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Abstract: The purpose of infrared and visible image fusion is to generate images with prominent
targets and rich information which provides the basis for target detection and recognition. Among the
existing image fusion methods, the traditional method is easy to produce artifacts, and the information
of the visible target and texture details are not fully preserved, especially for the image fusion under
dark scenes and smoke conditions. Therefore, an infrared and visible image fusion method is
proposed based on visual saliency image and image contrast enhancement processing. Aiming at the
problem that low image contrast brings difficulty to fusion, an improved gamma correction and local
mean method is used to enhance the input image contrast. To suppress artifacts that are prone to
occur in the process of image fusion, a differential rolling guidance filter (DRGF) method is adopted
to decompose the input image into the basic layer and the detail layer. Compared with the traditional
multi-scale decomposition method, this method can retain specific edge information and reduce the
occurrence of artifacts. In order to solve the problem that the salient object of the fused image is not
prominent and the texture detail information is not fully preserved, the salient map extraction method
is used to extract the infrared image salient map to guide the fusion image target weight, and on the
other hand, it is used to control the fusion weight of the basic layer to improve the shortcomings of
the traditional ‘average’ fusion method to weaken the contrast information. In addition, a method
based on pixel intensity and gradient is proposed to fuse the detail layer and retain the edge and
detail information to the greatest extent. Experimental results show that the proposed method is
superior to other fusion algorithms in both subjective and objective aspects.

Keywords: infrared and visible images; multi-scale decomposition; image fusion; contrast enhancement;
visual saliency map

1. Introduction

The main purpose of image fusion is to generate a single image containing comple-
mentary information from multiple images of the same scene. In the field of multi-sensor
image fusion, infrared and visible image fusion is an important technology. Since infrared
sensors can capture thermal information about targets in a scene, some objects can be
highlighted in weak light, occlusion and bad weather conditions. The visible image con-
tains the texture details of the scene, and the images presented are more consistent with
human visual perception in terms of intensity and contrast. These two types of images
have complementary effects and their fusion can obtain more accurate and richer scene
information. At present, this technology plays an important role in security monitoring,
target detection, target recognition and so on [1–5].
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Ma et al. investigated the field of infrared and visible image fusion [6]. The fusion
algorithm can be divided into seven categories according to the theoretical way: multi-scale
transform, sparse representation, neural network, subspace, dominance-based, hybrid
model and other methods. Among them, the multi-scale transform algorithm is most
widely used typically adopting Laplace pyramid transform [7] (LP), wavelet transform [8]
(Haar), non-subsampled shearlet transform [9] (NSST) or non-subsampled contourlet
transform [10] (NSCT). These algorithms are based on the Laplace pyramid method, which
smoothes the image to a certain extent and loses some structure and detail information.
At the same time, it may also produce artifacts that affect the quality of the fused image.

These problems have also attracted the attention of many researchers. In order to retain
more detail information and structure information, some researchers proposed a method
to optimize the objective function by imposing constraint conditions to achieve fusion.
Huang et al. [11] reserved detail information based on gradient constraints and explicit
constraints, highlighting the explicit goal. Li et al. [12] used contrast fidelity and sparse
constraints for image fusion. There are also improved fusion methods based on multi-scale
decomposition Chen et al. [13] proposed a target enhanced multi-scale transformation
(MST) decomposition model by using linear programming to decompose the source image
and fuse them on different scales, spatial resolution and decomposition layers. This method
introduces a linear transformation function to control the weight of infrared images and
fully retains the information of infrared prominent targets. Li et al. [14] proposed a multi-
scale fusion method of potential low-rank representation decomposition to extract global
and local structural information from the source image, and fully tap the information of
the source image. These methods focus on preserving image information and ignore the
problem of artifacts caused by the loss of image information in multi-scale decomposition.
Ding et al. [15] proposed a fusion method based on non-subsampled shearlet transform and
sparse structural features. The sparsity based on structural information is used to guide the
fusion of high-frequency coefficients, and the principal component analysis is used to fuse
low-frequency information. This method has a good effect on extracting prominent target
information. However, due to the abandonment of some low-frequency information in the
principal component analysis, some information will be lost or artifacts will occur.

In recent years, the edge-preserving filter has been successfully applied to image
fusion. Zhou et al. [16] proposed a multi-scale decomposition method based on Gaussian
and bilateral filtering mixing, but this result will also smooth the contrast information.
Ma et al. [17] proposed a multi-scale decomposition method based on the combination of
Gaussian and rolling guided filter (RGF), which has a certain effect on artifact elimination.
In recent years, the method based on explicitness has gradually emerged, and more people
are keen to use the method of combining the multi-scale method with explicitness to
fuse images. Zuo et al. [18] proposed an infrared and visible image fusion method that
introduced region segmentation into the dual-tree complex wavelet transform (DTCWT)
region. According to explicitness, the region of interest and the background region were
separated, and the results were mapped to the fusion results.

Although information retention and artifacts elimination in image fusion are individu-
ally studied in the above methods, they have not been considered comprehensively at the
same time. Based on the advantages and disadvantages of the above methods, this paper
proposes an infrared and visible image fusion method based on a visual saliency map and
image contrast enhancement on the basis of two typical scenes that affect the fusion effect,
namely, dark scenes and smoke background. The advantages of the algorithm in this paper
are as follows. In view of the difficulty caused by the low image contrast to the fusion, we
propose an improved method of gamma correction and local mean to enhance the contrast
of the input image. In view of the problem that artifacts are prone to occur in the process of
image fusion, a DRGF method is adopted to decompose the input image into the basic layer
and the detail layer. Compared with the traditional multi-scale decomposition method, this
method can retain specific edge information and reduce the occurrence of artifacts. In order
to solve the problem that the visible target of the fused image is not prominent and the
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texture detail information is not fully preserved, a method is proposed to extract the visible
image. On the one hand, it is used to extract the visible image from the infrared image to
guide the fusion image target weight. On the other hand, it is used to control the fusion
weight of the basic layer to improve the shortcomings of the traditional ‘average’ fusion
method to weaken the contrast information. In addition, a method based on pixel intensity
and gradient is proposed to fuse the detail layer and retain the edge and detail information
to the greatest extent.

2. Methods

The structure of the fusion algorithm is shown in Figure 1. Firstly, the contrast of
the input image is enhanced by an improved gamma correction and local mean. Then,
the infrared image is extracted to guide the target weight of the fusion image. Then,
the input image is decomposed into the basic layer and the detail layer by using the DRGF
multi-scale decomposition method. For the base layer, the fusion weight is controlled by
using the dominant value. For the detail layer, the fusion method based on pixel intensity
and gradient is used.

RI

Image

enhancement

Image

enhancement

Differential

RGF

Differential

RGF

Basic layer 

fusion

Detail layer 

fusion

saliency map

Infrared image

visable image

fusion image

Figure 1. Infrared and visible image fusion frame diagram. The red rectangle frames the visible
image where the person is located.

2.1. Image Contrast Enhancement

Low contrast images in a dark background will have a certain impact on the fusion
quality [19]. Considering this aspect, this paper adds the image contrast enhancement
algorithm to the fusion framework. The purpose of image contrast enhancement is to
improve the visual effect of the image and enhance the contrast and clarity, which can be
divided into spatial domain enhancement and frequency domain enhancement. The spatial
domain enhancement algorithms include histogram equalization (HE), gamma transform,
and logarithmic image processing model (LIP). The frequency domain enhancement meth-
ods include high-pass filtering, low-pass filtering and homomorphic filtering. Gamma
transform [20] is mainly used for image correction, and the images with too high and
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too low gray levels are corrected accordingly to achieve the contrast enhancement effect.
The simple form of this method is expressed as Equation (1).

P = Lγ (1)

P represents the image after contrast enhancement, L represents the image to be
enhanced and here the de-noising image, and γ represents the correction degree. The
smaller the value is, the brighter the image is. The gamma correction curve is shown in
Figure 2. The value of γ is bounded by 1. For γ > 1, the high light part will be suppressed
the low light part will be expanded, and the image will become dark as a whole. For γ < 1,
the high light part is extended, the low light part is suppressed, and the whole image
becomes bright.

Figure 2. Gamma correction curve.

The results of gamma correction make the image brighter or darker as a whole.
Our goal is to obtain an image with enhanced target and clear contrast. Therefore, this pa-
per proposes an improved method of weighted local mean to improve the image contrast.
The specific methods are as follows:

P = Lµ+0.5 (2)

µ(i, j) = α× (β× L(i, j) + (1− β)× H(i, j)) (3)

H(i, j) =
1

r× r

(r−1)/2

∑
m=−(r−1)/2

(r−1)/2

∑
n=−(r−1)/2

L2(i + m, j + n) (4)

where r is the size of the local window; H(i, j) is the local mean; α and β are the coefficients
that control the tensile degree.

The algorithm proposed in this paper is compared with histogram equalization,
gamma correction, LIP and high-frequency enhanced filtering (HEF) algorithms. The con-
trast effect is shown in the Figure 3 below. The contrast areas are marked with rectangu-
lar boxes:
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(a) (b) (c)

(d) (e) (f)

Figure 3. Image contrast enhancement algorithm, The red box and the green box are contrast areas:
(a) Visible image; (b) Proposed; (c) HE; (d) Gamma correction; (e) LIP; (f) HEF.

From the comparison effect of local regions, the method in this paper has a good effect.
HE direct use of image histogram to adjust the contrast is simple and effective, but this
method in the image useful data contrast is very close when the effect is better, and the
experimental image useful data contrast is not all close, so the effect is general; the LIP
method can expand the low gray value part of the image, display more details of the low
gray value part, compress the high gray value part, reduce the details of the high gray
value part, so as to achieve the purpose of emphasizing the low gray part of the image,
and enhance the sky part from the effect, which leads to the contrast between the sky and
the tree. HEF contrast enhancement is obvious, but the red frame-out area weakens the
highlight effect of the light and leads to excessive unnaturalness at the junction of the tree
and the sky. Gamma correction corrects the image from the whole, and the overall effect
is good, but the correction of the local area needs to be improved. The local effect of the
improved method in this paper is obvious.

In addition, since the source image inevitably contains some effects such as noise, we
added the method of robust principal component analysis (RPCA) to remove the noise
of small structures [21]. Robust principal component analysis can effectively find out the
‘main’ elements and structures in the data, which is different from the principal component
analysis. RPCA believes that the data matrix can be decomposed into two parts, the low-
rank part and the sparse part, and the noise is sparse. Therefore, the de-noising effect can
be achieved by retaining the low-rank part. RPCA principle formula is as Equation (5) :

I = L + S (5)

where I represents the source image, and L and S represent the low-rank and sparse parts
after RPCA decomposition.
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2.2. Visual Saliency Map Extraction

Through the observation of a large number of infrared images, it is found that due to
the unique imaging characteristics of infrared images, the appearance of infrared images
on the target is particularly prominent under the conditions of weak light and smoke
occlusion. Especially under the conditions of smoke, the target in the visible light image
may be hidden. Therefore, it is particularly important to guide the fusion image through
the infrared target saliency map.

Zhai et al. proposed a saliency detection method [22], in which the saliency value of
each pixel is the sum of the Euclidean distance between the brightness value of the pixel
and the brightness value of other pixels. Assuming that Ip represents the brightness value
of pixel p in image I, the formula is as Equation (6).

S(p) =
∣∣Ip − I1

∣∣+ ∣∣Ip − I2
∣∣+ . . . +

∣∣Ip − IN
∣∣ (6)

where N represents the total number of pixels in image I. The algorithm is simple and
effective. In this paper, the algorithm is introduced to extract the image saliency value,
which is used to guide the weight value of the fused image saliency target and the weight
coefficient of the fusion infrared image and visible image in the basic layer. Before extracting
the saliency map, we add the filtering operation to avoid the influence of noise points.
The formula is as follows:

ISG = Gaussian(P) (7)

S =
C−1

∑
j=0

Mj
∣∣ISG − Ij

∣∣ (8)

where P represents the enhanced infrared image, ISG the image after Gaussian filtering, j
the pixel intensity, Mj the number of pixel intensity values, C the gray level being set to 256
in this paper and Ij the brightness value j.

2.3. Multi-Scale Decomposition Based on Improved Differential Rolling Guided Filter (DRGF)

The Gaussian filter is widely used in the field of multi-scale image processing. A
Gaussian filter will filter out the noise and small structure in the source image, at the same
time blurring the whole image and producing artifacts. The edge-preserving filter can retain
the image boundary content and reduce artifacts. The most widely used edge-preserving
filters are weighted least squares filter, bilateral filter and guided filter. The guided filter
is to filter the initial image through a guided image so that the output image is generally
similar to the initial image, but the texture part is similar to the guided image. The guided
filter can not only realize the advantages of bilateral filtering to maintain the edge but also
overcome the shortcomings of bilateral filtering in gradient deformation near the edge.
Zhang et al. [23] improved the guided filtering and proposed an RGF technology, which has
the characteristics of scale perception and edge preservation. This method includes small
structure removal and edge recovery. RGF is composed of a Gaussian filter and guided
filter, and the specific implementation is as follows:

G = Gaussian(I, σs) (9)

Jt+1 = GuideFilter(Jt, I, σS, σ2
r ) (10)

where, Gaussian(I, σs) represents Gaussian filtering, GuideFilter(Jt, I, σS, σ2
r ) represents

guided filtering, I represents the image to be filtered, σs is used as a proportional parameter
to control the Gaussian filtering removal scale. Represents the boot image, controls the
distance weight, set to 0.05. RGF is iteratively implemented by Equations (9) and (10),
which can be simply expressed as:

u = RGF(I, σs, σr, T) (11)
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where T is the number of iterations.
The multi-scale decomposition formula of improved DRGF is:

Mi = RGF
(

Mi−1, σi−1
s , σr, T

)
, i = 1, . . . , N (12)

Di =

{
Mi − P, i = 1
Mi−1 −Mi, i = 2, . . . , N

(13)

B = Mi, i = N (14)

where P is the enhanced source image, Mi is the filtering image of the i layer, Di is the
detail layer of the i layer, N is the decomposition layer, Mi as the basic layer, σi

s and σr is the
filtering parameter, this paper sets σi

s = 2σi−1
s to control the image scale; T is the number of

iterations. The multiscale decomposition structure is shown in Figure 4.

RGF RGF RGF RGF

+ - + - + - + -

I M1 M2 M3 M4

D1
D2 D3 D4 

Figure 4. Image multi-scale decomposition process.

2.4. Fusion of Base Layers

The image base layer after multi-scale decomposition contains the basic information
of the image. The traditional ‘average’ fusion rule is not sensitive to the contrast of the
image, which will weaken the contrast of the image and weaken the prominent information.
In Section 2.2, this paper proposes a method for extracting infrared dominant images.
Equation (8) is used to calculate the dominant values of two images in the base layer, and
then Equations (15) and (16) is used for image fusion in the base layer. The formula is
as follows:

ωB = 0.5 + 0.5× (SR − SV) (15)

BF = ωBBR + (1−ωB)BV (16)

where BR and BV represent the infrared image base layer and the visible image base layer,
ωB the fusion weight of the infrared image base layer, SR and SV the obvious indigenous
value of the infrared image base layer and the visible image base layer, BF the image after
the fusion of the base layer.

The “weighted average” method, the information entropy method and the regional
average energy method are compared and the results are shown in Figure 5.
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(a) (b) (c) (d)

Figure 5. Comparison map of base layer fusion: (a) Proposed; (b) Weighted Average; (c) Based on
Information Entropy; (d) Based on Average Energy.

2.5. Fusion of Detail Layers

The multi-scale decomposition of the image detail layer contains a variety of scale
details of the original image, and this subtle detail information is useful. Due to the different
imaging principles of the two source images, the information contained in the detail layer is
complementary. Therefore, the traditional fusion strategy of ‘absolute value maximization’
does not take into account the different characteristics of infrared and visible images. The
fusion results may change the original image information and introduce irrelevant details
and noise. The ‘additive fusion’ strategy will weaken the contrast of detail features. In
order to avoid this phenomenon, we propose a method based on the combination of pixel
intensity and gradient to fuse the detail layer. The pixel intensity can represent the energy
information of the highlight detail part, and the gradient represents the highlight degree of
the image. Combined with the advantages of the two methods, the detail highlights of the
two source images can be fully retained. The specific formulas are as follows:

ωD =

{
0, |DV | < |DR|&GV < GR
1, others

(17)

DF = ωD × DV + (1−ωD)× DR (18)

In the expression, DV and DR denote the pixel values of the visible light image detail
layer and infrared image detail layer, GV and GR denote the gradient values of visible light
image detail layer and infrared image detail layer, ωD denotes the fusion weight of visible
light image detail layer, DF denotes the fusion image detail layer.

In order to prove that our method can preserve detail information more effectively, it is
compared with ‘additive fusion’, ‘absolute value is larger’ and the method in Reference [17]
(VSM-WLS), and the results are shown in the Figure 6.

By means of the above methods, we obtain the fused basic layer, detail layer and
infrared saliency map, and then overlay these three parts. Among them, the infrared
saliency map is used to guide the infrared target of the fused image, so we give it a weight
to avoid losing the original information of the image.

Finally, the basic layer, the detail layer and the infrared image are weighted and added
by Formula (19).

F = BF + DF + ωSSR (19)

where F is the final fusion image, and ωS is the fusion weight of the infrared dominant image.



Sensors 2022, 22, 6390 9 of 16

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Fusion Comparison Graph, The red box section is the contrast area: (a,e,i) Proposed; (b,f,j)
Additional fusion; (c,g,k) Absolute value is large; (d,h,l) VSM-WLS .

3. Results and Analysis

The infrared and visible images in the experiment are four groups of images accurately
registered from the TNO dataset. The image scene environment covers night, dark envi-
ronment and dense fog environment. In order to verify the effectiveness of the algorithm
in all aspects, this paper evaluates the fusion effect through subjective evaluation and
objective evaluation. The comparison algorithms include curvelet transform (CVT) [24],
DTCWT, Haar , LP, MSVD, NSCT, NSST, potential low-rank representation decomposition
(LatLRR) [14], and VSM-WLS. The experimental platform is MATLAB 2018b (Core i7,
clocked at 3.30 GHz, memory of 16 GB).

3.1. Parameter Setting

In this method, there are three adjustable parameters, namely α and β in Formula (3)
and ωS in Formula (19). The corresponding fine-tuning can be made according to different
application requirements. Here’s how we determine the parameters:

In Formula (3), α is the overall correction parameter, and its value affects the overall
brightness and darkness of the image. If the value is too small, the whole image is bright
and the contrast is reduced. On the contrary, if the value is too large, the image is too dark
and some details are lost. Based on experience, the α value is 1.9.

β in Formula (3) and ωS in Formula (19) are both weight parameters. We introduce
a nonlinear function to control the value parameter. The nonlinear function is shown in
Formula (20).

Sλ(ξ) =
arctan(λξ)

arctanλ
(20)
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where ξ is the independent variable of the function, and the range of ξ and Sλ(ξ) is [0, 1].
The nonlinear transformation function under different λ values is shown in Figure 7. It can
be seen that when λ gradually increases, the curve becomes steeper and steeper, and the
nonlinear transformation is also gradually enhanced. Therefore, we can control the guiding
weight of the infrared image by adjusting λ.

Figure 7. Nonlinear graph.

Therefore, the two weight parameters can be expressed as:

ωS =
arctan(λSR)

arctanλ
(21)

β =
arctan(λβ H)

arctanλβ
(22)

Among them, SR represents the normalized infrared image, H represents the mean
of local gray level of normalized image, λ and λβ are used to adjust the weight according
to different applications. If λ is too large, it will lead to too much infrared information
and lose the original image information. On the contrary, too little infrared information
cannot play a guiding role, so does λβ. The λ and λβ values in this article are set to 8 and
9, respectively.

3.2. Subjective Evaluation

The first set of data is the image of the intersection in the dark environment. The size
of the source image is 575× 475. The infrared image highlights the target information
of pedestrians, street lights, cars and so on. The visible image can only highlight the
information of billboards, street lights, signal lights and so on. The comparison results
of different fusion algorithms are shown in Figure 8. The red box is selected where part
of the target is amplified. The comparison results show that Haar, MSVD, NSST and
LatLRR algorithms are too smooth, resulting in low image contrast after fusion. CVT, LP,
NSCT algorithms appear artifacts around the pedestrian contour; VSM-WLS algorithm has
relatively good effect, but for the prominent effect of the target it is inferior to the proposed
algorithm, which can be observed from the amplified pedestrian effect.

The second set of data is the image in the dark scene, and the size of the source image
is 360× 270. The infrared image highlights the smoke, people and doors on the roof, and
the visible image highlights the texture details of the trees, door contours and ground. The
comparison results of different fusion algorithms are shown in Figure 9. Haar, MSVD, NSST,
VSM-WLS algorithms have low image contrast after fusion, and CVT, LP, NSCT algorithms
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have artifacts on the edge of image characters after fusion, and LatLRR algorithm is not of
rich information in the texture of trees and ground bricks. The proposed algorithm leads to
good effect in artifacts, contrast, target, texture and so on.

(a) Infrared image (b) Visible image (c) CVT (d) LP

(e) Haar (f) MSVD (g) NSCT (h) NSST

(i) LatLRR (j) VSM-WLS (k) Proposed

Figure 8. Image fusion results of the first group. The red box in the first two images is the main
contrast area, and the red box in the remaining images is the enlarged effect of the contrast area.

The third group of data is the image of the ship on the sea in the dark scene, and the
size of the source image is 505× 510. The comparison results of different fusion algorithms
are shown in Figure 10. From the overall contrast, Haar, MSVD, NSST and LatLRR have low
contrast and unclear image. From the perspective of highlighting the target, the proposed
algorithm is the best.

The fourth group of data is an image in the dense fog scenario, and the size of the
source image is 620× 450. In the infrared source image, the target information can be clearly
displayed without the influence of dense fog. In the visible light image, the texture details
of the house and land are clear, but the target is hidden. The comparison results of different
fusion algorithms are shown in Figure 11. In the dense fog scenario, the highlight of the
target is particularly important. The selected part of the red box in the figure is the target
hidden by the dense fog after amplification. It can be seen from the comparison figure that
the algorithm in this paper has the most obvious highlight effect on the target. In terms of
texture detail preservation, VSM-WLS algorithm is slightly better than the algorithm in this
paper for details preservation of roof. However, in terms of ground texture, the algorithm
in this paper retains more details than VSM-WLS algorithm. The details of roof are selected
by blue box, and the ground details are selected by green box.
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(a) Infrared image (b) Visible image (c) CVT (d) LP

(e) Haar (f) MSVD (g) NSCT (h) NSST

(i) LatLRR (j) VSM-WLS (k) Proposed

Figure 9. Image fusion results of the second group. The red box part is the location of the person in
the visible image.

(a) Infrared image (b) Visible image (c) CVT (d) LP

(e) Haar (f) MSVD (g) NSCT (h) NSST

Figure 10. Cont.
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(i) LatLRR (j) VSM-WLS (k) Proposed

Figure 10. Image fusion results of the third group.

(a) Infrared image (b) Visible image (c) CVT (d) LP

(e) Haar (f) MSVD (g) NSCT (h) NSST

(i) LatLRR (j) VSM-WLS (k) Proposed

Figure 11. Image fusion results of the fourth group. The first two images of the red box part is the
character position, the rest of the image red box part is the character amplification effect, green box
and blue box part are significant contrast area.

3.3. Objective Evaluation

At present, many researchers have conducted research on the image fusion evaluation
index [25,26], which is mainly divided into four types, namely based on information theory,
image features, image structure similarity and human perception measurement. This paper
selects several evaluation indexes to verify the objective effect of the algorithm. The selected
indicators are: information entropy (EN), structural similarity (SSIM), average gradient
(AG) and standard deviation (SD).

The main function of EN is to measure the amount of information in the image.
The greater the value of information entropy is, the greater the amount of information



Sensors 2022, 22, 6390 14 of 16

contained is, and the more retained details of the image are. The main function of SSIM is to
measure the structural similarity between the fused image and the two source images. The
larger the value, the closer the representation and the source image are, the more details are
retained. The main function of AG is to reflect the clarity of the fused image, and also to
reflect the small detail contrast and texture transformation characteristics in the image. The
larger the value is, the clearer the image is; the larger the SD value, the higher the image
quality and the clearer the image.

The four groups of fusion images based on different algorithms are quantitative
evaluated and indexed as shown in Table 1. The best indicator in the table is marked by
bold fonts, and the second value of the effect is marked by underline. The Table 1 (S1–S4)
represent four test images.

Table 1. Objective evaluation results of different fusion methods.

Methods
Image Evaluation

Proposed CVT LP MSVD NSCT NSST LatLRR VSM-WLS

EN 6.7397 6.1692 6.4729 5.935 6.1957 6.7243 6.0297 6.282
SSIM 0.616 0.602 0.6165 0.6375 0.6199 0.603 0.6315 0.6371
AG 3.9535 3.2681 3.4755 2.1762 3.3247 2.391 2.4135 3.4792

S1

SD 40.3372 25.1804 31.5615 21.1486 26.264 32.8052 27.4851 33.1943

EN 7.048 6.7779 6.7763 6.5541 6.7209 7.2385 6.7016 6.8267
SSIM 0.7735 0.7158 0.7257 0.7675 0.7328 0.7229 0.7531 0.742
AG 4.3621 3.7283 3.8093 2.5071 3.7272 2.3984 2.529 3.861

S2

SD 56.5402 34.1581 36.2648 31.6308 33.8815 50.3687 35.757 44.5028

EN 5.8723 5.2067 5.3071 4.8954 5.1643 5.8654 5.076 5.6764
SSIM 0.8432 0.8123 0.816 0.8481 0.8238 0.8009 0.8412 0.7929
AG 2.7097 2.0006 2.0467 1.2306 2.043 1.334 1.4056 2.7673

S3

SD 30.7614 12.4632 14.0743 10.4837 12.6503 19.481 12.8921 20.3214

EN 6.8876 6.5601 6.492 6.2407 6.442 6.7492 6.4338 6.7884
SSIM 0.7819 0.7596 0.7637 0.8066 0.7728 0.7577 0.7959 0.7688
AG 3.5948 3.1057 3.1007 1.808 3.0597 1.82 1.7632 3.5846

S4

SD 40.469 29.9993 30.6485 27.6401 29.2161 37.2923 30.0467 37.0782

It can be seen from Table 1 that in terms of objective evaluation indexes, the proposed
method has certain advantages in EN, SSIM, AG and SD. On the whole, most of the indexes
of this algorithm are higher than those of other comparison algorithms. Although it does
not rank first for EN in the second group, the SSIM and AG in the third group and the
SSIM in the fourth group, it ranks second and leading. The algorithm in this paper takes
into account the enhancement of image contrast. In terms of indicators, the AG and SD
are basically in the leading position, especially the standard deviation index of the third
group of images, which is 51.37% higher than that of the second group. By comprehensive
comparison, this method performs well in objective evaluation.

Finally, the running time of different methods on four experimental images is provided
in Table 2. Our method is at the intermediate level. CVT, LP and MSVD algorithms are the
most basic algorithms, and the running time is relatively short. The running time of the
proposed method is faster than that of NSST and LatLRR, and slightly lower than that of
NSCT, but the fusion effect is better than NSCT. The algorithm in this paper is similar to the
VSM-WLS algorithm, and both of them use the method of saliency map and multi-scale
decomposition. However, the algorithm in this paper has been improved in the fusion
algorithm of each layer of multi-scale decomposition, and many factors are considered.
Therefore, the algorithm complexity is high, but the comprehensive effect is better than that
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of VSM-WLS. The algorithm in this paper needs to be improved in terms of time complexity,
which is also the direction for further efforts.

Table 2. Running Time Comparison on four experimental images.

Time (s)
Methods

Proposed CVT LP MSVD NSCT NSST LatLRR VSM-WLS

S1 2.7117 0.9830 0.0087 0.2617 2.4595 6.4310 54.2865 1.2896
S2 2.4163 0.7733 0.0065 0.2121 2.1705 6.9734 152.0037 1.3355
S3 2.2129 0.7543 0.0051 0.1895 1.9775 4.0279 55.9909 1.0919
S4 2.6183 0.9489 0.0073 0.2296 2.3378 5.9728 163.1223 1.3334

4. Conclusions

This paper presents an infrared and visible image fusion method based on visual
aboriginal image and image contrast enhancement. The contrast enhancement algorithm
is used to improve the image contrast and the clarity of the target. The infrared salient-
indigenous image is used to guide the prominence of the salient-indigenous target in the
fusion image. The differential rolling guidance filtering method is used to decompose the
image into different layers, so as to facilitate the targeted fusion. In terms of the fusion
strategy of the basic layer and the detail layer, the fusion weights are controlled by the
salient-indigenous value and the fusion method based on the combination of pixel intensity
and gradient is also proposed, which is targeted for fusion. The experimental results show
that the retention of the target is very prominent, and the detail information retention
is better than other algorithms. Since the algorithm in this paper is comprehensive and
complex, the next step is to improve the speed.
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