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Abstract: The robust detection of small targets is one of the crucial techniques in an infrared system.
It is still a challenge to detect small targets under complex backgrounds. Aiming at the problem
where infrared small target detection is easily disturbed by complex backgrounds, an infrared single
frame detection method based on a block-matching approach is proposed in this paper. Firstly, the
input infrared image is processed by extracting blocks from it. A new infrared model is constructed
by finding blocks that are similar to each such block. Then, the small target detection based on
the block-matching model is formulated as an optimization problem of recovering low-rank and
sparse matrices, which are effectively solved using robust principal component analysis. Finally,
the results of processing are reconstructed to obtain the target and background images. A simple
segmentation method is used to segment the target image. The experimental results from the actual
infrared sequences show that the proposed method has better background suppression ability under
complex backgrounds and better detection performance than conventional baseline methods.

Keywords: infrared image; block-matching; small target detection; low-rank matrix recovery

1. Introduction

Infrared detection technology has many characteristics, such as anti-electromagnetic
interference, a wide temperature range, and real-time observation. It has since been widely
used in various applications, especially in the military and remote sensing [1]. Generally,
small targets have a tiny proportion of pixels in infrared images. Meanwhile, target message
loss is profound because of the low signal-to-noise ratio and poor contrast [2]. Background
clutter and cloud also will increase the difficulty of infrared small target detection [3].
Therefore, infrared small target detection technology has great significance and is still a
challenging study. The goals of researchers have been better real-time performance, a
higher probability of detection, and a lower false-alarm rate.

Many scholars have recently proposed many effective methods to detect small targets.
Currently, the practices of infrared small target detection can be divided into detection
before track (DBT) and track before detection (TBD). Typical TBD methods include the
dynamic programming method [4], the particle filter method [5], 3D matched filtering [6],
and the pipeline filter method [7]. However, TBD methods combine the time and space
information of sequence images to predict the target trajectory, which is challenging to
apply in practice. In contrast, DBT methods detect small targets on a single frame, which
have the advantages of fast detection speed and a high robustness to noise. The DBT
methods can be summarized into three categories: the methods based on target features,
the methods based on background features, and the methods based on low-rank sparse
matrix recovery.
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For methods based on target features, local information differences can be recognized
in the human visual system [8]. Therefore, many small target detection methods based on
the visual system are proposed [9–16]. Local Contrast Measure (LCM) is a usual method [9].
It combines the contrast mechanism of the human visual system with the derived kernel
model to achieve target enhancement and background clutter suppression. However,
LCM makes an excessive enhancement for noises with high brightness, resulting in a high
false-alarm rate. To solve this problem, Han et al. proposed an improved Local Contrast
Measure (ILCM) method [10]. To improve the detection performance in complex back-
grounds, Han et al. proposed the NLCM method [11]. Wei et al. proposed MPCM from the
perspective of image patch difference [12]. Deng et al. proposed the weighted local differ-
ence method (WLDM) [13], which can better separate the real targets from the interfering
object. Han et al. proposed a multi-scale relative local Contrast ratio (RLCM) [14], which
can efficiently detect small targets of different sizes in complex backgrounds. Guan et al.
proposed the enhanced Local Contrast Measure (ELCM) [15], and Han et al. proposed
the weighted enhanced local Contrast (WSLCM) [16] for infrared small target detection.
For methods based on background features, Max-Mean and Max-Median [17], based on
nonlinear filtering; and classical Top-Hat [18], based on morphological filtering, are tradi-
tional. They all use the background difference to obtain small targets. Bai [19] et al. studied
new Top-Hat and applied it to infrared small target detection. Zhu [20] et al. combined
Top-Hat with low-rank tensor completion to provide a more robust small target detection
model. In addition, the two-dimensional least mean square (TDLMS) filter [21] and bilateral
filter [22] also have good results using background prediction. However, these methods
are not very effective in dealing with complex backgrounds.

With the development of matrix optimization theory, the low-rank sparse matrix
recovery method is attracting more and more attention. This method can separate the
target image from the background image according to the target’s sparsity and the back-
ground’s low rank. The most representative process is the infrared patch-image model
(IPI) [23]. Dai et al. proposed a weighted infrared patch-image model (WIPI) [24] to sup-
press the edges better. The reweighted infrared patch-tensor model (RIPT) [25] and the
non-negative infrared patch-image model via partial sum minimization for singular values
model (NIPPS) [26] could provide more accurate background estimations. In terms of
the matrix recovery improvement, some methods include low-rank sparse representation
(LRSR) [27], adaptive weighted parameter [28], total variation regularization, principal
component pursuit (TV-PCP) [29], and non-convex rank approximation minimization
(NRAM) [30]. Rawat et al. proposed a method via total variation and partial sum mini-
mization (TV-PSMSV) to recognize small targets in a highly complex background [31].

When the background of the infrared image is very complex, such as buildings, moun-
tains, and trees, the low-rank property of the background is very poor, so the conventional
low-rank sparse matrix recovery methods are not very effective. In order to resolve the
aforementioned problem, this paper proposes a novel infrared small targets detection
strategy based on block-matching. The proposed method uses non-local similarity to match
and group image blocks to construct a new infrared model. Firstly, the original infrared
image is divided into some reference blocks. Similar blocks are searched throughout the
image for each reference block, and several block-matching groups are formed. Secondly,
each block-matching group is formed into a matrix. We suppose the infrared background
image is a low-rank matrix, and that the infrared target image is a sparse matrix. The small
target detection problem is transformed into an optimization problem of recovering the
low-rank and sparse matrices. Finally, the target image and background image are obtained
via reconstruction. A simple threshold segmentation method is used to obtain a small target.
Experimental results show that the proposed method has better stability under different
backgrounds and better detection performance than the traditional baseline method.

The remainder of this paper is organized as follows. In Section 2, we introduce the
process of the new infrared block-matching model construction and reconstruction, and we
also analyze the model. Section 3 describes the small target detection method based on
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block-matching. In Section 4, we present the experimental results of block size effects and
comparison experiments in this paper. The conclusion is given in Section 5.

2. Infrared Block-Matching Model

In natural images, self-similarity generally exists between image blocks [32]. Many
classical image denoising algorithms have been proposed by utilizing the self-similarity of
images [33–35]. The distance between blocks usually expresses the similarity between two
blocks. The smaller the distance between the two blocks, the higher the similarity. Block-
matching is a common method in image denoising and motion estimation. It calculates the
distance between a reference block and a block to be matched, finds some matching blocks
closest to the reference block, and divides them into a set. Figure 1 shows some reference
blocks in the image and matched blocks with high similarity.

Figure 1. Illustration of matching blocks of infrared images. Each image shows a reference block
marked with red borders and a few of the blocks marked with blue borders matched to it.

2.1. Construction of Infrared Block-Matching Model

We construct the infrared block-matching model from an original image. The steps
are as follows. Firstly, an input infrared image is clipped into several reference blocks.
Then, for each reference block, a sliding window is used to search for similar blocks with
the reference block from left and top to right and down. Block-matching is a method for
finding blocks similar to a given reference one [34]. If the distance between the blocks and
the reference one is smaller than a given threshold, they are mutually similar. Therefore,
only blocks whose distance concerning the reference one is smaller than a threshold are
deemed similar. In particular, we use the `2-distance as a measure. The block distance can
be calculated as:

d(Zxr, Zx) =‖ Zxr − Zx ‖2
2, (1)

where ‖ ·‖2 denotes the `2-norm, and Zxr and Zx respectively represent the reference block
and the block to be matched.

We can obtain the set composed of similar blocks from d(Zxr, Zx):

S = {d(Zxr, Zr) < τ}, (2)

where τ is a constant representing the maximum matching threshold of similar blocks.
Finally, for each set, we transform each block into a column vector to form a new matrix.

2.2. Analysis of Infrared Block-Matching Model

A single infrared image is usually considered to be composed of three parts:

Fd = Fb + Ft + Fn, (3)

where Fd, Fb, Ft, and Fn are the original image, background image, target image, and noise
image, respectively. By constructing the infrared block-matching model for the infrared
input images, we can transform the infrared image model into the corresponding infrared
block-matching image model:

D = B + T + N, (4)
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where D, B, T, and N respectively represent the original image, background image, target
image, and noise image in the infrared block-matching model.

Target block-matching T: Small targets are tiny in infrared images. Due to the low
proportion of small targets, target block-matching T can be considered a sparse matrix.
That is:

‖ T‖0 ≤ k, (5)

where ‖ ·‖0 denotes the `0-norm and k is a constant determined by the size and number of
the small target.

Background block-matching B: As previously discussed, the infrared background
image usually has strong non-local self-similarity. We select three representative infrared
background images. Additionally, the IBM model matrix is constructed for a reference
block of each image. The reference block size is 20 × 20. Meanwhile, we calculate the
singular value of the matrix. Figure 2 shows that their singular values all rapidly decrease
to zero. Therefore, we can consider background block-matching B as a low-rank matrix.
That is:

Rank(B)� r, (6)

where r is a constant representing the complexity of the background image. The more
complex the background, the greater the value of r.

Figure 2. Illustration of the low-rank property of background block-matching B. The first row are
four images, each with a background reference block with a red border, and the second one are the
singular values of background block-matching B constructed using four reference blocks.

Noise Block-Matching N: In this paper, we assume that the noise is additive white
Gaussian noise and ‖ N‖F ≤ δ for some δ > 0. Thus, we have:

‖ D− B− T‖F ≤ δ, (7)

where ‖ ·‖F denotes the Frobenius norm.
Although the parameters k, r, and δ vary for different infrared images, we would not

use them directly in the following sections. We will discuss this further in Section 3.1.

2.3. Reconstruction of Infrared Images from the Infrared Block-Matching Model

We reconstruct an image from an infrared block-matching model. The steps are as
follows. Firstly, the similar blocks with each reference block are returned to their original
positions in the infrared image. Because the selected similar blocks may overlap, a pixel
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location would correspond to several values from different blocks. In this case, we use a
1D mean filter function to determine the final value of each pixel:

V = mean(x), (8)

where V ∈ R and x is a vector containing the values of all similar blocks at one pixel.

3. Small Target Detection Based on Block-Matching
3.1. Solution of Infrared Small Target Detection

According to Section 2, we can consider the target block-matching T as a sparse matrix
and the background block-matching B as a low-rank matrix. Ideally, we transform the
small target detection problem based on block-matching into the following low-rank and
sparse decomposition problem:

min
B,T

rank(B) + λ ‖ T‖0, s.t.B + T = D, (9)

where λ denotes the equilibrium factor; we choose the robust principal component analysis
(RPCA) to solve (9) because it has better anti-noise interference ability and robustness.
Because the parameters k and r in (5) and (6) vary for different infrared images, it is difficult
to estimate them in advance. Robust principal component analysis can accurately and
efficiently recover B and T in (9) under broad conditions, such as no relevant information
about the rank of B or the support of T being given [36]. Therefore, our method does
not need to obtain the parameters k and r of different images. Unfortunately, (9) is a
nondeterministic polynomial hard (NP-hard) problem [37]. This problem cannot be solved
using exact algorithms. Therefore, we need to find an efficient approximation algorithm.
Here, ‖ B‖∗ and ‖ T‖1 replace rank(B) and ‖ T‖0, respectively. Then, we consider the
situation of noise in an image. The above objective function can be transformed into the
following convex optimization problem:

min
B,T
‖ B‖∗ + λ ‖ T‖1s.t. ‖ D− B− T‖F ≤ δ. (10)

The traditional methods to solve the standard RPCA model are iterative thresholding
(IT) [36] and accelerated proximal gradient (APG) [38]. In addition, exact augmented
Lagrange multipliers (EALM) [39] and inexact augmented Lagrange multipliers (IALM) [40]
are also commonly used. We choose IALM to solve (10) because of its faster operation
speed and higher operation accuracy.

Construct the augmented Lagrange function for (10) :

Γ(B, T, Y, µ) =‖ B‖∗ + λ ‖ T‖1 + 〈Y, D− B− T〉+ µ

2
‖ D− B− T ‖2

F, (11)

where Y ∈ Rm×n denotes the Lagrange multiplier, µ > 0 is the penalty parameter, and 〈•〉
denotes the standard inner product. µ is varied while solving the above optimization,
and (10) is equivalent to (11) for some value µ(δ) [41]. When Y = YK and µ = µk,
the optimization problem min

B,T
= L(B, T, Y, µk) is solved using alternate direction methods.

3.2. Target Segmentation

After obtaining the target image, we need to extract a small target from the image. We
adopt the same target segmentation threshold as [23]. In this paper, we only detect bright
targets. The adaptive threshold tup is defined by:

tup = max(υmin, µ + kσ), (12)

where µ and σ respectively denote the average and standard deviation of the target image,
and K and Vmin are constants determined experientially.
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3.3. The Entire Procedure of Small Target Detection

Figure 3 shows the whole process of the small target detection method proposed in this
paper. The steps are: (1) According to Section 2.1, we construct the block-matching D from
the input infrared image. (2) We use IALM to decompose the block-matching D into the
low-rank background block-matching B and sparse block-matching target T. (3) According
to Section 2.3, we reconstruct the target image Ft and background image Fb. (4) We obtain
the final image by using a simple threshold segmentation on the target image.
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Figure 3. The overview of the proposed method in this paper.

4. Experiments
4.1. Experimental Settings

Evaluation Metrics: In this paper, we choose background suppression factor (BSF),
local signal-to-noise ratio gain (LSNRG), and signal-to-clutter ratio gain (SCRG) to evaluate
the performance. Three evaluation metrics are calculated in a local region concerning the
target, as illustrated in Figure 4. The target size is a× b and the neighborhood width is
d, which is a constant. We set d = 20 in this paper. BSF represents the inhibitory ability
to the background. The higher the value of BSF, the better the background suppressing
performance. BSF is defined as follows:
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BSF =
σin
σout

, (13)

where σin and σout represent the local background neighborhood standard variances of the
input and output images, respectively. LSNRG measures the local signal-to-noise ratio
(LSNR) gain, where a higher value of LSNRG denotes a better performance. LSNR is
defined as follows:

LSNR =
PT
PB

, (14)

where PT and PB represent the maximum target pixel value and the maximum local back-
ground neighborhood pixel value, respectively.

LSNRG =
LSNRout

LSNRin
, (15)

where LSNRout and LSNRin stand for the LSNR values of the output and input images.
SCRG represents the validity of target enhancement. The stronger the target enhancement
ability, the larger the value. SCR is defined as follows:

SCR =
|µt − µb|

σb
, (16)

where µt is the average pixel value of the target, and µb and σb are the average pixel value
and the standard deviation of the local background neighborhood, respectively.

SCRG =
SCRout

SCRin
, (17)

where SCRout and SCRin stand for the SCR values of the output and input images. In addi-
tion to the three evaluation indicators, the receiver operating characteristic (ROC) curve
is also an important metric. The ROC curve can directly reflect the accuracy of detection
and help to find the appropriate threshold. For small target detection, the larger the area
enclosed by the curve and abscissa, the better the method’s performance. Additionally, the
higher detection probability for the same false-alarm ratio means a better performance. The
ROC curve is plotted using the detection probability Pd and the false-alarm rate Fa. Pd and
Fa are defined as follows:

Pd =
number of true detections
number of actual targets

(18)

Fa =
number of false pixels detected
number of pixels in all images

. (19)

Background Area

Target Area

d

b d

a

Figure 4. Target area and background neighborhood area of the small target.
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Baseline Methods: In this paper, we choose Max-Mean [17], Max-Median [17], Top-
Hat [18], IPI [23], and TV-PCP [29] as the baseline methods. The detailed parameters of
these methods are shown in Table 1.

Experimental Datasets: In this paper, we select four infrared sequences for the experi-
ments. All sequences are from public datasets [42]. Detailed information on the infrared
sequence is shown in Table 2.

Table 1. Detailed parameters of baseline methods.

Methods Parameters

Max-Mean [17] Filter size: 15 × 15
Max-Median [17] Filter size: 15 × 15

Top-Hat [18] Shape: square, filter size:15 × 15
IPI [23] Patch size: 50 × 50, sliding step: 10, λ = 1√

min(m,n)
, ε = 10−7

TV-PCP [29]
Patch size: 50 × 50, sliding step: 14, λ = 0.005, λ2 = 1√

min(m,n)
, β = 0.025, γ = 1.5,

maxIter = 250, tol = 5× 10−6

Table 2. Detailed description of experimental sequences.

N0. Frame Image Size Characteristics

1 200 256 × 256 Complex background with trees and highlighted interference
2 200 256 × 256 Complex background with thickets
3 200 256 × 256 Complex ground background with trees and road
4 200 256 × 256 Complex background with constructions

4.2. Effect of Block Size

In our method, the size of the reference block is an important parameter. Different block
sizes will affect the algorithm performances for different datasets. Thus, we need to adjust
it to obtain better detection results. We set the square block size as 5 × 5, 10 × 10, 20 × 20,
and 50 × 50. Figure 5 shows the separated target images according to the different sizes of
the reference block. We adjust the contrast of the images for clearer viewing. As seen from
Figure 5, the smaller the block size, the better the background suppression performance,
and the less the background residue of the target images for the four sequences. This is
because the smaller the block size, the higher the matching degree between the matching
block and the reference block. This results in a sparser image of the block-matching model
when using a smaller block size. However, as the image of the constructed block-matching
model is sparser, the low-rank property of targets will be lost to a certain extent. Therefore,
the contrast between the target and background also decreases.

To further discuss the effect of block size, we display the ROC curve for different
block sizes. The ROC curves for the four sequences are shown in Figure 6. It can be seen
from Figure 6 that the ROC curves of different sequences under different block sizes have
little differences. In particular, for Seq.2 and Seq.3, the smaller the block size, the better
the performance. However, the pattern is not evident for Seq.1 and Seq.4. This is because
Seq.2 and Seq.3 have a larger target size than Seq.1 and Seq.4. According to the above
analysis, the low-rank property of the target will be lost to a certain extent. As the size
of the target becomes bigger, this effect becomes more pronounced. It should be noted
that the smaller the block size, the longer it takes to obtain the separated target images.
In combination with the above qualitative and quantitative analysis, we choose block size
10 × 10 as the parameters of our method in the subsequent contrast experiments, based on
the consideration of computational cost.
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Sequence 1

Sequence 2

Sequence 3

Sequence 4

Original Data Size 5 Size 10 Size 20 Size 30 Size 50

Target

Target

Target

Target

Figure 5. The representative images of the four real image sequences and the corresponding processed
target images of different block sizes. From left to right are the original data and the processing
results of size 5, size 10, size 20, size 30, and size 50.

(a) (b)

(c) (d)

Figure 6. Cont.
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(a) (b)

(c) (d)

Figure 6. The receiver operating characteristic (ROC) curves of different sizes for four real image
sequences. (a) Sequence 1. (b) Sequence 2. (c) Sequence 3. (d) Sequence 4.

4.3. Contrast Experiments

In order to verify the effectiveness of the proposed method, baseline methods including
Top-Hat, Max-Mean, Max-Median, IPI, and TV-PCP are selected for comparison. We select a
representative image from each of the four sequences and process them with the six methods.
Firstly, we compare the background suppression performance. The detection results of the
representative images of four sequences using different methods are shown in Figure 7.

Original Data Top-Hat Max-Mean Max-Median IPI Proposed Method

Sequence 1 

Sequence 2 

Sequence 3

Sequence 4

Target

Target

Target

Target

TV-PCP

Figure 7. The representative images of the four real image sequences and the corresponding processed
target images of different methods. From left to right are the original data, the processing results of
Top-Hat, Max-Mean, Max-Median, IPI, TV-PCP, and the proposed method.
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It can be seen in Figure 7 that Top-Hat performs very poorly in the face of four
sequences with complex backgrounds. It can enhance the target. However, because Top-
Hat relies on the assumption of the size of target, it cannot distinguish the target from
the background clutter well. At the same time, it can not screen noise that is close to the
target size. Max-Mean and Max-Median can enhance the target, but the ability to suppress
background clutter is weak. Max-Median is more robust than Max-Mean. According to
the results of Seq.2 and Seq.4, it can be seen that Max-Median has a better inhibition effect
on strong edges compared to Max-Mean. The common reason for why Top-Hat, Max-
Mean, and Max-Median do not perform well is that they need to make preset assumptions
about the target information. The last IPI, TV-PCP, and our method are all based on
low-rank sparse matrix recovery. IPI enhances the background sparsity by constructing
the patch-image. Therefore, the result is good in the face of the sequence (Seq.2), with
a relatively smooth background transition. When the background is very complex with
a lot of highlighted interference, the correlation between adjacent pixels in the image
background is not strong. This results in a worse IPI performance in Seq.1, Seq.3, and Seq.4.
TV-PCP brings TV regularization term to the traditional PCP model. It can better deal
with non-uniform images. However, TV-PCP performs poorly when faced with strong
edges and highlighted backgrounds such as IPI. This is because they are all based on the
low-rank property of the constructed patch-image. In contrast, the proposed method in this
paper is better at suppressing the nontarget components. Our method has the least residual
background clutter in the experimental images, as it makes full use of the self-similarity
of whole image. Although there is a very small amount of clutter because of the complex
background, we can further use threshold segmentation to obtain small targets. Based on
the above comparisons, the proposed method achieves the best background suppression
effect among the six tested methods.

We calculate the metrics values without threshold segmentation to further evaluate
these methods, and higher values denote better performance. The performance comparison
of the six methods is shown in Table 3. Table 3 shows that the proposed method yields
the best or second-best results for most of the image sequences, compared with the other
methods. This suggests that the proposed method in this paper outperforms the baseline
methods in terms of background suppression and target enhancement.

Table 3. Quantitative comparison of six methods for the images of Sequence 1–4.

Top-Hat Max-Mean Max-Median IPI TV-PCP Proposed
Method

10th frame of Seq.1
BSF 1.9150 2.2114 2.2241 2.7063 2.8176 2.9542

LSNRG 1.8555 2.4063 2.2001 2.8511 2.3334 3.3821
SCRG 1.8726 3.6916 4.1848 4.5444 4.6315 4.8301

10th frame of Seq.2
BSF 1.4953 1.7571 2.1528 1.9926 1.8748 2.2620

LSNRG 1.0046 0.8935 1.0860 1.0236 1.0116 1.0704
SCRG 1.3216 2.3538 2.8490 2.6366 3.1674 2.8290

10th frame of Seq.3
BSF 1.4840 1.5812 1.5812 1.8878 1.3768 1.9611

LSNRG 1.1988 1.3980 1.1080 1.4019 1.2662 1.4470
SCRG 1.0564 2.3859 2.4129 3.1280 2.8973 3.1363

10th frame of Seq.4
BSF 1.7803 2.6111 2.8659 3.0519 2.3717 2.9747

LSNRG 2.0182 3.0833 2.4292 2.5882 1.4800 2.5807
SCRG 1.6963 3.9429 4.0535 4.3271 4.1347 4.2013

Finally, to further reveal the advantage of the proposed method, we display the
ROC curve to reflect the methods’ performance more intuitively. The ROC curves are
shown in Figure 8. As seen in Figure 8, the detection rate of the proposed method is more
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prominent. On the whole, it has a higher detection probability under the same false-alarm
rate. In Seq.2, IPI, TV-PCP, and our method have achieved good results due to the relatively
smooth background. TV-PCP performs well in Seq.1. However, the false-alarm rate was
higher in Seq.3 and Seq.4, with more highlighted points. IPI also performs well in Seq.3
and Seq.4, but the detection rate is not as good as our method due to the poor ability of
the algorithm to deal with the non-uniform background. Top-Hat, Max-Median, and Max-
Mean all had unsatisfactory results due to their dependence on the assumption of target
information. In particular, Max-Median does badly in Seq.4. Our method shows better
detection performance when dealing with complex backgrounds.

(a) (b)

(c) (d)

Figure 8. The receiver operating characteristic (ROC) curves of different methods for four real image
sequences. (a) Sequence 1. (b) Sequence 2. (c) Sequence 3. (d) Sequence 4.

5. Conclusions

This paper proposed an infrared small target detection method based on block-
matching in images. This method takes full advantage of non-local similarity to construct
an infrared block-matching model. Then, the small target detection task is transformed into
an optimization problem of recovering low-rank and sparse matrices. This problem can
be effectively solved via IALM. Our method reduces the dependence on the correlation
between adjacent pixels in the image background. When the background of images has
strong edges and highlighted clutter, the block-matching model has better low-rank prop-
erty. This block-matching model can significantly suppress the background clutter and



Sensors 2022, 22, 8300 13 of 14

noise to improve the performance of small target detection. The experimental results show
that our proposed method not only obtains the clearest separated target images compared
with the baseline methods, but also significantly improves quantitative parameters such
as LSNRG, SCRG, BSF, and the ROC curve. In the future, we will study the feasibility
of the block-matching model in 3D or multi-dimensional space. We will also learn the
matrix recovery algorithm applicable to the proposed method further to improve the speed
and applicability.
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