.462

Impulse noise 3.51 3.49 3.50 3.48 3.47 3.47 3.487

Birds

Gaussian white noise 3.20 3.23 3.22 3.19 3.24 3.21 3.215

Rayleigh noise 3.24 3.25 3.2 3.22 3.23 3.26 3.233

Gamma noise 3.24 3.21 3.25 3.25 3.23 3.27 3.242

Exponential noise 3.28 3.25 3.24 3.26 3.24 3.25 3.253

Impulse noise 3.27 3.28 3.25 3.26 3.24 3.27 3.262

The optimal standard deviation of each kind of target is marked in bold.
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Figure 3. Simulation result of augmentation of the radiation characteristic data with the Gaussian
white noise model.

Image noises are in various forms, such as Gaussian noise, impulsive noise, Rayleigh
noise, Gamma noise, exponential noise, and uniform noise. GAN has the capability to
learn more complex distributions. The GAN model can be trained by back-propagation
and produce noise samples by forward-propagation without involving another component.
In this section, a GAN–CNN-based blind denoiser (GCBD) is adopted in the original
image denoising. Firstly, the approximate noise blocks extracted from the noisy images are
exploited to train GAN for noise modeling and sampling. The majority of noisy blocks are
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sampled from the trained GAN model. Then, both extracted and generated noise blocks
are combined with clean images to obtain paired training data, which are used to train the
DCNN for denoising the noisy input images [35,36].

2.3. Network Structure

The limited target detection ability of single-mode opto-electronic equipment could
lead to failure in the detection of small targets with inadequate shape information. There-
fore, the complementarity between multimodal information might improve the detection
ability of small targets and enhance the robustness of the detection system by combining
the radiation, motion, and morphological features of infrared small targets.

The infrared radiation and motion characteristics of the target are deduced and cal-
culated based on the measured data of the infrared system. Among them, the infrared
radiation characteristics of the target mainly include the radiation intensity of the target
and its mean value, variance, relevance, and other statistics. The motion characteristics
include the speed, acceleration, elevation, azimuth, pitch angle, center moment, and origin
moment of the target.

2.3.1. Morphological Feature Extraction Network

According to the imaging characteristics of infrared small targets, we propose a
morphological feature extraction network model based on the multi-level video streaming
(MSFE) detection structure.

The key frame and non-key frame in the streaming are automatically selected in the
algorithm for global search and local search, respectively. Global feature extraction on key
frames could help predict the position of the target. Non-key frames only perform shallow
feature extraction in the backbone network. These features are sent to the bidirectional
encoder representation from transformers (BERT) [37] model, based on the multi-head
attention mechanism, which could realize fast parallel feature extraction and then combine
with global features extracted from key frames. The deep features of non-key frames are
predicted by the deep features of key frames; then, the non-key frame features are fused.
One out of every five frames is selected from the video streaming as the key frame, and the
remaining frames will be used as the non-key frames in this framework. The structure of
MSFE is shown in Figure 4.
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The feature extraction of the key frame introduces the dual-channel dilated convolu-
tional block attention [38] module integrated with Resblock (DAMR) into the backbone
feature extraction network and adopts the structure of SCFPN. The feature extraction
network structure of the key frame is shown in Figure 5.
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Through the fusion of multi-scale features in the context of the small target, the
method of combining bottom-up and top-down helps to obtain stronger semantic features,
strengthen feature fusion, improve the feature extraction ability of small targets and the
detection accuracy, and reduce the missed alarm rate [39,40]. The attention mechanism is
used in the shallow feature layer to ensure that the backbone network obtains the areas
that need attention, captures the effective image areas, and enhances the feature extraction
ability of small targets [41]. Dilated convolution is used instead of the pooling layer to
increase the receptive field; it is guaranteed that the size of dilated convolution is consistent
with that of ordinary convolution at the same time [42]. The receptive field of the shallow
feature map is smaller, and the resolution is higher. However, its semantic information is
insufficient. The receptive field of the deep feature map is larger, but the resolution is lower.
The proportion of small targets in the receptive field is too small to accurately detect small
targets on the deep feature map, but the deep feature has sufficient location information
and semantic information [43]. The features with high-level semantic information in the top
layer are achieved in the FPN and fused with shallow features in the horizontal connection
after continuously up-sampling [44]. The fused features not only have higher semantic
information but also have higher resolution. This pyramid network could effectively
improve the detection performance of small targets.

The neck part of the key frame feature extraction is based on bi-directional feature
pyramid networks (Bi-FPNs), where dilated spatial pyramid pooling (DSPP) is added to
the deep feature layer [45]. The DAMR is added at the end of each feature layer to increase
the accuracy of small-target position information and the fine granularity of semantic
information, and to improve the capability of the neck network to capture the effective
imaging area of small targets. Each feature map passes through three dilation convolution
modules with dilation rates of 1, 3, and 5, respectively, and the fused results are successively
sent to the channel attention mechanism and spatial attention mechanism modules. The
output results of the attention mechanism layer are fused with the input feature layer to
obtain the output of the DAMR module through a short-cut route by a residual block. The
schematic diagram of the structure is shownin Figure 6.

The DSPP module adds dilated convolution modules with different divided rates (1, 2,
and 5, respectively) before the three maximum pooling layers of SPP network. The residual
structure of ResNet is added; thus, the feature enhancement module based on the dilated
convolution DSPP is obtained [46]. The structure is shown in the figure below.
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The feature map generated by the neck network is sent to the RPN to generate the
rough position of the region proposal. Then, the region proposal, together with the feature
map, is sent to ROI pooling for location refinement. Finally, the location refinement
results are sent to the full connection layer for bounding box regression and classification
prediction to obtain the location information, classification, and confidence of the target,
respectively [47].

Each frame of the image sequence has a time-series correlation; therefore, at the front
end of the network, the non-key frame feature extraction network extracts the shallow
features, which are sent to the BERT module based on the multi-head attention mechanism
after position coding to extract local features of the target. These features are integrated with
the global high-level features of the key frame. Subsequently, they are linearized through
the full connection layer, Softmax normalization is performed, and the detection results are
outputted [48,49]. The algorithm structure of the non-key frame feature extraction network
is shown in Figure 7.
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2.3.2. Radiation Characteristic Measurement Model Based on a DNN

The infrared radiation characteristics are important intrinsic physical attributes for
target category judgment. We constructed an atmospheric transmittance prediction model
based on the DNN through in-depth analysis and research on oblique atmospheric trans-
mittance and obtained the target-apparent infrared radiation characteristics through the
inversion of the radiation response of infrared radiation characteristic measurement sys-
tems. The apparent radiation characteristics are corrected by atmospheric transmittance
and path radiation. Finally, infrared characteristics such as the radiance, radiation intensity,
and radiation temperature of the target itself are obtained through the inversion of radiation
characteristics.

When considering the infrared radiation characteristic measurement system, the
output signal of the system has a linear relationship with the target radiance within the
linear response range of the system. The formula of the target radiation measurement
model is as follows:

DN = α · [τaLt + Lpath] + DN0 (6)

In the above formula, DN is the digital output value of the detector of the infrared
measurement system. α is the radiance response of the infrared measurement system.
Lt is the radiance of the measured target. τa is the average atmospheric transmittance
between the target and the infrared measurement system in the measurement band. Lpath
is the atmospheric path radiation between the target and the infrared measurement system.
DN0 is the offset value caused by thermal radiation of the opto-mechanical structure of
the infrared measurement system itself, the scattered background radiation, and the dark
current of the detector [50,51]. The target radiance can be retrieved from the above formula.

Lt =
DN−DN0

α − Lpath

τa
(7)

Among them, the radiance response α and digital offset DN0 of the system are the
values obtained by laboratory radiation calibration of the infrared measurement system
in advance. In traditional measurement methods of target radiation characteristics, atmo-
spheric observation equipment is used to measure atmospheric parameters such as aerosol
extinction height distribution profile, ground visibility, and the temperature, humidity, and
pressure height distribution profile. Then, these parameters are imputed into atmospheric
radiation transmission calculation software, such as moderate spectral resolution atmo-
spheric transmittance (MODTRAN), to calculate the atmospheric transmittance τa and path
radiation Lpath between the target and the measurement system. Atmospheric transmission
correction is a necessary part of target radiation measurement. In traditional radiation
measurement methods, the atmospheric transmittance and path radiation, whose accuracy
is approximately 18%~20%, are measured and calculated using atmospheric observation
equipment and atmospheric radiation transmission calculation software. The measurement
accuracy of the infrared radiation characteristics is approximately 20%~25%. Therefore, the
measurement accuracy of atmospheric transmittance is an important factor restricting the
accuracy of target radiation measurement.

According to the Beer–Lambert law and Langley plot calibration principle [52], we
can derive the following formula:

τatm =
∫ λ2

λ1

e−β(λ)∗sec (θ)dλ (8)

where β(λ) is the atmospheric extinction coefficient, θ is the zenith angle, and λ1 and λ2
are the critical values of wavelength in a certain band. For example, in the medium-wave
infrared band, λ1 and λ2 are 3.7× 10−6 and 4.8× 10−6, respectively.
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If no spectral measurement is carried out, the above formula is simplified as below:

τatm = e−β∗sec (θ) (9)

β = βH2O + βCO2 + βs + βr (10)

where βs is the atmospheric extinction coefficient of atmospheric molecules and aerosols, βr
is the atmospheric extinction coefficient of atmospheric meteorological conditions (such as
cloud, fog, rain, and snow), βH2O is the atmospheric extinction coefficient caused by water
vapor absorption, and βCO2 is the atmospheric extinction coefficient caused by carbon
dioxide absorption.

From the above formulas, it can be seen that atmospheric transmittance is a complex
parameter related to many factors. We cannot obtain the specific value of atmospheric
transmittance by formula deduction.

We constructed an atmospheric transmittance prediction model based on the DNN
through the in-depth analysis and research of oblique atmospheric transmittance. The
DNN-based model was constructed to predict the atmospheric transmittance, which could
overcome the complex environmental limitations and effectively improve the measurement
accuracy of the atmosphere transmittance and even the infrared radiation intensity. Ad-
ditionally, the infrared radiation intensity is an intrinsic physical property of the target,
which could be used as the basis of target detection. Accurate radiation intensity would
contribute to feature extraction of the measurement sequence (Section 2.3.2). Therefore,
the atmospheric transmittance prediction model based on DNN could indirectly improve
the accuracy of target detection. The input layer of this network model is composed of
nine-dimensional data, which are the temperature, humidity, pressure, visibility, distance,
zenith angle, longitude, latitude, and elevation information of the target. Namely, there
could be nine neurons in the input layer of the model, 10, 1000, 1000, and 1000 neurons in
the four hidden layers, respectively, and one neuron in the output layer. The structure of
the radiation characteristic measurement model based on DNN is shown in Figure 8.
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We can overcome the environmental limitations, estimate the atmospheric transmit-
tance in a complex atmospheric environment, and effectively improve the measurement
accuracy of infrared radiation intensity by taking the above parameters as the inputs of
the model and continuously adjusting the model parameters through iterative training
for hundreds of generations. We conducted the model training on our self-established
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dataset, which utilizes the temperature, humidity, pressure, visibility, distance, zenith angle,
longitude, latitude, and elevation as inputs, and the corresponding atmospheric transmit-
tance values as outputs. The simulation results show that through the comparison between
the atmospheric transmittance extracted by our model and the atmospheric transmittance
measured by the blackbody real-time calibration, the fitting accuracy of our proposed
method is better than 15%. The three-dimensional fitting results are shown in Figure 9.
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In the figure above, purple and red scatter points represent the prediction results of
atmospheric transmittance of training 200 epochs and 300 epochs, respectively. The green
scatter points represent the calibrated atmospheric transmittance values.

2.3.3. Feature Extraction Network of the Measurement Sequence

The DC-BERT model is adopted in the feature extraction of the measurement sequence
vector. The measurement sequence vector is composed of the infrared radiation character-
istic sequence, motion characteristic sequence, and statistical sequence composed of the
origin moment and k-order central moment of each characteristic. The infrared radiation
characteristic sequence is the radiation intensity sequence of the target. The motion charac-
teristic sequence is mainly composed of the velocity, acceleration, elevation, azimuth, and
pitch of the target.

The input measurement sequences have properties of a high degree of disorder in
the short term and a certain change trend in the long term. In order to increase the
nonlinearity of the model to extract the complex and scattered measurement sequence
features in the multi-dimensional space and improve the robust classification capability
of the measurement sequence feature extraction model, we apply dilated convolution
to extract the multi-scale features of the sequence to ensure that the model obtains the
feature capture capability of the multi-scale receptive field. Moreover, we could obtain the
sequence characteristics, which reflect the local spatial structure of the sequence. Then,
we could capture the interdependence relationship between the input sequence features
and extract the global deep features of the sequence by learning the complex relationship
between different spatial positions of sequence features based on the BERT model. Finally,
the extracted features are sent to the attention mechanism layer, and we could achieve the
output result after Softmax regression.

The local feature extraction of measurement sequence is realized by the dilated convo-
lution combined with multi-scale context information fusion. It would not only increase the
receptive field of the input sequence and enhance the robustness of the feature extraction
network, but also be called a kind of data augmentation, which could reduce the depen-
dence of the model on the original samples and improve the generalization capability for
the model. The measurement sequence is composed of eight-dimensional features, which
are the infrared radiation intensity, elevation, velocity, acceleration, azimuth, pitch angle,
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the statistics of the origin moment, and the k-order central moment of each characteristic.
We define the measurement sequence with the K × Q × Q dimension as follows:

S =


s11, s12, . . . . . . , s1N
s21, s22, . . . . . . , s2N

. . .
s81, s82, . . . . . . , s8N

 (11)

where K is the feature number of measurement sequences, which is set to 8 in Equation (11).
Firstly, after 2D reconstruction and stitching preprocessing, the feature of each dimension
of the measurement sequence is transformed into the Q × Q dimension; then, it would be
carried out with three dilated convolutions whose dilated rates are 1, 2, and 3, respectively,
including three processes: Convolution, batch normalization, and the Relu activation
function. Finally, the local features of the measurement sequence are obtained. The
advantage of this local feature extraction network is to expand the receptive field, capture
the multi-scale context information, and improve the feature extraction capability for the
sequence without losing information, introducing additional parameters, and increasing
the amount of calculation.

The local features of the measurement sequence are sent to the BERT model, composed
of multiple, multi-channel, self-attention mechanism modules, normalization modules,
and forward networks, to extract the global features, which are sent to the attention
mechanism module, and Softmax regression is conducted to output the prediction results
of the measurement sequence. We consider the measurement sequence matrix composed
of 49-frame measurement sequence vectors within 0.5 s to be the input of the measurement
sequence feature extraction model. The network structure of the measurement sequence
feature extraction is shown in Figure 10.
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2.3.4. Multimodal Feature Fusion Network

The multimodal feature fusion network (MFFN), which combines the morphological
characteristics, radiation characteristics, and motion characteristics of infrared small targets,
adjusts the input feature dimension in the convolutional layer and carries out the weighted
fusion of the above three features. Finally, the weight of each channel in the end-to-end
model could be learnt continuously by introducing an α feature vector [53] through the
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attention mechanism layer. The target classification and detection ability could be improved
through the complementarity between multimodal information. The schematic diagram of
the structure of MFFN is shown in Figure 11.
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As is shown in the above figure, the feature output from the target morphological
feature extraction model is called Feature1 and the infrared radiation features and motion
features extracted by the DC-BERT model are called Feature2 and Feature3, respectively.
Firstly, the three features of Feature1, Feature2, and Feature3, with a dimension of N × 1,
are sent to the convolution module with a kernel size of 1 × 1 and channel number of 64.
According to the formula below, we could obtain three feature outputs with a dimension of
N × 1 × 64.

F(i) = X ∗ kernel(i) (12)

Then, the three features with the dimensions of N × 1 × 64 are weighted and fused to
obtain the fusion feature FAdd. The calculation formula is as follows:

FAdd = ∑C
i=1 Xi ∗ βi + Yi ∗ γi+Zi ∗ δi (13)

Among them, the dimensions of Xi, Yi, and Zi are all N × 1 × 64. βi, γi, and δi are the
weights of each feature obtained by end-to-end model training [54].

In the attention mechanism layer, the low-level features FAdd of the 3N × 1 × 64
dimension are projected through a 1 × 1 convolution feature map to the same channel
number of the high-level feature of the N × 1 × 64 dimension, which allows them to
be contacted. Thus, we can obtain the fusion feature map Fhigh−low of the N × 1 × 64
dimensions; then, we reshape it to obtain FreshapeεRN×N′ and transpose Freshape to obtain
Freshape−transposeεRN′×N . Subsequently, we obtain Fω by the matrix multiplication of Freshape

and Freshape−transpose; then, the feature fusion map A f usionεRN×N is obtained through a
softmax layer. A f usion is calculated as follows:

αji =
exp

(
Fi

ω ·F
j
ω

)
∑N

i=1 exp
(

Fi
ω ·F

j
ω

) (14)

where Fi
ω and Fj

ω are the ith and jth feature vectors of Fω , respectively, and αji indicates the
impact of the ith feature vector of Freshape on the jth feature vector. Finally, the transpositions
of A f usion and Freshape are subjected to matrix multiplication and then multiplied by a factor
β to obtain the output feature Ff usion. Specifically,

Fj
f usion = β

N

∑
i=1

(
αji·Fi

reshape

)
(15)
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where β is initialized to 0 and gradually leans to a larger weight, reshaping Foutput to
Ff usion ∈ RN×1×64. It can be seen from Equation (15) that each feature of Ff usion is the
weighted sum of all the features of the original feature maps Fhigh−low. Thus, the MFFN
module further highlights the global semantic information and local spatial information
from high-level and low-level features. Therefore, the feature fusion model we adopted
has the learning ability to scale the importance of each feature automatically.

2.4. Calculation of the Loss Function

The loss function of the multimodal feature fusion network we proposed for infrared
small-target detection consists of two parts, namely, the loss function of data preprocessing,
Lossdenoise, and the loss function of the target classification and detection network, Lossdetect.

Losstotal= Lossdenoise + Lossdetect (16)

1. Data preprocessing loss function.

In the pretraining process of the denoising module, we used the L1 loss to represent
the deviation between the output image of the network and the noiseless image [55]. The
expression of this loss function is as follows:

Lossdenoise = λ1 ∗ LossNetwork + λ2 ∗ LossGAN (17)

LossNetwork =
1
N ∑

i=1
‖ y(xi)− y∗i ‖ 1 (18)

LossGAN = Ex∼pdata(x)[log D(x)] + Ez∼pz(x)[log(1− D(G(z)))] (19)

In Equation (17), λ1 + λ2 = 1 and λ2 is set to 0.1 in our method. LossNetwork represents
the network loss function of data processing and LossGAN represents the loss function of
the GAN-based model. In Equation (18), x is the input noisy image, y is the output of the
blind denoising network, and y∗ is the true value corresponding to input x, namely, the
noiseless image. N is the number of the batch in the training process. Equation (19) is the
loss function of GAN, in which D(x) represents the value returned by feeding data x into
discriminator D and G(z) represents the value returned by feeding noise into generator G.

2. The loss function of the target classification and detection network.

The loss function of the target classification and detection network is composed of the
classification loss function, Losscls, and the regression loss function, Lossregression.

Lossdetect = Losscls + Lossregression

The cross-entropy loss is used to calculate Losscls. The categorical cross-entropy is
applied to the multi-classification network. The calculation formula is as follows:

categorical_cross_entropy = −
N

∑
k=1

pk ∗ log qk (20)

Here, p represents the real value and q represents the predicted value. On this basis,
the cross-entropy could be improved. We use focal loss, which could reduce the imbalance
between positive and negative samples and pay more attention to the mining of difficult
samples to replace the cross-entropy loss. The classification loss of small targets could be
regressed by focal loss [56,57]. The formula is as follows:

Losscls =

{
−α(1− yP)

γ × log yP, yGT = 1
−(1− yP)

γ × log(1− yP), yGT = 0
(21)

where yGT represents the confidence of the ground truth box and yP presents the confidence
of the prediction box. γ is usually taken as 2 and α is 0.25.
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Generalized intersection over union loss (GIOU loss) is used by Lossregression to regress
the position of the target. Lossregression is the GIOU loss [48–60]. The calculation formula of
GIOU is as follows.

GIOUBGT ,BP =
|BGT ∩ BP|
|BGT ∪ BP|

− |B\(BGT ∪ BP|
|B| (22)

Here, BGT represents the ground truth box, BP represents the predicted box, and B
represents the smallest enclosing convex box between BGT and BP. Then, Lossregression can
be calculated through GIOUBGT ,BP . The formula is as follows.

3. Experiments and Results

This section is introduced in the following four parts: (1) Evaluation indexes; (2)
implementation details; (3) ablation study; and (4) performance comparisons with com-
peted methods.

3.1. Evaluation Indexes

The performance evaluation indexes of target detection mainly include the real-time
evaluation indexes and accuracy evaluation indexes.

The real-time evaluation indexes of target detection mainly include forward-pass
time-consuming, detection speed (frames per second, FPS), and floating-point operations
per second (FLOPs).

• Forward-pass time-consuming: The time spent from inputting a frame of image to
outputting the classification and detection result.

• Detection speed (frames per second, FPS): The number of frames that can be processed
per second.

• Floating-point operations per second (FLOPs): This index could be understood as
the amount of computation and is usually used to measure the complexity of the
algorithm and the model [61].

The accuracy evaluation indexes of the target detection include the precision indicator
(precision), the recall indicator (recall), average precision (AP), mean average precision
(mAP, namely, the mean value of the average precision of each classification), precision–
recall (P–R) curve, average recognition rate (ARR), and F1 score [62–64]. The effect of
target detection and classification is usually evaluated with the following three accuracy
evaluation indexes:

• Average recognition rate (ARR).

The average recognition rate Parr could be calculated as follows:

Parr =
Pright

Ptotal
(23)

where Ptotal represents the total number of all targets to be detected and Pright represents
the number of targets that are detected correctly.

• Mean average precision (mAP).

AP refers to the average precision of a certain category of targets, which represents the
accuracy evaluation effect of the model on a certain category. However, mAP is the mean
value of the APs of all categories, which represents the overall classification effect of the
model on all categories. The calculation method of mAP is as follows.

Firstly, the P–R curve should be made with recall as the abscissa and precision as the
ordinate. The P–R curve represents the change in precision and recall values when the
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target changes. Precision could be regarded as a function with recall as a variable. AP could
be regarded as the area under the P–R curve [65,66].

AP =
∫ 1

0
p(r)dr (24)

In fact, the multiplication of the value of the maximum precision and the change in
recall value is usually adopted to calculate AP. The calculation formulas of AP and mAP
are as follows.

AP =
N

∑
k=1

max
∼
k≥k

P
(∼

k
)

∆r(k) (25)

mAP =

∑C
i=1 ∑N

K=1 max
∼
k≥k

P
(∼

k
)

∆r(k)

C
(26)

where N represents the number of samples in a certain category. ∆r(k) represents the

change value of recall, max
∼
k≥k

P
(∼

k
)

represents the maximum value of the corresponding

precision, and C represents the number of samples in all categories [67,68].
mAP can interpret the perfect balance between the two mutually exclusive evaluation

indexes of precision and recall in the target classification and detection network.

• F1 score.

F1 score is the harmonic average of precision and recall, whose maximum value is 1
and minimum value is 0. The calculation formula is as follows.

F1 = 2 · precision · recall
precision + recall

(27)

where precision is used to evaluate the accuracy of the prediction and recall is used
to evaluate the completeness of the prediction. The calculation formulas are presented
separately, as follows [69].

Precision =
TP

TP + FP
(28)

Recall =
TP

TP + FN
(29)

where true positive (TP) is the number of samples that are correctively predicted, false
positive (FP) is the number of samples predicted as this certain class that actually belong to
other classes, and false negative (FN) is the number of samples predicted as other classes
that are actually in this certain class [70].

3.2. Implementation Details

Our experiment was conducted on a high-performance computer equipped with
NVIDIA GeForce RTX 2070 Ti discrete graphics for progressive offline training and testing.
The initial weight of the model pretrained on the CSPDarknet53 network was adopted in
Pytorch1 8.1. The target detection model was trained on the self-made OEDD, in which
14,471 samples are contained in the training set with 350 epochs trained, the batch size of
each epoch is set to eight, the Adam optimizer is adopted, the initialization learning rate
is set to 1× e−5, momentum is set to 0.999, and weight decay is set to 5× 10−4. Through
training and testing, the parameters and hyper-parameters in the model are continuously
adjusted to ensure that the target classification and detection network meet the requirements
of real-time performance and accuracy indicators so as to achieve the best detection effect.

The choices of the parameters in neutral networks are irregular, and there would be
no unified parameters for different models and data. The adjustment of parameters needs
to be attempted repeatedly in the model training process. We can select a small batch of
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data to set the learning rate and other parameters at the start of the training process. If the
total loss does not decrease after a certain number of epochs, it indicates that the choice
of this group of parameters is not suitable for the model and data. We thus need to enact
some changes and then implement the training process repeatedly. Through continuous
attempts, the parameters, the network, and data are intended to be the best match as far as
possible, to make the total loss optimal.

The choice of parameters is not completely independent of the data used for training.
For instance, when the amount of sample data is small, the higher the learning rate, and
the faster the loss will be reduced. However, this will lead to overfitting. This kind of
training is rough, i.e., not fine; therefore, the accuracy of the training set may be close to
100%. However, for the testing set, its accuracy will not rise because some features of the
targets have not been fully extracted.

3.3. Ablation Study

We performed an ablation study on the streaming sequences of large and medium
aircraft, small aircraft, floating balls, and birds to demonstrate the performance of various
algorithms and networks we have proposed above for infrared small-target detection. The
effectiveness of several structures in the infrared small detection network we proposed is
shown in the table below.

Table 2 illustrates the effectiveness of various models in our infrared small-target de-
tection network. The models use the same training, validation, and testing set in the OEDD.

Table 2. The effectiveness of various designs in our infrared small-detection network.

Baseline With
SCFPN

With
DAMR

With
DC-BERT

With
MFFN

Large and Medium
Aircraft Small Aircraft Floating Ball Birds

FPS AP
(%)

F1
Score FPS AP

(%)
F1

Score FPS AP
(%)

F1
Score FPS AP

(%)
F1

Score
√

15.42 82.17 0.8063 15.49 81.49 0.7986 15.41 81.08 0.7953 15.48 81.23 0.7976√ √
13.80 83.32 0.8185 13.86 82.78 0.8120 13.87 82.94 0.8131 13.82 82.72 0.8137√ √ √
12.94 84.51 0.8273 12.87 83.57 0.8234 12.85 84.03 0.8267 12.92 83.79 0.8244√ √ √ √
11.76 88.36 0.8625 11.83 87.70 0.8612 11.78 87.35 0.8562 11.86 87.46 0.8573√ √ √ √ √
10.93 92.64 0.9102 10.73 92.13 0.9059 10.97 91.83 0.9012 10.71 91.43 0.9003

The baseline represents the network model of the infrared small-target detection
without the structures and algorithms we proposed. The baseline in Table 2 represents
the modified YOLO v3 structure in which the anchor sizes are modified to adapt to small-
target detection.

As can be seen in Table 2, the AP and F1 scores of large and medium aircraft sequences
at 15.42 fps are 0.8217 and 0.8063, respectively. The AP and F1 scores of small aircraft
sequences at 15.49 fps are 0.8149 and 0.7986, respectively. The AP and F1 scores of floating
ball sequences at 15.41 fps are 0.8108 and 0.7953, respectively. The AP and F1 scores of birds
at 15.48 fps are 0.8123 and 0.7986, respectively.

3.3.1. Analysis with the SCFPN Module

The SCFPN is conducive to fusing more multi-scale context features of small targets,
to reduce the missed alarm rate and improve the detection accuracy. In order to investigate
the effectiveness of the SCFPN module we proposed, we conducted experiments on our
private infrared small-target dataset: The OEDD. Compared with baseline, the AP and
F1 scores of large and medium aircraft sequences were improved by 1.15% and 1.22%,
respectively. The AP and F1 scores of small aircraft sequences were increased by 1.29%
and 1.34%, respectively. The AP and F1 scores of floating ball sequences were increased by
1.86% and 1.78%, respectively. The AP and F1 scores of birds were increased by 1.49% and
1.51%, respectively.
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3.3.2. Analysis with the DAMR Module

The residual dual-channel attention mechanism module based on dilated convolution
effectively improves the accuracy of location information and the fine granularity of seman-
tic information of the small targets to be captured. In order to investigate the effectiveness
of the DAMR module we proposed, we conducted experiments on our private infrared
small-target dataset: The OEDD. Compared with baseline, the AP and F1 scores of large and
medium aircraft sequences were improved by 2.34% and 2.1%, respectively. The AP and F1
scores of small aircraft sequences were increased by 2.08% and 2.48%, respectively. The AP
and F1 scores of floating ball sequences were improved by 2.95% and 3.14%, respectively.
The AP and F1 scores of birds were increased by 2.56% and 2.58%, respectively.

3.3.3. Analysis with the DC-BERT Module

The BERT model based on a dilated convolution neural network has the feature capture
ability of a multi-scale receptive field. In addition, the BERT model could learn the complex
relationship between multi-dimensional spatial features of the sequence and has advantages
over the extraction of global deep features. Finally, the attention mechanism module is
introduced to increase the global contextual view of the feature extraction structure. In
order to investigate the effectiveness of the DC-BERT module we proposed, we conducted
experiments on our private infrared small-target dataset: The OEDD. Compared with
baseline, the AP and F1 scores of large and medium aircraft sequences were improved
by 6.19% and 5.62%, respectively. The AP and F1 scores of small aircraft sequences were
increased by 6.21% and 6.26%, respectively. The AP and F1 scores of floating ball sequences
were increased by 6.27% and 6.09%, respectively. The AP and F1 scores of birds were
increased by 6.23% and 5.97%, respectively.

3.3.4. Analysis with the MFFN Module

The end-to-end multimodal feature fusion network we proposed is realized on feature-
level fusion. The weight of each channel is automatically learned through the attention
mechanism. The complementarity between the modal information is used to improve the
classification and detection ability of the infrared small targets. In order to investigate the
effectiveness of the MFFN module we proposed, we conducted experiments on our private
infrared small-target dataset: The OEDD. Compared with baseline, the AP and F1 scores of
large and medium aircraft sequences were improved by 10.47% and 10.39%, respectively.
The AP and F1 scores of small aircraft sequences were increased by 10.64% and 10.73%,
respectively. The AP and F1 scores of floating ball sequences were improved by 10.75% and
10.59%, respectively. The AP and F1 scores of birds were increased by 10.20% and 10.27%,
respectively.

3.3.5. Analysis with the DNN-Based Radiation Characteristic Extraction Module

The infrared radiation characteristics measurement is inevitably affected by the envi-
ronment. We have proposed a prediction model of atmospheric transmittance, which is
the primary factor restricting the accuracy of characteristic measurements based on DNN,
which could effectively improve the accuracy of atmospheric transmittance measurement
and the measurement accuracy of radiation characteristics. This model could effectively
predict atmospheric transmittance in a complex atmospheric environment through model
training. It can be seen from Table 3 that the error accuracy of the atmospheric transmittance
measurement of the method we described (Err1 in Table 3) is better than 15% on the basis
of the atmospheric transmittance measured by the blackbody real-time calibration method,
whereas the error accuracy of the DNN-based characteristic extraction method with MOD-
TRAN software (Err2 in Table 3) is more than 18%. The atmosphere transmittance results
of the two methods are listed in the 12nd and 13rd columns of Table 3.
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Table 3. Comparison of the DNN-based prediction method and software prediction with Modtran for atmospheric transmittance.

Temperature
(◦C)

Humidity
(%)

Pressure
(kPa)

Visibility
(m)

Longitude
(◦)

Latitude
(◦)

Altitude
(km)

Azimuth
(◦)

Elevation
(◦)

Distance
(km)

Blackbody
Calibration Modtran We

Proposed Err1 1 (%) Err2 2 (%)

2.3 26.1 890 20 86.17 41.73 158.00 102.936 57.852 186.617 0.7081 0.8381 0.8117 18.36 14.63
2.4 26.1 890 20 86.17 41.73 157.06 103.954 58.476 184.252 0.7050 0.8385 0.8053 18.94 14.23
2.4 26.1 890 20 86.17 41.73 156.77 104.452 58.735 183.403 0.7063 0.8388 0.8047 18.76 13.93
2.4 25.8 890 20 86.17 41.73 154.67 106.883 59.953 178.683 0.7047 0.8402 0.7983 19.23 13.28
2.4 26.0 890 20 86.17 41.73 152.88 109.314 61.047 174.720 0.7081 0.8414 0.8099 18.83 14.38
2.5 25.9 890 20 86.17 41.73 151.03 111.702 61.987 171.077 0.7046 0.8424 0.7994 19.56 13.45
2.5 26.0 890 20 86.17 41.73 144.13 121.893 64.921 159.133 0.7060 0.8452 0.8033 19.72 13.78
2.4 26.1 890 20 86.17 41.73 17.12 228.905 6.598 148.983 0.4069 0.4863 0.4661 19.51 14.55
2.5 26.1 890 20 86.17 41.73 15.96 229.132 5.952 153.943 0.3891 0.4638 0.4471 19.20 14.91

1 Err1 represents the error accuracy of the atmospheric transmittance measurement of the method we described. 2 Err2 represents the error accuracy of the DNN-based characteristics
extraction method with MODTRAN software.
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We chose Modtran software and the blackbody real-time calibration method to compare
with our method. In the blackbody real-time calibration method, a reference blackbody is
placed near the measured target, and the distance and direction relative to the measurement
system are nearly the same. When the infrared radiation of the target is measured by the
infrared measurement system, the output DN values of the blackbody at high and low
temperatures are recorded. Then, we will obtain three equations. From these equations, the
atmospheric transmittance and the radiance of the target can be obtained. The accuracy of
the atmospheric transmittance calculated by the blackbody real-time calibration method is
better than 3.5%, which is a qualitative leap compared with the traditional target radiation
inversion accuracy. Therefore, it is used as the reference value of atmospheric transmit-
tance [71]. However, engineering experiences show that this method is only effective in
laboratory environments. Modtran software is a general atmospheric radiation transmission
calculation software used worldwide. We have to say that Modtran has its own limita-
tions. The measurement accuracy of Modtran is greatly affected because the atmospheric
parameter models used in the United States are quite different from those in China.

3.4. Performance Comparisons with Competed Methods
3.4.1. Qualitative Evaluation

The detection results of the nine state-of-the-art detection algorithms, including YOLO
V3, YOLO V4-Tiny, faster R-CNN, region fields block network (RFBnet), TCTHR, infrared
small-target detection network (ISTDet) [72], infrared small-target detection with a genera-
tive adversarial network (IRSTD-GAN) [30], ALCNet, and the algorithms we proposed, are
shown in Figure 12. According to the first column in Figure 11, the flare in the sky near the
birds led to a false alarm in the detection results of the faster R-CNN and ISTDet algorithm.
In the second column in Figure 11, other types of objects occupied a large proportion of the
whole image; thus, it was difficult to detect small aircraft in the air with YOLO V3, faster
R-CNN, and RFBnet. TCTHR, ISTDet, and IRSTD-GAN failed to detect targets, and YOLO
V4-Tiny and ALCNet produced a false alarm. In the third column, the large and medium
aircraft are covered by clouds, which seriously disturbs the detection results of the YOLO
series, TCTHR, and IRSTD-GAN, and the target is not detected. From the fourth column,
in which the large and medium aircraft are on a simple background, we could find that
the detection and localization effects of each algorithm were all good. In summary, the
algorithm we proposed has a lower false alarm rate, higher precision, and better network
robustness. This is because the network we proposed above could overcome the deficiency
of single modal feature description for small targets, which utilizes the complementary
between multi-modal features with a morphological domain fused with multi-scale con-
text information and the measurement domain applied with two-level feature extraction,
namely, local and global extraction, to achieve better detection performance.
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3.4.2. Quantitative Evaluation

We conducted quantitative comparison experiments on nine state-of-the-art target
detection methods, including YOLO V3, YOLO V4-tiny, faster R-CNN, RFBnet, TCTHR,
ISTDet, IRSTD-GAN, ALCNet, and the methods we described above on our private dataset
established in this paper, the OEDD.

The results of the real-time performance and accuracy indexes counted and evaluated
of the above five algorithms are shown in Table 4. To ensure fairness of the comparison, the
following operations were performed. The anchors were tuned in the alternative methods
using the K-means clustering algorithm [73] for infrared small-target detection. The same
data preprocessing procedure, which is addressed in Section 2.2, was carried out for all the
methods. The input data for all the structures mentioned in Table 4 could be integrated into
the same size of 208 × 208 by means of letterbox operation in which the ratio of the original
image for equal scaling is kept and the rest of the short edges are filled with gray pixels.

Table 4. Comparison of the state-of-the-art target detection approaches.

Comparison Input XTP XFP XFN Precision
(%)

Recall
(%)

PavG
(%)

mAP
(%)

F1
Score FPS GFLOPs

Yolo V3 608 × 608 17,123 5000 3115 77.40 84.61 82.83 82.35 0.8084 8.3 107.24
Yolo V4-Tiny 416 × 416 17,370 4865 2814 78.12 86.06 84.02 83.41 0.8190 20.7 91.13

Faster R-CNN 600 × 800 18,033 3634 2638 83.23 87.24 87.23 86.71 0.8519 7.5 284.54
RFBnet 512 × 512 18,273 3468 2307 84.05 88.79 88.39 87.87 0.8636 12.1 164.76
TCTHR 640 × 512 18,678 4053 3051 82.17 85.96 90.35 89.79 0.8402 10.2 136.12
ISTDet 640 × 512 18,442 3234 3442 85.08 84.27 89.21 88.77 0.8467 9.2 153.82

IRSTD-GAN 640 × 512 17,066 3176 2751 84.31 86.12 82.55 82.01 0.8521 8.6 169.23
ALCNet 640 × 512 18,109 3628 2185 83.31 89.23 87.60 87.03 0.8617 11.4 129.43

Our proposed 640 × 512 19,152 2535 1740 89.40 91.67 92.64 92.01 0.9052 10.8 179.51

From the table, it can be seen that the accuracy evaluation indexes of the algorithm
we proposed, which are PavG And mAP, are better than those of the eight abovementioned
target detection methods. Moreover, the F1 score was also the best of all. This indicates
that our method has a good balance between precision and recall in infrared small-target
detection. However, it must be mentioned that the evaluation of the real-time performance
of the method decreases slightly. The FPS is 10.8 fps, whereas GFLOPs was only 179.51
at present.

It is known that the P–R curve could show the balance between the precision and
recall of a classifier. The performance of an excellent classifier is as follows. Precision would



Remote Sens. 2022, 14, 3570 27 of 31

remain at a high level while recall increases. However, the classifier with poor performance
may lose a large amount of precision in exchange for the increase in recall. It can be seen
from the P–R curve below that our method has a perfect balance between precision and
recall, which means that it could focus on maintaining a higher accuracy of target detection
in complex scenes with target size, classification, and position changes. The comparison
results for the P–R curves of the nine state-of-the-art methods over the OEDD are shown
in Figure 13.
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4. Discussion

MFFN is an end-to-end DNN-based detector, which combines the morphological char-
acteristics, radiation, and motion characteristics of infrared small targets. The experimental
results on the four real-time sequences demonstrate that the network we proposed has
a better accuracy performance on infrared small targets. As can be seen in Table 4, the
pAVg, mAP, and F1 scores on the OEDD dataset are 92.64%, 92.01%, and 0.9052, respectively,
which could meet the index requirements for the detection ability of our opto-electronic
equipment. Moreover, this would have far-reaching significance on the performance im-
provements of the passive, long-distance, and high-precision detection of military small
targets under diverse national defense fields such as anti-missile warning and ballistic
missile penetration [74].

We conducted comparison experiments on several datasets to demonstrate the exten-
sive effectiveness of our algorithm; the results are shown in Table 5. From the accuracy
and real-time performance index comparison on the different datasets, which are CIFAR10,
COCO, VOC, FLIR, and OEDD, it could be seen that the mAP and F1 score of our algorithm
on our own self-established dataset, the OEDD, is the best of all the other open-access
datasets. However, the FPS on CIFAR10 outperforms ours because the resolution of the
images is 32*32, which is lower than that of the other four datasets. Compared with CI-
FAR10, COCO, VOC, and FLIR, the mAPs on OEDD increased by 7.66%, 5.30%, 6.59%,
and 3.77%, respectively, and the F1 scores on OEDD increased by 8.11%, 5.37%, 6.65%,
and 3.84%, respectively. This could be attributed to the OEDD containing the multimodal
features of infrared targets, which would help promote the accuracy performance and
enhance the robustness of the detection system. The radiation and motion characteristics
could complement the deficiency of the single morphological features. Furthermore, it is
indicated that the algorithm we proposed is not only effective in the detection of infrared
targets, but is also available for visible targets from the accuracy performance indicators
gained from training on CIFAR10, COCO, and VOC.
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Table 5. Comparison of the detection performance on different datasets with the algorithm we proposed.

Indexes CIFAR10 COCO VOC FLIR OEDD

mAP (%) 84.35 86.71 85.42 88.24 92.01
F1 score 0.8241 0.8515 0.8387 0.8668 0.9052

FPS 21.8 18.6 16.7 11.2 10.8

It can be seen from Table 4 that the FPS and GFLOPs of our method gained from
the training on the OEDD still need to be improved. We could have carried out some
essential work, such as model distillation, to decrease the number of the parameters of our
target detection network [75]. The idea of model distillation is to use a trained, large, but
effective teacher model to train a lightweight student model with fewer parameters with
the accuracy of the student model ensured near the teacher model and reduced model size
and fewer computing resources. The first step of model distillation is to train the big model,
called the teacher model. The hard label is used to improve the accuracy of the model
while training large amounts of epochs. Secondly, the student model and teacher model
are combined to perform distillation training. The weight of the large model is frozen after
loading to obtain the output of the soft target. The loss function of the soft target and hard
target is calculated in the student model. The loss is weighted and summed; then, the
gradient and the parameters of the student model are updated. Furthermore, it is proposed
to adopt slice-aided hyper inference (SAHI) [76] and fine-tuning architecture in order to
further improve the accuracy of small-target detection. It is a general and open-source
architecture and could be applied to any detector. This general solution could be used to
detect small targets in high-resolution images with low complexity and memory required.
We divide the input image into overlapping slices, perform interference on the smaller
slices of the original image, and then combine the slice prediction on the original image in
SAHI. In this way, we could achieve a network with both perfect real-time and precision
performance, with a better speed–accuracy trade-off [77].

5. Conclusions

A novel and effective infrared small-target classification and detection network was
designed in this study. An MFFN with an attention mechanism combines the morphological
characteristics, radiation, and motion characteristics of the infrared small targets. This
network, with the ability to automatically learn the importance of the features of each
channel, could make full use of the complementarity between multimodal information
to make up for deficiencies in the description of single modal characteristics of the target
and improve the ability of target classification and detection. The feature extraction of
measurement sequences, including the radiation characteristic and motion sequence, is
realized by the DC-BERT model combined with the channel attention mechanism. Among
them, we have built an atmospheric transmittance prediction model based on a DNN and
obtained the infrared radiation intensity of the target itself through radiation characteristic
inversion and atmospheric transmission correction, which could overcome the limitations
of complex environments to effectively predict atmospheric transmittance and improve the
measurement accuracy of radiation characteristics. The morphological feature extraction
was realized based on MSFE with a global search and local search carried out for the key
frames and non-key frames, respectively. Among them, the key frame introduces the
DAMR and the SCFPN structures to reduce the missed alarm rate of small targets and
improve the detection accuracy through the fusion of small target features and multi-scale
context features. The feature extraction of non-key frames obtains local features based on
the BERT model and fuses them with the global high-level features of the key frames.

In addition, we have designed an engineering medium-sized private dataset, OEDD,
with diverse categories and balanced numbers of samples based on the target characteristic
database accumulated by our project team in air defense and antimissile experiments over
the past ten years.
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Finally, we conducted performance comparison experiments on infrared small targets
on the sequences of large and medium aircraft, small aircraft, floating balls, and birds to
demonstrate the detection performances of the network we have described above. The
experimental results indicate that the detection algorithm we proposed outperformed other
detection algorithms in terms of the accuracy of infrared small-target detection and has a
better speed–accuracy trade-off in comparison.
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