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Abstract

Optimization refers to finding the optimal solution to minimize or maximize the
objective function. In the field of engineering, this plays an important role in design-
ing parameters and reducing manufacturing costs. Meta-heuristics such as the grey
wolf optimizer (GWO) are efficient ways to solve optimization problems. However,
the GWO suffers from premature convergence or low accuracy. In this study, a team
learning-based grey wolf optimizer (TLGWO), which consists of two strategies, is
proposed to overcome these shortcomings. The neighbor learning strategy intro-
duces the influence of neighbors to improve the local search ability, whereas the
random learning strategy provides new search directions to enhance global explora-
tion. Four engineering problems with constraints and 21 benchmark functions were
employed to verify the competitiveness of the TLGWO. The test results were com-
pared with three derivatives of the GWO and nine other state-of-the-art algorithms.
Furthermore, the experimental results were analyzed using the Friedman and mean
absolute error statistical tests. The results show that the proposed TLGWO can pro-
vide superior solutions to the compared algorithms on most optimization tasks and
solve engineering problems with constraints.
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Gravitational search algorithm

Ray optimization algorithm

Particle swarm optimization
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Extreme learning machine
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Gaze cues learning-based grey wolf optimizer
Randomized balanced grey wolf optimizer
Society-based grey wolf optimizer

Adaptive grey wolf optimizer

Grey wolf optimizer with RNA crossover operation
Min-conflict local search algorithm

Hybrid GWO with PSO

Balanced grey wolf optimization

Sparsity-based grey wolf optimization algorithm
Hybrid grey wolf optimizer

Exploration-enhanced grey wolf optimizer
Improved grey wolf optimizer

Self-organizing hierarchical particle swarm optimizer
Self-adapting differential evolution algorithm
Modified artificial bee colony algorithm

Hybrid krill herd algorithm

Sinusoidal differential evolution algorithm

Chaotic multi-verse optimizer

Associative learning-based exploratory whale optimizer

Enhanced butterfly optimization algorithm
Improved antlion optimizer

Mean absolute error

Inverse kinematics

Degrees of freedom

1 Introduction

Optimization is a broad field of research that refers to finding a set of optimal
variables to minimize or maximize an objective function without violating con-
straints. In the field of engineering, optimization problems usually refer to search-
ing for optimal parameters to minimize manufacturing costs, or designing con-
trollers to minimize control errors. The optimization of complex systems usually
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involves many difficulties, such as nonlinearity, non-differentiability, high com-
putational cost, large solution space, and multimodality [1]. Conventional math-
ematical methods, such as exact or approximate algorithms, can no longer solve
these problems efficiently [2].

In contrast to conventional methods, meta-heuristic algorithms have become a
competitive alternative to solving complex optimization problems owing to their
simplicity and flexibility. Some meta-heuristic algorithms originated from physical
rules, such as the multi-verse optimizer (MVO) [3], thermal exchange optimization
(TEO) [4], gravitational search algorithm (GSA) [5], and ray optimization algorithm
(RO) [6]. However, most algorithms are inspired by nature, such as the particle
swarm optimization (PSO) [7], the krill herd algorithm (KH) [8], the differential
evolution algorithm (DE) [9], the artificial bee colony algorithm (ABC) [10], the ant
lion optimizer (ALO) [11], the whale optimization algorithm (WOA) [12], and the
butterfly optimization algorithm (BOA) [13].

Using mathematical methods to describe the group class and hunting mechanism
of grey wolves, Mirjalili [14] proposed an innovative meta-heuristic algorithm: the
grey wolf algorithm (GWO). The grey wolf society is divided into four classes. The
top leader is the alpha, who has the most extensive experience and is responsible
for directing the wolves to find and hunt prey. The middle class comprises the beta
and delta. They obey alpha’s leadership and convey alpha orders to their subordinate
wolves. The remaining wolves form the lowest class, called the omega, and act in
accordance with the instructions of the leaders. During a hunt, the best wolf replaces
the original alpha as the new leader.

The hunting mechanism simulated by the GWO includes three steps: tracking,
surrounding, and assaulting the prey. There are two changing parameters, a and
C, that adaptively adjust the degree of exploitation and exploration performed by
the algorithm. Many studies have shown that the GWO has strong competitiveness
owing to its fewer control parameters and easy implementation. Moreover, the GWO
has also been widely used in real-world optimization problems, such as feature
selection [15], image segmentation [16], and economic dispatch [17]. This shows
that the GWO has great research value and application potential. However, the GWO
relies only on three chief wolves to update the population, which leads to limitations
such as insufficient population diversity and premature convergence.

To improve the performance of the GWO and better solve optimization problems,
we designed two learning strategies to propose a new optimizer called TLGWO. The
proposed strategies mimic the learning behavior of the grey wolf, including learning
from its neighbors, as well as learning from random wolves in the team. The main
features and contributions of our work are shown as follows:

e Proposal of a neighbor learning strategy. This strategy defines the sensing dis-
tance for each search agent, and the other search agents within the sensing dis-
tance are its neighbors. Neighbors with higher fitness values attract the search
agent, whereas neighbors with lower fitness values repel it. The comprehensive
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influence of neighbors on a certain wolf will prompt it to move closer to its prey,
which accelerates the convergence of the GWO.

e Proposal of a random learning strategy. During the global search, this strategy
allows a grey wolf to learn from random wolves in the team, which allocates
some of the wolves to a new area. This random distribution provides grey wolves
with the opportunity to search for better prey, which enhances the exploration
ability of the GWO.

e Comparison of the proposed TLGWO with the classical version of the GWO,
three upgraded variants of the GWO, and nine recent state-of-the-art algorithms
on 21 benchmark functions. Four engineering design problems with constraints
were also used for the evaluation. The Friedman and mean absolute error statisti-
cal tests were performed to analyze the experimental results.

e Enhanced and balanced exploitation and exploration of the GWO due to the
proposed algorithm, which is conducive to solving the optimization problem of
complex systems. The two proposed learning strategies are also applicable to
other algorithms, which provides new ideas for the improvement in meta-heuris-
tic algorithms.

The remainder of this paper is organized as follows. Section 2 summarizes related
work, including the classical GWO and some GWO variants. Specific team learning
strategies and the details of the proposed TLGWO are described in Sect. 3. Section 4
lists the benchmark functions, introduces the experimental conditions, and analyzes
the experimental results. Section 5 describes the engineering design problems and
presents the corresponding tests. Finally, Sect. 6 provides a summary statement and
discusses future work.

2 Related work

In this section, we introduce the grey wolf optimizer (GWO), as well as some
recently proposed GWO variants.

2.1 Grey wolf optimizer

The grey wolf optimizer (GWO) was originally proposed by Mirjalili et al. [14] in
2014. It uses mathematical methods to show the group hierarchy and hunting laws of
grey wolves.

2.1.1 Social hierarchy

According to the description of the GWO, the grey wolf society consists of four
classes: alpha (a), beta (f), delta (5), and omega (w). a, f, and o are the most suit-
able, second most suitable, and third most suitable results of the current popula-
tion, respectively. They represent the leaders of the wolf pack and have the best
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understanding of the location of the prey. The other wolves are denoted by w. Their
positions are changed based on a, 8, and 6 in each iteration. Throughout the opti-
mization process, @ wolves were guided by the leaders to capture the best prey (the
optimal solution) in their hunting space.

2.1.2 Encircling prey

The first step of hunting is to encircle the prey. The following two equations are pro-
posed to describe the encircling behavior:

D=|C- Xp(t) - X(@) (D

Xt+1)=X,(t)-A-D 2

where X, and X indicate the position variables of the prey and grey wolf, respec-
tively. 7 is the current iteration. A and C are coefficient variables that are calculated
as follows:

A=2a-rj—a 3)

C=2-n, 4)

where r; and r, are random variables with values in [0, 1]. a linearly decreases from
2 to 0 during the entire search and is calculated as follows:

a(t) = 2 — 2t /Maxlter 5)

where MaxlIter is the maximum number of iterations.

2.1.3 Attacking prey

The second step involves harassing and attacking prey. Assuming that the three
wolves a, f, and 6 have better knowledge of the location of their prey than the other
wolves, the other wolves (@) will follow them to get closer to the prey. The positions
of the w wolves are updated as follows:

X, =X,—-A;-|C,-X, - X| (6)
Xy =X; = Ay |Gy X, - X| ()
X;=X;—A;-|Cy - X; — X| 8)
Xt +1) = (X,(0)+X,0) + X5()) /3 )
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where X, X;, and X; denote the positions of a, f3, and J, respectively. The GWO
algorithm is presented in Algorithm 1.

Algorithm 1. Grey Wolf Optimizer (GWO)

1 Initialize the grey wolf population X and the algorithm’s parameters a, 4 and C
2 The current iteration ¢ = 1

3 while 7 < the maximum number of iterations Max/ter do

4: for i =1 to the population size N do

5: Calculate the fitness of each search agent

6: Select the best-performing wolves a, f, and 0

7 end for

8: Calculate the parameter a using Eq. (5)

9: for i=1to Ndo

10: Calculate the parameters 4 and C using Eq. (3) and (4)

11: Update the position of the current search agent using Eq. (9)
12: end for

13: t=t+1

14: end while

2.2 Recently proposed GWO variants

The search process of meta-heuristic algorithms includes two stages: exploration
and exploitation. During exploration, the search agent investigates promising areas
in the search space as widely as possible, which requires the search to be random
and global. Exploitation refers to the ability of the search agent to find a better solu-
tion in a promising local search area.

In the GWO, the wolves are led by a, , and 6 to search the optimal solution in
the search space. This behavior is good at exploitation but weakens exploration, so
the algorithm may converge prematurely owing to insufficient exploration and fall
into a local optimum. Another limitation is that when the population update is deter-
mined by only the three best wolves, the diversity of the population decreases, which
is not conducive to finding the global optimal solution.

Many recent studies are devoted to overcoming the shortcomings of the GWO.
Ma et al. [18] combined extreme learning machine (ELM) with the GWO and pro-
posed the GWO-ELM algorithm to solve the optimization problem of composite
beams (CBs). The experimental results showed that the GWO-ELM could determine
the overall behavior of the CBs quickly and accurately. However, more tests such as
optimization of benchmark functions are not used to verify the universality of the
algorithm.

Shehata et al. [19] combined the autonomous group particle swarm algorithm
(AGPSO) and the grey wolf optimizer to propose a hybrid optimizer called AGPSO-
GWO. The application on the optimization of the current transmission systems
verified the effectiveness of the hybrid algorithm. Since the AGPSO-GWO is a
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hybrid version of two algorithms, the computational complexity of the algorithm is
increased.

Singh and Bansal [20] designed a new search mechanism and a driven scheme
to propose the mutation-driven modified grey wolf optimizer (MDM-GWO). The
mutation mechanism based on Levy flight is used to enhance the global search abil-
ity of the algorithm. The experimental results show that the new strategies improve
the convergence speed and exploration ability of the GWO.

Inac et al. [21] proposed the multi-strategy random weighted grey wolf optimizer
(MsRwGWO) containing new strategies such as a boundary checking mechanism
and a greedy selection mechanism to improve the performance of the GWO. How-
ever, the comparative results show that the MsRwGWO is less competitive on high-
dimensional optimization problems.

Nadimi-Shahraki et al. [22] designed two new strategies called neighbor gaze
cues learning (NGCL) and random gaze cues learning (RGCL). The NGCL strategy
enhances the exploitation ability of the algorithm, and the RGCL strategy improves
the population diversity. They applied these strategies in the GWO and proposed the
gaze cues learning-based grey wolf optimizer (CGWO). These new strategies effec-
tively enhance the competitiveness of the GWO.

Adhikary and Acharyya [23] proposed the randomized balanced grey wolf opti-
mizer (RBGWO), which is inspired by the social hierarchy and random walk strate-
gies. Unconstrained and constrained real-world optimization problems are used to
test the performance of the algorithm. Experimental results show that the added
strategies effectively improve the search efficiency of the algorithm.

Hosseini-Hemati [24] proposed the society-based grey wolf optimizer (SGWO)
to optimize power dispatch problem. In the SGWO, the population is divided into
several societies. Each society has an independent leader who leads other wolves
closer to their prey. Moreover, a new mechanism for attacking prey was applied. The
results show that the SGWO can solve the optimization problem of power system
quickly and effectively.

In order to improve computational efficiency, Meidani et al. [25] proposed the
adaptive grey wolf optimizer (AGWO). In the AGWO, the parameters are automati-
cally adjusted according to a three-point fitness history, which effectively accelerates
the convergence of the algorithm. However, the performance of the algorithm has
not been further tested on real-world optimization problems with constraints.

Liu and Wang [26] designed a crossover operator according to the structure of
RNA molecules. The proposed grey wolf optimizer with RNA crossover operation
(RNA-GWO) is used for optimization problems of benchmark functions and wave-
let neural networks. The results show that the RNA-GWO effectively improved the
global search ability of the GWO. Optimization problems for complex systems with
constraints have not been used to test the performance of the algorithm.

Makhadmeh et al. [27] combined the min-conflict local search algorithm (MCA)
and the GWO to propose a new algorithm called GWO-MCA. The comparison
results with other algorithms show that the GWO-MCA has great advantages in
solving the power scheduling problem in smart home. Future work can be consid-
ered to modify the selection strategy of the MCA to further improve the quality of
the solutions.
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Based on the unique search advantages of the PSO and GWO, Zhang et al. [28] pro-
posed the hybrid GWO with PSO (HGWOP). A poor-for-change strategy organically
integrates the PSO and GWO to maximize the overall performance. The test results on
benchmark functions show that the HGWOP has stronger universality. However, the
proportion of the HGWOP ranking first on different functions is not large, and its appli-
cation in practical problems is not considered.

In the field of terrestrial networks, Gupta et al. [29] proposed the balanced grey wolf
optimization (B-GWO) algorithm to optimize the unmanned aerial vehicles deploy-
ment and power allocation. In this work, the iterative process of the GWO is divided
into three stages and each stage has a unique parameter update strategy. The compari-
son results show that the B-GWO has superior performance in solving non-convex
optimization problems.

Rajput [30] proposed the sparsity-based grey wolf optimization algorithm (SGWO-
FH) to optimize the least square representation problem in face hallucination techniques.
The concept of sparsity effectively improves the computational speed of the algorithm.
Furthermore, a domain-specific prior is introduced to initialize the population. Com-
pared with other methods, the SGWO-FH produces better super-resolved faces. How-
ever, the algorithm is easily affected by noise, and its robustness needs to be improved.

3 Team learning-based grey wolf optimizer

The proposed team learning-based grey wolf optimizer (TLGWO) contains two differ-
ent strategies: neighbor learning and random learning.

3.1 Neighbor learning strategy

When chasing prey, grey wolves decide their actions based on the three leaders, as
described in Eq. (9). In addition, the influence of neighbor wolves on an individual
wolf cannot be ignored. This neighbor effect may be attractive or repulsive. If a neigh-
bor is closer to the prey, an individual will be attracted to it. Otherwise, the individual
stays away from the neighbors. Both cases motivate individuals to move toward the
prey, so the exploitation of the algorithm is further enhanced. In this paper, we pro-
posed a neighbor learning strategy to introduce the influence of neighbors.
The neighbor learning strategy is presented as follows:

M
ighb 2 5
gcighbor _ Z Finij (10)

1
=1

F. = i (11)
[/ Fworst _ Fbest
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A X, - X,
NS XX, T+ az
where M denotes the number of neighbors of the ith individual. F; and F; are the fit-
ness of the ith individual and the jth neighbor, respectively. F**"t and F®** indicate
the worst and the best fitness values in the population, respectively. X represents the
position of an individual or neighbor. 5(” is a unit vector, and a small positive num-
ber ¢ is added to avoid singularities. F' ; 1s the normalized fitness value that deter-
mines whether the effect of the individual and the neighbor is attractive or repulsive.

We take the following example to further explain the neighbor learning strat-
egy. Figure 1 shows a two-dimensional search space. The red point O represents
the global optimum. The three orange concentric circles represent the contour
lines of three fitness values F, F,, and F5. Search agents on the same concentric
circle have the same fitness value. The closer to the global optimum, the smaller
the fitness value, so F; < F,, < F;. The yellow point A refers to an individual in the
search agents. The points inside the green circle are the neighbors of A. In Fig. 1,
B, C, and D are neighbors of A, but E is not. There are three types of neighbors of
A: closer to the global optimum than A (like D), as far as A from the global opti-
mum (like C), and farther from the global optimum than A (like B).

In Eq. (11), F € [—1, 1] is a parameter that determines whether neighbors
attract or repel the individual. Since F,<F,, for A and D, F,;, > 0. Similarly,
F,p <0, F, = 0. We define the coordinate X of each search agent to be a vector
whose direction is from the origin O to itself. In Eq. (12), X is a unit vector and
its direction is from i to j. For A and D, the direction of vector vap = FipX,p is
from A to D. Similarly, the direction of vector v,z is from B to A. In other words,
D has an attractive effect on A, B has a repulsive effect on A, and C has no effect
on A. In the next iteration, the amount of position change of A is determined by

all its neighbors, as shown in Eq. (10). In this example, ocmlghbor =v,p + V4p- The

neighbor .

direction of a, is toward the origin O, so the neighbor learning strategy

learning strategy

Fig. 1 Schematic of neighbor A
|
I
i
I
|
I
I

Fy

Fs
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motivates A to move toward the global optimum. The above explanation contin-
ues to apply to search spaces with higher dimensions.
To select the neighbors of the ith individual, the sensing distance is defined:
sensing __ lead:
d, =[I X; — ™ || (13)

where a}eader represents the position change calculated by the classical GWO, and its

calculation method is shown in Eq. (9). If the Euclidean distance between two indi-
sensing

viduals is less than the sensing distance d , the individuals are neighbors.

3.2 Random learning strategy

Insufficient exploration is one of the main limitations of the GWO, which stems
from the fact that all grey wolves move in relation to the three wolves a, f#, and 6. In
this paper, we introduce a random learning strategy, so that individuals are not only
led by the leaders but are also affected by other random individuals in the popula-
tion. The random learning is described as follows:

O = p(X,, ~X,). mEn i (14)

where X,, and X, are two different individuals randomly chosen from the population.
p is a random scale factor that determines the walk distance and p € [0, 1].

Comparing Eq. (14) with Eq. (9), the significant difference is that the motion gen-
erated by Eq. (9) always forces the individual to move toward the current best solu-
tions (X,, X, and X;), whereas the position update caused by Eq. (14) is completely
random. This means that the motion induced by Eq. (14) may prompt individuals
to escape from local optima. Therefore, the random learning strategy described by
Eq. (14) provides enough randomness for exploration. Moreover, the random indi-
viduals X,, and X, also increase the diversity of the population, which plays an
important role in overcoming premature convergence.

Random learning provides individuals with the opportunity to avoid local optima,
which greatly enhances the exploration of the algorithm. It mimics the scattered for-
aging of grey wolves in nature in response to food shortages. If the food found by
the leaders is not sufficient to supply the entire wolf pack, some grey wolves may
migrate to new areas with abundant food, which improves their survivability.

3.3 Proposed TLGWO

When the neighbor learning strategy and random learning strategy are combined,
the position-updated operator of the GWO is rewritten as follows:

X[»(t + 1) — Bl py - al!eader + apeighbor + 32 Py a;—andom (15)

1

where a%" = (X, (1) + X,(1) + X;(1)) /3 is the same as in Eq. (9). a/**" is the
neighbor

i

movement of the ith individual under the influence of leaders a, f, and 6. a
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and alf‘“‘d"m are the movements caused by neighbors and random learning, respec-
tively. py, p, € [0, 1] are random parameters that are used to determine the distance
of the movements. B, and B, are defined as weighting factors to regulate the explora-

tion and exploitation capabilities of the GWO, and they are calculated as follows:

A\ H
By(1) = 1-B,(1) (17)

where p = 1.51s set based on experience. A similar setting of i can be found in [20].

B, and B, are nonlinear variables of iteration 7. At the beginning of the search, the
individuals are dispersed. A larger B, is set to enhance the exploitation so that the algo-
rithm quickly converges to the optimal solution. At the end of the search, individuals
are concentrated near the optimal solution. The value of B, increases to enhance explo-
ration and encourage more individuals to disperse to new search areas to find better
solutions.

The TLGWO algorithm is presented in Algorithm 2. The neighbor learning strategy
is good at local search and can help individuals find a precise solution faster. The ran-
dom learning strategy encourages individuals to explore new areas, which is conducive
to break through the local optimum.

Algorithm 2. Team Learning-based Grey Wolf Optimizer (TLGWO)

l: Initialize the grey wolf population X and the algorithm’s parameters a, 4, C, B, and B,
2: The current iteration # = 1

3: while 7 < the maximum number of iterations Max/ter do

4: for i = 1 to the population size N do

5: Calculate the fitness of each search agent

6: Select the best-performing wolves a, 5, and 0

7: end for

8: Calculate the parameter a using Eq. (5)

9: fori=1to Ndo

10: Update the parameters 4 and C using Eq. (3) and (4)

11: Calculate the movement caused by leaders using Eq. (9)

12: Calculate the sensing distance using Eq. (13)

13: forj=1to Ndo

14: Select the neighbors of the ith individual

15: end for

16: for k=1 to the number of neighbors M

17: Calculate the movement caused by neighbors using Eq. (10)
18: end for

19: Update the parameters B, and B, using Eq. (16) and (17)

20: Calculate the movement caused by random learning using Eq. (14)
21: Update the position of the current search agent using Eq. (15)
22: end for

23: t=t+1

24: end while
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4 Experimental results and analysis

In this section, the proposed TLGWO was tested on 21 commonly used benchmark
functions. The test results were compared with the GWO and three GWO vari-
ants, as well as nine state-of-the-art algorithms. For a fair comparison, we chose
improved versions of the state-of-the-art algorithms. Moreover, several statistical
analysis methods were used to discuss the results.

The algorithms used for comparison are as follows: grey wolf optimizer (GWO)
[14], hybrid grey wolf optimizer (HGWO) [17], exploration-enhanced grey wolf
optimizer (EEGWO) [31], improved grey wolf optimizer IGWO) [32], self-organ-
izing hierarchical particle swarm optimizer (HPSO) [33], self-adapting differential
evolution algorithm (SADE) [34], modified artificial bee colony algorithm (MABC)
[35], hybrid krill herd algorithm (DEKH) [36], sinusoidal differential evolution
algorithm (sinDE) [37], chaotic multi-verse optimizer (CMVO) [38], associative
learning-based exploratory whale optimizer (BMWOA) [39], enhanced butterfly
optimization algorithm (BBOA) [40], and improved antlion optimizer (DALO) [41].

Table 1 lists the parameter settings of the algorithms mentioned in this study. All
parameters were set to the values in the original reference studies. All experiments
were performed on a computer with an Intel® Core™ i7-8750H CPU @ 2.20 GHz
and 8.00 GB RAM in a Windows 10 environment. The stopping rule for all algo-
rithms is that the number of iterations reaches the maximum number of iterations. In
this paper, the maximum number of iterations was set to 500.

4.1 Benchmark functions
Twenty-one benchmark functions with dimensions D =10, 30, and 50 from a

series of reference studies [14, 15, 20, 42] were applied to verify the superiority
of the TLGWO. The selected benchmark functions are presented in Table 2. The

Table 1 Parameter settings of algorithms

Algorithm Year Parameter settings

GWO 2014 a €[2,0],r.r, €[0,1]

HGWO 2016 a€l2,0l,r,r,el[0,1,W=1C, €[0,0.2]
EEGWO 2017 r, 1, €10,1], 6, =0.1,b, = 0.9, p = 1.5, @1 = 2.04i0a = 0
IGWO 2021 a €[2,0],r.,r, €[0,1]

HPSO 2004 c;;=25,¢;,=05,¢;,=05,¢pp =2.5

SADE 2006 7,=7=01F=01F,=09

MABC 2012 @; € [-1,1], limit = 200, MR = 0.4, SF; = 1

DEKH 2014 N =0.01, v, =0.02,C, =0.5,FW = 0.1,CR = 0.4
sinDE 2014 U; €10,1], freq =025

CMVO 2019 WEP € [0.2,1], TDR € [0.6,1],p = 6

BMWOA 2020 [~U(-1,1), p ~U(0,1), § = 0.005, bw = 0.5
BBOA 2020 a €10.1,03],r€[0,1],c=0.01, p=0.8

DALO 2021 J.=Lw,=8w,=14
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search space (2-D version) for some of these benchmark functions are shown in
Fig. 2. In Fig. 2, the variables x; (i=1, 2) and the function value f of the bench-
mark function with dimension D=2 constitute a three-dimensional surface.
Below the surface is a contour plot, and the color of the surface changes accord-
ing to the height of f.

The unimodal functions (f,—fy) were implemented to test the global search per-
formance of the algorithms owing to the functions having only one optimal solu-
tion. Comparatively, the multimodal functions (f;,—f,;) have many local optima,
which are helpful for examining the exploration ability of algorithms. The mini-
mum value of all functions was 0.

100

=100 -100 =100 -100 =100 -100

@A (b) f3 ©/f

-500  -500

©f M /2

-100 100 =100 -100

(®) fis (h) fis @) fis

Fig.2 Search space (2-D version) for benchmark functions
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4.2 Comparison with the GWO and its variants

To demonstrate the competitiveness of the TLGWO, the GWO and three popu-
lar GWO variants (HGWO, EEGWO, and IGWO) were used for comparison. The
details of the algorithms are shown in Table 1. The population size and the maxi-
mum number of iterations were 30 and 500, respectively. For each benchmark func-
tion having 10, 30, and 50 dimensions, 30 runs were performed. The results of the
comparison are presented in Tables 3 and 4, where “Mean” represents the average
best value and “Std” refers to the standard deviation value. Wilcoxon’s signed-rank
test with a significance level of 5% was applied to compare the superiority of algo-
rithms. The “+” indicates that the TLGWO performs better than this algorithm, “—”
means the performance of the TLGWO is inferior to this algorithm, and “~” rep-
resents that the TLGWO is not significantly different from this algorithm. The best
results are shown in bold.

Tables 3 and 4 show that the TLGWO achieves the best results for most func-
tions. Compared with the GWO, the TLGWO achieves similar results on f;5 and bet-
ter results on all other functions. Compared with the HGWO, the TLGWO obtains
better results for all functions except fy. On fy with D=10, the TLGWO loses to the
HGWO, but as the dimensions increase, the performance of the TLGWO catches up
to that of the HGWO. Similar behavior can also be observed in comparison with the
IGWO on f), and f,.

Compared with the EEGWO, the TLGWO obtains better results on 13 func-
tions and achieves the same optima on seven functions. On f; with D=10 and 30,
the TLGWO and EEGWO show similar performances, but on f; with D=>50, the
EEGWO is even better. Compared with the IGWO, the TLGWO performs better
on 16 functions, worse on f; and f4, and similarly on f}5. According to the above
analysis, the TLGWO is more competitive than other GWO variants for almost all
unimodal and multimodal functions, and its performance does not decrease signifi-
cantly with an increase in dimensionality.

Figure 3 shows the convergence curves of the six algorithms mentioned above
with D=30 on f,, f5, f4, and f};. It can be seen that the TLGWO converges to the
global optimum at a fast rate. Similar phenomena were observed for most other
functions. Owing to space limitations, the resulting figures for the remaining func-
tions are omitted.

4.3 Comparison with other state-of-the-art algorithms

The TLGWO was compared with nine other state-of-the-art algorithms. For the 21
benchmark functions, all algorithms were run independently 30 times. The popula-
tion size was 30, and the best result was output after 500 iterations. Tables 5 and 6
show the average and standard deviation of the optimization results, and the best
results are highlighted in bold.

From Tables 5 and 6, it can be observed that the TLGWO obtains the best results
in all dimensions for all functions except functions fo, fi¢, fig, and fijo. On fy with
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Fig.3 Convergence curves of five algorithms with D=30 on f, f;, 14, and f;

D =10, the SADE performs best, and when the dimension is increased to 30 and
50, the BMWOA achieves the best performance. However, the results obtained by
the TLGWO are quite close to the best results, especially when the dimension is
high (when D =30, the difference between the best result and that of the TLGWO is
2.8%, and when D =50, the difference is 0.62%).

On f|, with D=10, the sinDE finds the optimal solution, and when D =30 and 50,
the BMWOA outperforms the other algorithms. On f|g with D =10, 30, and 50, the
best results are obtained by HPSO, sinDE, and BMWOA, respectively. The sinDE
achieves a great advantage on f;o with D=10 and 30, but when the dimension is 50,
HPSO is best.

Figure 4 shows the convergence characteristics of the TLGWO and nine state-of-
the-art algorithms on some typical functions. According to Fig. 4, the TLGWO has a

@ Springer



J.Cuietal.

00+H300°0 00+dL0v  TO—HT8'1 10+400°¢ 00+dcS'S 00+H66'S 00+d¥8'8 00+dSS°€ 00+H6¢°6 10—HL9°6 pPIS
IPC—HEE'T 10+a¥¥'C 10—Hd8¢°S 10+d61°S 10+dcCS'T 10+d€Te 10+4S1°9 10+3¥9°L 10+d¥9°¢ 00+H9¢y  UBSN  0S
00+H00°0 00+d¥I1'C C0—HCLC 10+dS¢C 10—400°¢S 00+dCC9 10+d€0°1 00+d0LY 00+HLY'8 10—4I¥'1 pIS
SYT—H9IV'T 10+d1S°T 10—d8¢°S 10+d€¢’s 00+dS8°'1 00+dS0°6 T0+HLT'E T0+HLL'S T0+HSL'T 00+HIT'T eI\ 0¢
00+300°0  ¥O—HS8Y'9 20—d10'C 00+d89°1 20—Hd86'C €0—H8T’I 00+d¥8°[ 00+d0T'1 10—dL0€ S0—HCe'l pIs
LYT—H89°1L £0—H0¢'1 [10—dvLYy 00+HETT 20—d¢€0'8 YO—HEI'Y  00+H6ST 00+d76°¢ 10—d¢0°'1 SO—HSY'1 UBIN 01 Y
00+300°0 £0+d€8°9 €0—HL6'8 Y0+d8L'C €0+d0¢'C PO+ASY'1 PO+AST'T €0+dce’s Y0+HE0'E OHdISY pIS
00+H00°0 y0+d16°1 10—H66'1 S0+dL6’l €0+dTL’S yO+HI8Y  ¥0+d9Sv  vO+HIVL YO+d6v v €0+d99°1 UedN - 0S
00+H00°0 €0+avec 20—d20’l y0+d50°C 10+30LY €0+dEST €0+dLT Y €0+ds8Yy YO+AST'T 10+d29°1 pPIS
00+H00°0 €0+dCLy 10—dI8°T YO+HEY'€ c0+ass'T €0+de0'L €0+dEL'L Y0+d19°C YO+d70°1 10+dLE8 eI\ 0¢
00+300°0 0—ds9°'1 €0—H9L6 20+d€0C 70—Hd88'S 0—dc0v €0+dSE’T 0+d6£°¢ 10—HLT'T S0—HO0T'E IS
00+300°0 20—d80°1 10—46¢'1 CO+HI8'T ¢0—dLT'8 20—d06'C €0+d6S°1 0+d8¢'8 C0—dLE8 S0—HTT'T UBIN 0l Y
00+300°0 10+30T°8 PO+H88'Y 0€—4d99v 10+d0t'¢ 20—dssC 20+dCL'6 PO+HIL'T 10—dL1'8 00+dLY € pPIS
8Y¢—uvy'e c0+H9¢'1 S0+30S°€ oc—de6v'1 oHdTy'1 10—d8¥'1 +ay9y  Y0+dSTl 10—d8¥'L 00+H9¢°8 BN 0S
00+H00°0 10+4d60t 10—41I¥'S ce—dSI'1 00+390°L YO—HELT 00+d9C°C 00+d0SY C0—HLTC 10—HETY pIS
SYT—HET'T 10+deT°¢e 10—d86'Y €€—H95°9 00+4d299 YO—HST'L T10+HLY'T 10+481°Y 20—d8L’1 10—4360°S eI\ 0¢
00+d00°0  00+HY6'L 0—drv'l ye—HI8'¢ c0—deL'l EI-der'e ¢0—d6¢C 10—4LIC 60—d81'¢c LO—H819 pIs
8PT—HSS'T 00+a¥I'1 10—dST°1 ¥€—H60'C 0—d8Ly e1—HeS'E 10—d8%'1 10—H8C9 60—dECT LO—HS6'L UBIN o1 y
00+300°0 00+dely €0—HCS'S 0S—d0v'1 00tdLTE 10—369°1 10+d8¢’c €0+d9t°'S 10+3¢e8°1 00+dS6'C pIS
00+H00°0 00+4956°S [0—HCLT [6—HS9'S 10+996°1 [0—HC8'C 0+de0'1 YO+HEY'S 10+40S°1 00+H9T°¢ UedN  0S
00+H00°0 Y0—H91'8 €0—H68'L Cy—d00°'1 10+391°¢ SO—HI8¥ 10+3S0°1 €0+dsey 0—dI18'l C0—dSLT pPIS
00+H00°0 €0—dIT'L 10—499¢°1 Ey—HII'C 00+d€6'1 S0—dcI9 10+d88°¢ YO+H61°1 C0—dLEL £0—H88'8 eI\ 0¢
00+300°0 60—d6LY €0—H09°C 0S—dvCC €0—dy8'L 12—4d¢0°'1 10—4360°1 00+HE]'E y1—49C°¢ LT—dv1'6 pPIS
00+300°0 60—dc0'L €0—H9v'9 1S—HE6'8 20—d60°C 12-4991°1 10—d6¥'v  00tdEl’6 Y1—dc8'1 LT—H06C UBIN 0l Y
OMDIL o1va yvodd VOMING OAIND Jquis HHd J4VIN q4avs OSdH xopuy a A

(0S ‘0¢€ ‘01 =) SuonduNy [epowIun I0§f OM DL PUB SWYILIOS[E 1Ie-3Y}-JO-211)S QUIU JO S)[nsal [eyuowradxy ¢ ajqel

pringer

As



Improved team learning-based grey wolf optimizer for...

S0-499'9  10-H$9T  PO-AILS  €0-HIEE TO-H0ET  C0-APLE  10-HTHT  00+HO0T  TO-EF6L  10-998  PIS

SO-dET9  10-HS®'L  PO-E9E9  €0-HSTY  10-ACI'T  10-dLS'T  10-HLEG  00+H09T  10-E66'1 004961 W 0§

S0-d€0'9  TO-H99’L  $O-HEOT  €0-HIOY  €0-E9S8  C0-dSIT  10-HI¥T TO-HSTL  TO-E60F  0-dILL  PIS

SO-48I'L  10-H9LT  $0-H61F  €0-HLyY  TO-H6LE  T0-dA¥8L  10-AII'S  10-8p9F  TO-AI¥6  10-dSLT W Of

SO-dvLy  €0-H96'8  PO-EP9T  €0-HIST  €0-H0I'T  €0-H9I'9  TO-H6EY  TO-HEQT  €0-AL9S  €0-dISE  PIS

S0-40TL  TO-H66T  PO-ETE  €0-HILT  €0-H69€  C0-d8TT  CO-HISL  TO-HITE  TO-HCLT  €0-HEEL  WAN oI Y

00+3000  $0-AST8  YO-AYEl  6OI-ACLT  90-HOE9  SO-H98'9  10-E8ST  10-d8yT  C0-dIET  10-HIS8  PIS

00+d000  $O-dSK'6  €0-dI0Y  OII-HpY'S  SO-H9TT  SO-H9I'9  10-H98'T  10-HLYE  TO-HPO'T  10-HSYL UWN  0S

00+d000  80-ALST  SO-ATY6  SII-H9LY  LO-HSLT  GO-HPTS  TO-AGYL  SO-H88T  €0-dSTI  SO-HOSE  PIS

00+3000  60-d€TL  €0-HSEE  SII-A80F  LO-~HOET  GO0~HLI'E  10-ESI'l  SO-HLLE  YO-HE09  SO-HIET U  OF

00+d000  +T-AICE  YO-HOST  OTI-HI6  I1-H9YT  6E-H6TT  €0-AII'T  ST-H60L  SI-HETT  SE-HSTS  PIS

00+8000  +T-ASI'E  €0-HE0T  OTI-ASST  II-HIST  Op-H669  P0-H9EL  ST-dISy  9I-d68E  Se~HETE W ol

00+d00°0  T10+A10C  €0-API’S  pL-ASLE  10+ALF'T  TO-HSSE  10+E9%'€  TO+ASTT  00+A9TT  00+ASSL IS

00+3000  10+dC€’S  10-drk'l  pL-d6I'l  10+AI8T  TO-H99'S  [0+A8S'6  CO+H09E  00+H6IT  00+HTE9 U 0S

00+d00°0  00+dZ8%  €0-A9TY  8L-AYOF  10-H66'6  90-HIST  [0+ASET  10-dY09  €0-dAPES  €0-APSE  PIS

00+3000  00+499°€  10-HLT1  SL~HI¥'l  00+dAI¥’l  90-HSOE  I0+HEYT  00+d86’l  €0-HIOE  €0-HPOT U  OF

00+d000  90-H90T  €0-H96¥  18-H60'T  €0-HII'l  €Z-H68T  00+ASIY  OI-HASOT  90-HO9T  OZ-HSLL  PIS

00+3000  L0-H609  TO-H6T'8  8-HEGE  €0-HEY'l  €C-HS0P  00+dASSE  I1-H€98  LO-HLOS  OZ-HSYE U ol Y
OMOIL o1va vodd  VOMIG OAND aquis HMEa OgVIN aavs OSdH Xpul a4

(ponunuoo) g s|qey

pringer

As



J.Cuietal.

W0-F£0Y  €0+AY6’S  TO-HELY  TO-HSTI  TOHHO8'6  TOHATYL  vO+AYTS  SO+H0ST  €0+H86E  TOHASO9  PIS

10+8S8'y  €0+HOIY  0+EL8Y  TO+APSY  €0+AOLT  TO+ALY9  SOHHTIT  SO+HO69  €0+ASLT  T0+d6b'6 WA 0S

20-areT  T0+d89'l  TO-HI8'S  T0-ASE'T  €OHHEIT  [0+H00F  vO+ATIT  €0+AL6T  I0+HISE  [0+H668  PIS

[0+AL8T  TO+HITT  10+EL8T  T0+HATT  €OHAIIT  [0+E96'S  vO+AIES  €0+H68'S  [0+HTY'S  TOHALET U 0f

W0-F9LT  T0+A96S  10-d6S'€  00+AEECT  TOTAGYT  O0HHIOT  00+EPPS  TO+H96E  00+APOT  00+HIEL IS

00+406'8  TO+AIG'E  00+HGO'S  00+H8Y'9  I0+AII'G  00+ALP9  10+H6€T  TO+HEE'S  00+A90S  00+dSEL  WAN 0l

00+d000  L0-HEE  YO-dECy  LOI-AVIT  LO-HIT9  G0-HELT  90-HSS9  90-dL6E  80-dASGL  10-AITY  PIS

00+3000  L0-H09L  €0-dCT1  S0I-ACYE  90-HEO'T  60-HGOT  90-H6I'®  90-dAY8F  80-AEST  10-HOSL U  0S

00+d000  L0-HSES  YO-HAI6T  OI-Hc88  LO-HSOY  LI-HEQT  90-HSO6  80-HESY9  S0-HASK'S  €0-HKT PIS

00+3000  90-dr0'l  YO-HE6'6  OII-dECy  LO-HLY'S  8I-HTI'O  SO-HEE’l  80-dEI'E  80-HELT  PO-HSI'Y U OF

00+d000  LO-H6¥'T  YO-HS9Y  LOI-AII'S  80-HEY'E  GY-HSYl  SO-AITE  SI-ALI'Y  61-HS0L  €E-HOS'] IS

00+H000  L0-H79T  Y0-H98'6  LOI-H9ST  80-HI8T  OS-HOTL  SO-H99E  8I-AY6T  6I-HEEE  PE-HLLS W ol Y
OMOIL o1va vodd  VOMIG OAND aquis HMEa OgVIN aavs OSdH Xpul a4

(ponunuoo) g s|qey

pringer

f's



Improved team learning-based grey wolf optimizer for...

00+H300°0 10—d91°1 £0—dv86 00+H00°0 [l {4 c0—deL’L 10—H86'6 00+HELY 10—4369°1 €0—d¥8'6 pIS

00+300°0 00+3¥0°1 10—d¥6°6 00+H00°0 00+460°1 10—369°C 00+dcee 10+dci'1 10—H6S5°6 20—dss'T UBIN 0S

00+H00°0 ¢0—dL8C €0—dSS6 0—dgvs'S 20—d¢eS8 Y0—davey 10—dSL'1 C0—dLY'S 10—4LE'T €0—HSE9 IS

00+300°0 0—99¥°¢ 00+4d00°T c0—dsL'l 10—d¥9'8 Y0—dEI'T 00+H6¢'1 00+dIT'T 0—dLLL €0—HL6'C UeIN 0¢

00+H300°0 20—d0v'8 20—dI€9 20—dT6'6 10—46S°'1 €0—d¥9'9 10—deee €0—4dC6'L c0—dLTE 10—dIT'v pIs

00+Hd00°0 10—d86'1 10—H¢C6'8 20—4d0LY 10—d8t'y €0—dI109 [10—dve'L 20—d00°'1 c0—dcee 10—H0SC UeIN 01 iy

00+300°0 10+d10°L 20—dsEv 00+H00°0 10+4d69t 10+deC8'1 10+4d1v'y 00+H91°8 10+dCy'S 10+d89'9 pIs

00+Hd00°0 0+d01°C [10—H0S'C 00+H00°0 0+d89°¢ 20+d86°'1 0+4dL9'1 10+469°8 20+H90°C 0+dI1e eI\ 0s

00+300°0 10+3¥8°¢C ¢0—del'T 00+H00°0 10+410°¢ 10+H9¢°T 10+318°1 00+d79°C 10+486°1 10+H18°T pPIS

00+H00°0 10+dLY'6 10—Hd8¢C 00+H00°0 otdeL'1 10+d€0'9 10+490°9 10+d€TC 10+dce9 10+dL0°L UBN 0¢

00+300°0 00+90¢€°L 10+d8¢'1 00+H00°0 0ot+dovt 10—HE0'S 00+H0I'Y 10—d16'v 00+dS8°'1 00+300°1 pIS

00+300°0 10+49¢°C T0+4LO'T 00+H00°0 10+48¢T'1 10—401'8 10+d28°1 10—430v°S 00+d¢8°'1 00+d96't UBIN 01 oy

00+H300°0 [0+HSTE 0—dsI'l 00+H00°0 10+396°¢ 10+40L'C 10+dSt'C 10+4991°1 10+460°9 10+d76'C pPIS

00+300°0 0+d9¢°1 10—dI1¢C 00+H00°0 c0+d8y'C 0+ds6’1 10+d51'6 [40ac (YA COtHLST w0tarel UBIN 0S

00+H00°0 10+d€0°¢ C0—dIIC 00+36S°¢ 10+366'C 10+391°1 10+4d12C 00+H98°¢ 10+399°C 10+dTy'1 pPIS

00+300°0 10+d69°L 10—davic 00+dET'T wo+aril 10+301°9 T10+4L8Y 10+HL6C 10+366'8 10+dIT'S UeIN 0¢

00+H300°0 10—9¥0°I 10+3ve’l 00+H00°0 00+d89't c0—d61'1 00+H69°6 10—d¢re 10—49S6'¢ 00+d11°C pPIS

00+Hd00°0 10—d61°C 00+der'y 00+H00°0 10—dLy'1 20—d90°1 10—d¥8'1 [10—d¥I'l 10—499¢'1 00+dL8V UeIN 01 1y

0tdLTS 10+dSE'S C0+are9 €0+H06°C 20+H9¢'8 20td96'¢c £0+d0T'C [40anc (43 €O+dIT'I €0+deL’'l pIs

€0+dTTL YO+d81°1 YO+HS8L'] €0+HIL'E €0+d0L’8 £0+d90'6 €0+dLT'8 €0+H66'L YO+HIT T y0+d6v'1 eI\ 0s

0+ayL'9 10+d€EL9 wo+aryy €0+HASL'T C0tde6’L w0+tayeL wo+taviL 0+dLS e €0+avel 0+dI10°L pPIS

€0+deL’e €0+dLO'L £€0+d06'6 €0+HS9C €0+d08% €0+d8Le €0+d0Ly €0+d69°¢ €0+d0T'S £0+4d0S'8 UBN 0¢

0td6L’e 0+dL9'¢ 0+ds6’'l 20+dS9°9 20+d16'C 20+H98°C 0+dIge 20+H09°'1 20tH96'C 20+dSLT pPIs

20tds0°6 €0+de0°C €0+d99°C C0tdLT6 €0+dIT'1 0+aTry €0+d9¢’1 CO+HHIL'S wtarL'y €0+de8'1 UBIN 01 oy
OMDIL o1va vodd YOMINY OAIND Jquis HYdd J4VIN 4avs OSdH Xopup a A

(0S ‘0€ ‘01 =) suonduNy [epowWnHNW J0j QMO L PUL SWYILIOI[E JIe-9()-JO-2)e)S SUIU JO sI[nsal [ejuawrtadxy 9 ajqel

pringer

& s



J.Cuietal.

00+d00°0  CO+ASST  €0-HLOT  [0+AE08  10+dHOK'T  I0+HTSL  TO+ASTT  10+ASE9  TOHAIET  Z0+AI8T  PIS
00+d000  TO+ATO9  TO-H6TS  CO+ALY'S  I0HHEI'E  TOHHSL9  TOHHS6'S  TOHASEY  TOHA6LY  TOHE9EY  URW 0§
00+d00°0  T0+d€9Y  €0-HLYE  TOTALET  10-HEST  I0+API'S  [0+ESE9  10+AISy  CO+dOIT  10+dIIE  PIS
00+d00°0  O+d86'T  TO-HT6'L  COHALI'S  10-HSES  TOHHOST  TO+ALOY  TOTAIOE  TO+HOST  10+AL8L WP OF
00+d000  80-HSLT  €0-HLS'S  00+H86'S  YO-—HEEE  YO-HGET  [0+HOPT  10+ALIT  PO-dIL9  L0-HSLY  PIS
00+d00°0  80-dSLT  TO-HPOS  00+H0T6  YO-HALES  PO-~HTET  10+dASKP  10+APOT  PO-ESSE  L0-H9ET W o1 Y
00+d000  10-9I68  €0-HEST  00+HO00  10-HSE9  €0-HOOT  [0-EKST  10-ALI'E  [0-dI9E  [0-dELt  PIS
00+d000  00+491'€  TO-HEr’L  00+HO00  00+HSOT  €0-HEST  I0-HISG  00+AYOT  10-EY9T  00+H00T  URW 0§
00+d000  10-960€  €0-HLST  00+H000  10-d8I'v  80-HGY'L  [0-E6LT  TO-AI®S  [0-ASLE  10-40TT  PIS
00+d000  00+H0S'T  TO-HES9  00+HO00  10-HI6G  80-HOTS  I0-HLpb  10-EYI'T  10-dLyT  [0-H9¥t W 0f
00+d000  10-920T  €0-HLFT  00+H000  10-A¥TT  00+H000  [0-H0TT  I1-AC0T  TO-EKEG  00+d000  PIS
00+d000  10-d8Tt  T0-HOST  00+HO00  TO-H98'®  00+HO00  10-HIST  TI-HCLL  TO-HS6T  00+H000 W oI Y
00+d000  00+dST'9  TO-HOST ~ $S-H06'8  00+A96€  I0-HIEY  00+ALK'T  00+ASLT  00+APTS  10-ALIL  PIS
LPT-API'S 109691 10-H6ST  vS—HLEY  10+AIOT  [0-HI¥F  00+ESI'S  00+dIL'8  00+APEY  00+AIIT  WRW 0§
00+d000  00+d19Y  TO-HLET  9p—ASS9  00+AITT  €0-HIST  10-ET99  10-dL8T  10-H86'S  €0-HLOL  PIS
6bT-HEL'E  00+H8Y'L  10-HPI'T  9p—HEIT  00+HGI'L  €0-HSY9  00+ALOT  10-HC06  10-dS0E  TO-HOTT U 0f
00+d00°0  10-919€  €0-HLE'S  00+A8YT  10-d8ST  PO-~HOLT  TO-E98S  SO-dI66  SO-H90E  I[I-AIL9  PIS
IST-dIST  10-9L0E  CO-HSE9  00+H99'T  10-4S¥T  YO-HI0T  TO-HST8  PO-HY9ET  SO-AS0T  II-H6St  UWRW oI 'Y
OMOTIL o1va vodd  VOMIWE OAIND aquis HMEd OEVIN aavs OSdH xpu @ A

(ponunuoo) 9 s|qey

pringer

As



Improved team learning-based grey wolf optimizer for...

10-986'C  10+AITT  10-dpky  10-3SEY  10+E69T  10+dEl'T  pO+HOES  SO+AELS  SO+HGYT  T0-ATT8 IS
00+H0I'T  10+8Y6'6  00+HLTS — 00+AIET  I0+AIET  00+H8Y6  +O+ASTS  SO+HSY'E  SO+ASOT  T0-HEYT  WN 0§
10-d€7C  10+HL2T  10-H0€€  10-d€0'l  [0-HSOT  SO-HSEL  YO+ACO9  10-HILY  SO+AYO'l  €0-HIES  PIS
10-9LS'S  10+H9TT  00+dvee  10-9STS  10-80T  SO-ASLL  PO+HO6T  O0+AITT  YO+H6TE  €0-HOEE  URW  Of
C0-derL  TO-H6€'1  10-8p€T  C0-Acy’S  €0-HI8'€  IT-ESLT  10+dvp'E  80-HPIT  OI-de’F  1T-HI69 IS

10-9S¢'T  €0-H6Y'S  10-dLLL  TO-API'S  €0-AlYy  TZ-A99'6  10+HE6T  80-HOTT  01-A9ST  IT-HETE  WRW 0l Y
T0-4LTE  00+d8Ly  10-H0ST  TO-E8K'I  00+HI8T  10-H88T  00+dS6'6  POHHLTT - 90+dITE  10-dIE] S
T0-dLy'L  10+d16T  00+H60T  TO-ALYT  00+EPY9  10-HLLS  I0+ASEE  €0+dIS8  90+AT0T  10-HLI'T  WRW  0S
0-d8yy  00+der'y  10-8KIT  T0-dIST  00+H6IT  €0-AIIT  10+AP8'1  [0-H8LT  SO+ALT  TO-HLTE  PIS
209579  10+ALF'1  10-HIF8  C0-ASIT  00+APYT  HO-HO69  10+HLST  10-HOI'Y  tO+dCT9  TO-HEOT U 0f
W0-AISY  00+AP9T  10-HECT  €0-H66L  TO-HS6'6  IT-HLT  00+dASI't  OI-HS6T  SI-A886  TZ-dAIK9  PIS
20-3909  00+d6L'1  10-H90F  €0-ALF9  TO-H8I'E  TC-HP6®  00+A¥TS  OI-HSET  SI-AEl'E  Tr-dE0e  woW o1 Y
00+d00°0  10-H08'8  [0-H8L'E  10-EpI'E  10-49€9  [0-HIE9  00+AZ0T  10-AST'y  10-A109  10-4909  PIS
00+300°0  10-dISL  [0+H8Y'T  [0-HLO'T  10+HS0T  I0+EPST  00+ALOL  10+EPYT  [0+EL8T  10+d86T  UWN 0§
00+d000  10-d65€  [0-HI6E  [0-HEL9  10-dS6'S  [0-HSYy  10-9808  10-HE9E  [0-ASHy  00+dSO'l 2N
00+d00°0  10-dI8T  00+HLES  [0-E80°E  10+H60T  00+HE9'6  O0+HEE'E  00+ALYL  00+H6L'G  10+dLOT WA O€
00+d00°0  10-99S'T  10-HPIT  €0-ALSY  10-dSy  10-HILE  [0-ESTL  10-Ap9T  10-HS0S  10-H989  PIS
00+H00°0  Z0-H00S  00+HOST  €0-E9YT  00+HIET  00+HTST  00+dOE'l  00+HSOT  00+EITT  00+dT6T WA o1 ‘Y
OMOTIL o1va vodd  VOMIWE OAIND aquis HMEd OEVIN aavs OSdH xpu @ A

(ponunuoo) 9 s|qey

pringer

As



J.Cuietal.

00+d00°0  00+dTk'l  TO-HILT  SI-HT9T  00+ASK'S  [0-HO0CE  $O-H06Y  00+HI0T  00+ASI'E  10-H00F  PIS

91-d88'8  00+HSL'G  10-d€TL  SI-H6L'Y  00+E9Fy  10-H€6T  [0+H66T  10+dSOT  00+H6ST  00+HTLT U 0§

00+d00°0  00+dL9€  TO-HOI'E  SI-AILT  10-988'S  €0-HIOT  00+d6S'S  10-dp8'e  10-HT€8  10-900L  PIS

91-d88'8  00+HEE'S  10-d€l'L  SI=HOS'S  00+AIl'T  €0-dOLT  I0+HIST  00+dvly  10-488'v  [0-H8IY  URW  Of

00+d000  10-999'8  TO-HSLE  SI-EPTT  10-dcLt  II-HIOT  €0-AIL8  Y0-H0ST  €0-HSYT  II-AIFE  PIS

91-d88'8  [0-H8I'S  10-d8T9  SI-ASI'S  10-H0LT  II-d6¥'l  TO-HLTE  PO-ALST  vO-dASLL  LI-HIEY W ol 'Y

00+d00°0  00+d60'T  90-HO8'S  [0-EEOT  10-d6LT  [0-HOLT  10-9Z68  10-HE6'8  [10-ESI6  10-dLI'T IS

00+H00°0  00+d€EL  [0-H66T  10-E6I'l  00+AYL'T  O0+HLY'l  00+HE0F  10+APST  00+H00E  10-H09L  WRN 0§

00+d000  10-dIL'6  TO-HECT  T0-AE6'6  CO-dAck'6  CO-HITY  10-ET6T  10-d8¢t  10-AII'T  20-d669  PIS

00+300°0  00+dL8T  10-HS6T  10-860'T  10-H66L  10-H61'S  00+0OT'T  00+d9I'8  10-AII'®  10-d6SH  WRN  OF

00+d000  TO-H9I'E  LO-HTIT  TO-HEP8  TO-HTE9  G0-HILY  TO-ELOL  10-HEl'T  TO-H9I'E  TO-dE’F  PIS

00+300°0  10-960C  10-H66'T  10-G6S'T 10461  TO-H86'6  10-d6p'l  10-H0T9  10-E60'I  10-d6T1 WAN ol Y
OMOTIL o1va vodd  VOMIWE OAIND aquis HMEd OEVIN aavs OSdH xpu @ A

(ponunuoo) 9 s|qey

pringer

As



Improved team learning-based grey wolf optimizer for...

1o i : : : : : T T T T
TN
A
|
| o
i — w0
Q L o
=2 ! =
< <
4 L s
2 2
8 o 2 ‘
g g o
= =
[ (]
&0 &n
5 5
>0 >
< < 10
ot
0
o W e w0 w0 w0 w0 w0 sw 0w e w0 w0 w0 w0 om0 o s
Number of iterations Number of iterations
‘ (a) f __ (b) /,
10 L T T T
— ‘7= o —
SR A
i
10 I
o e
> - >
@ @
8 2
=] =]
g g
=] =] 10
(5] [}
en en
< <
5] 5]
S e g
< <
107
oo
10
W w1 w0 s w0 w0 w0 sw W W e w0 w0 w0 w0 w0 sw

Number of iterations umber of iterations
(©) i () 7,

oALo ‘

[ —3 BMWOA

‘ wPso

SADE DEKH CMVO s BBOA TLewo

Fig.4 Convergence curves of ten algorithms with D=30 on f,, f;, fi4, and f};

fast convergence rate, and its convergence result is closest to the global optimum for
most functions.

4.4 Statistical analysis

Statistical tests can be applied in any experimental framework to determine whether
a new method significantly improves existing methods. They can evaluate the per-
formance of the algorithms in more aspects to get an objective ranking. In this sec-
tion, we performed statistical analysis including the Friedman test and mean abso-
lute error test to verify the superiority of the TLGWO. In addition, the computation
time of all algorithms was tested and discussed.
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4.4.1 Friedman test

The Friedman test [43] is a nonparametric analog used to detect significant differ-
ences between algorithms. The Friedman statistic F} is defined as follows:

12n 5 k(k+ 1)
F=—2" (YR 2
fk@H);f ) (18)

1 .
Ri=— 2 (19)

where i and j are the index numbers of the optimization problem and the algorithm,
respectively. n is the total number of problems. The rank value rf is from 1 (the best
result) to k (the worst result). R; is the average rank of the jth algorithm. When n and
k are large enough (for example, n>10 and k>5), Fy is a 4 distribution with k— 1
degrees of freedom.

For the algorithms mentioned in this paper, the Friedman test results are shown
in Table 7. It can be seen that the proposed TLGWO achieves the best ranking in
all dimensions. The TLGWO achieved the best ranking because the team learning

Table 7 Friedman test results of 13 algorithms and TLGWO for 21 benchmark functions (D= 10, 30, 50)

Dim Algorithm

GWO HGWO EEGWO IGWO HPSO SADE MABC

Average rank

10 6.14 8.71 3.90 4.47 7.19 7.19 9.04
30 5.09 8.57 3.38 4.57 8.23 10.23 10.42
50 4.92 7.95 3.16 5.00 9.33 10.38 11.57
Overall rank
10 5 9 2 3 75 7.5 10
30 5 9 11 12
50 4 7 2 5 9 11 14
Dim Algorithm
DEKH sinDE CMVO BMWOA BBOA DALO TLGWO

Average rank

10 11.85 5.76 10.09 6.33 10.66 10.42 2.57
30 11.61 6.85 10.04 5.04 8.00 10.85 2.04
50 10.71 8.19 10.14 4.26 7.19 10.42 1.73
Overall rank

10 14 4 11 6 13 12 1

30 14 6 10 4 7 13 1

50 13 8 10 3 6 12 1

Bold values indicate the best results
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mechanism proposed in this study effectively enhanced and balanced the explora-
tion and exploitation capabilities of the algorithm.

The proposed neighbor learning strategy promotes individuals to converge to
the optimal solution through the influence of neighbors, which enhances the local
search of the algorithm. Because of its superior exploitation capability, the TLGWO
achieved the best results on unimodal functions (f,—f;). In addition, the TLGWO
obtained the best results on multimodal functions (fy—f,;), which usually test the
exploration strength of the algorithm. This is due to the proposed random learning
strategy guiding the search agent to move in more directions through two random
individuals, which improves the global search ability.

4.4.2 Mean absolute error test

Mean absolute error (MAE) is a statistic that shows the difference between the esti-
mated value and the true value [32]. It is calculated as follows:

N
1
E:I—vz{[fi—ﬂ (20)

i=

where N is the number of test functions, f; is the optimization result obtained by
the ith algorithm, and f is the global optimum. The mean absolute errors between
the optimization results obtained by each algorithm and the global optimum of test
functions are shown in Table 8.

When the dimension is 10, the mean absolute error of the IGWO is the smallest.
The proposed TLGWO obtains the fourth smallest error. However, when the dimen-
sion is increased to 30 and 50, TLGWO has the smallest mean absolute errors. It
can be seen that the TLGWO has strong competitiveness, especially in high-dimen-
sional optimization problems. Generally, high-dimensional problems have more
local optima. The random learning strategy in the TLGWO distributes some of the
search agents to new areas for global search, which is beneficial to escape from local
optima. Therefore, the TLGWO is better at solving high-dimensional optimization
problems.

4.4.3 Computation time analysis

In this section, the computation time of all algorithms was tested. The population
size was set to 30. The stopping condition was that the number of iterations reaches
500. For the 21 benchmark functions with dimension D =30, each algorithm was
run 10 times. The average computation time (unit: second) is shown in Table 9. To
get the rank of the computation time of each algorithm, we performed the Friedman
test on the results in Table 9. The statistical test results are shown in Table 10.

From Table 9, it can be seen that most algorithms except the DALO are within
1 s of computation time on most benchmark functions. This shows that most of
the algorithms involved in the study have a very fast computation speed, and the
difference in computation time is small. The results in Table 10 show that the
computation speed of the TLGWO ranks 9th among the 14 algorithms, whereas
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Table 8 Mean absolute errors of 13 algorithms and TLGWO for 21 benchmark functions (D =10, 30, 50)

Dim Algorithm

GWO HGWO EEGWO IGWO HPSO
MAE
10 6.70E+01 7.67E+01 1.39E+02 1.27E+01 8.76E+01
30 3.08E+02 2.93E4+02 5.02E+02 2.16E+02 4.25E+02
50 5.47E+02 5.21E4+02 8.55E+02 4.73E4+02 8.86E+02
Rank
10 7 8 13 1 9
30 5 3 8 2 6
50 4 3 6 2 7
Dim Algorithm

SADE MABC DEKH sinDE CMVO
MAE
10 2.30E+01 1.10E+02 1.46E+02 2.15E4+01 5.80E+01
30 5.29E+03 2.29E+03 4.53E+03 5.32E+02 3.04E+02
50 5.65E+04 5.70E+04 1.05E+04 2.81E+03 8.11E+02
Rank
10 3 10 14 2 6
30 14 12 13 9 4
50 13 14 11 9 5
Dim Algorithm

BMWOA BBOA DALO TLGWO

MAE
10 5.37E+401 1.28E+02 1.17E4+02 4.35E401
30 1.79E+03 4.74E+02 5.95E+02 1.79E+02
50 9.61E+03 1.75E+04 1.73E+03 3.46E+02
Rank
10 5 12 11 4
30 11 7 10 1
50 10 12 8 1

Bold values indicate the best results

the HPSO obtains the best ranking. However, the average computation time of the
TLGWO is 0.2889 s, which is only 0.1958s longer than the average computation
time of the HPSO. In addition, it can be seen from Table 7 in Sect. 4.4.1 that the
quality of the optimization results obtained by the TLGWO is much better than
that of the HPSO.

The computation time is related to the structure of the algorithm. Due to the
new team learning mechanism, the average computation time of the TLGWO
increased by 0.1513 s compared to the classical GWO. Since the new mechanism

greatly improves the performance, this time consumption is acceptable.
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Table 10 Friedman test results of computation time

Algorithm

GWO HGWO EEGWO IGWO HPSO SADE MABC

Average rank

2.33 7.09 5.28 12.47 1.04 5.38 9.14
Overall rank

2 7 4 13 1 5 10
Algorithm

DEKH sinDE CMVO BMWOA BBOA DALO TLGWO

Average rank

11.76 5.66 3.90 11.23 7.09 14.00 8.57
Overall rank
12 6 3 11 8 14 9

Bold values indicate the best results

5 Engineering applications

To verify the effectiveness of the proposed TLGWO in practical applications, three
constrained engineering design problems, namely tension/compression spring design
[44], welded beam design [45], and pressure vessel design [46], were selected. In
addition, the TLGWO and other algorithms involved in this paper were applied to
solve the inverse kinematics (IK) problem of an 8-degree-of-freedom (DOF) serial
robot. All algorithms have a population size of 100 and a maximum number of itera-
tions of 1000.

5.1 Constraint handling method

In this paper, the constraint handling method proposed in [47] was applied. An opti-
mization problem with constraints is usually described as follows:

Minimize f(x)
Subjectto c;(x) >0, i=1,2,...,1
hi(x)=0, j=12,..,J (21)

! u _
X, Sxy <X, d=1,2,....D

where f(x) is the fitness function. The dimension of the problem is D, and the value
range of the dth variable is [xfi, "] There are I inequality constraints ¢,(x) and J
equality constraints /;(x).

In order to reduce the competitiveness of solutions that do not satisfy the con-
straints (infeasible solutions), a penalty function is used to modify the fitness of the
solutions. The fitness function F(x) with penalty is designed as follows:
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(), if c,()>0Vi=1,2,....1

F(x) = (22)

1
fmax + Z [Ci(x)], otherwise
i=1

where f, ., is the fitness value of the worst solution. When the operand is positive, []
returns 0; when the operand is negative, [] returns the absolute value. Equation (22)
means that when a solution does not violate any constraints, its fitness is maintained;
otherwise, its fitness is modified according to the number and degree of constraints
it violates, and the worst solution in the current population.

Figure 5 is an illustration of the constraint handling method. The six solid
green dots represent the six solutions in the population, and the solid black line
represents the modified fitness values. The fitness values of infeasible solutions
are larger than that of feasible solutions, so the penalized solution loses an advan-
tage in the competition to become the best solution.

5.2 Engineering problem I: Tension/compression spring design

The tension/compression spring design problem (“Appendix 1.1”) is a minimiza-
tion constraint problem. The goal of the optimization is to minimize the weight
of the spring. The constraints include shear stress, surge frequency, and minimum
deflection. This problem has three design variables (see Fig. 6): wire diameter d,,,
mean coil diameter d,, and number of active coils N.

Table 11 shows feasible solutions found by the TLGWO and the other 13 algo-
rithms on the tension/compression spring design problem. The best solution, with
a cost of 0.012724, was found by the GWO algorithm, and the proposed TLGWO
algorithm found the second-best solution with a cost of 0.012809. In terms of ten-
sion/compression spring design, TLGWO demonstrates strong competitiveness.

Fig.5 Schematic of the con- Afitness

straint handling method
% c(x)=0
\ Infeasible Feasible

fonax

[e()]

) _ i1

-3
'
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Fig.6 Tension/compression
spring design

Table 11 Experimental results
of 13 state-of-the-art algorithms
and TLGWO for the tension/
compression spring design
problem

5.3 Engineering problem II: welded beam design

Algorithm  Optimal values of design variables Optimal cost
d,, d, N
HPSO 0.055283  0.449400 7.387500  0.012893
SADE 0.054604  0.408640 9.843800 0.014431
MABC 0.053463  0.388107  10.82120  0.014223
DEKH 0.057207  0.502590 6.399200 0.013815
sinDE 0.054203  0.408439  10.43300  0.014920
CMVO 0.057020  0.499000 6.124000 0.013180
BMWOA 0.058918  0.556850 5.009500 0.013550
BBOA 0.056240  0.475100 6.893200 0.013364
DALO 0.055160  0.446100 7.485400 0.012875
GWO 0.050116  0.319965  13.83240  0.012724
HGWO 0.056058  0.471190 6.776500  0.012995
EEGWO 0.055360  0.396100  11.88630  0.016858
IGWO 0.051855  0.354521  11.97650  0.013324
TLGWO 0.050000  0.317103  14.15790  0.012809

Bold values indicate the best results

As shown in “Appendix 1.2,” the optimization goal of the welded beam design
problem is to minimize the manufacturing cost of the welded beam. There are
four design variables for this problem (see Fig. 7): the thickness of the weld A,
height of the beam 7, length of the attached part of the beam [, and thickness of
the beam b. Relevant constraints include the shear stress 7, buckling load on the
beam P, bending stress in the beam o, and end deflection of the beam 6.

The experimental results of the TLGWO and the other 13 algorithms for the
welded beam design problem are presented in Table 12. For the welded beam
design problem, the HGWO achieved the best solution with a cost of 1.695400.
The proposed TLGWO found a solution that was very close to the best result,

with a cost of 1.727200.
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Fig.7 Welded beam design

Table 12 Experimental results of 13 state-of-the-art algorithms and TLGWO on the welded beam design
problem

Algorithm Optimal values of design variables Optimal cost
h l T b
HPSO 0.197411 3.315061 10.00000 0.201395 1.820395
SADE 0.213430 6.198200 8.254900 0.257430 2.376900
MABC 0.194050 3.703600 9.753500 0.224880 2.022200
DEKH 0.320250 2.399500 7.638800 0.328250 2.250100
sinDE 0.170170 6.099200 9.047400 0.238460 2.281300
CMVO 0.205611 3.472103 9.040931 0.205709 1.725472
BMWOA 0.131940 8.471700 8.887200 0.212700 2.206600
BBOA 0.188140 4.185900 9.304800 0.204870 1.831500
DALO 0.150170 4.617600 9.036600 0.205730 1.780200
GWO 0.205678 3.471403 9.036964 0.205729 1.724995
HGWO 0.205670 3.254600 9.036700 0.205730 1.695400
EEGWO 0.287580 2.277400 9.367400 0.309460 2.478200
IGWO 0.190190 3.502300 9.319600 0.205130 1.749700
TLGWO 0.195150 3.588500 9.044800 0.205950 1.727200

Bold values indicate the best results

5.4 Engineering problem lll: pressure vessel design

The goal of the pressure vessel design problem is to reduce the manufacturing
cost of the vessel as much as possible. “Appendix 1.3” describes the objective
functions and constraints of the problem. Figure 8 shows the four design vari-
ables of the problem, which are the thickness of the shell T, thickness of the head
T,, inner radius R, and length of the cylindrical section L.
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Fig. 8 Pressure vessel design

Table 13 shows the experimental results of TLGWO and 13 state-of-the-art algo-
rithms on pressure vessel design. As shown in Table 13, TLGWO achieves the best
solution at x” =(0.785283, 0.388714, 40.56697, 197.6661) with an optimal cost of
5938.9395. In summary, TLGWO shows excellent performance and great competi-
tiveness in solving constrained practical engineering problems.

5.5 Engineering problem IV: inverse kinematics solution

In this section, the TLGWO and other 13 algorithms were applied to solve the IK of
an 8-DOF serial robot. Figure 9 shows the structure of the robot, which is composed
of one translation joint and seven rotation joints. The IK problem can be described
as finding a set of joint variables that make the pose of the robot end-effector

Table 13 Experimental results of 13 state-of-the-art algorithms and TLGWO for the pressure vessel
design problem

Algorithm Optimal values of design variables Optimal cost
T, T, R L
HPSO 0.916845 0.453197 47.50493 119.4608 6167.1292
SADE 1.567434 2.479227 46.91671 133.3930 19,133.476
MABC 1.662900 0.954586 76.84130 10.28290 15,145.663
DEKH 3.251310 35.98050 65.51910 42.01280 295,354.72
sinDE 2.353231 2.153293 68.79089 164.9708 45,190.344
CMVO 0.787553 0.394033 40.76956 195.9078 5966.0172
BMWOA 0.931951 0.459752 47.32779 121.0679 6303.1592
BBOA 1.321390 0.532168 55.71410 60.98570 7998.8290
DALO 0.826773 0.408675 42.83796 167.7143 5974.4731
GWO 0.812500 0.434500 42.08918 176.7587 6051.5639
HGWO 0.910428 0.450058 47.16467 122.5616 6152.9859
EEGWO 2.804914 0.991835 53.06128 142.1000 29,950.623
IGWO 1.163076 0.723840 52.46822 102.0611 9264.9101
TLGWO 0.785283 0.388714 40.56697 197.6661 5938.9395

Bold values indicate the best results
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Fig.9 8-DOF serial robot

coincide with the pose of the target point. “Appendix 1.4” details the fitness function
of this problem, as well as the forward kinematics of the robot.

Many studies [48—50] have shown that using meta-heuristic algorithms to solve
IK problems can effectively avoid singularity and complex computation. The pseu-
docode for solving IK based on meta-heuristic is shown in Algorithm 3. In this
work, we randomly selected a set of joint variables to calculate the pose matrix of
the end-effector. This pose matrix contains the position and orientation information
of the target point. The joint configuration is selected as [0.5 m, 30°, 60°, 90°, 60°,
30°, 60°, 90°]. The pose matrix of the target point is calculated by forward kinemat-
ics as follows:

0.3683 0.6998 0.6121 0.3326

—0.8248 —0.0580 0.5625 0.1533

0.4291 —-0.7120 0.5558 2.1010
0 0 0 1

5T = (23)

The population size of all algorithms is set to 100. For each algorithm, the IK
solution is output after 1000 iterations. Table 14 shows the results of the TLGWO
and other 13 meta-heuristic algorithms for solving IK problems, where the unit of
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Table 14 Experimental results of 13 state-of-the-art algorithms and TLGWO on the IK problem

Algo- Optimal values of joint variables Pose
rithm error
d 0, 0, 0, 05 b5 6, by

HPSO 0.37583 —0.26874 1.44510 —0.16366 —1.47800 —0.52089 —0.67831 —0.96871 0.01496
SADE 0.00000 2.87980 1.54260 2.87980 —2.12930 -0.89002 —0.33170 —0.69845 0.14019
MABC 0.47298 —0.44856 0.20371 —0.09356 1.07630 2.87980 1.91990 1.69790 0.00824
DEKH 0.08324 —0.73903 1.22270 —2.87540 1.88010 1.53060 —0.12253 0.08721 0.05566
sinDE 0.42699 0.02820 0.15271 —2.66360 —1.28380 —1.02630 1.71670 1.32190  0.00320
CMVO 0.56116 —0.67054 0.40800 —0.44641 0.94484 0.10642 —1.86910 —1.66930 0.11739
BMWOA 0.14843 —0.66928 1.30030 —2.82760 1.82500 —1.31030 0.42167 2.99730 0.00764
BBOA 0.11408 —2.11440 1.70920 1.68400 —2.12930 —1.43420 —0.30302 0.28462  0.09839
DALO 0.02552 2.63780 3.39220  0.70945 0.00973  —1.37990 0.45240 2.31190 0.18766
GWO 0.14501 1.89670  3.36830 2.07440 1.82480 0.49659 —1.67840 —0.63662 0.00845
HGWO 0.02828 1.74390  3.49070 1.59290 1.94660 —0.06333 —1.46510 —0.19934 0.09369
EEGWO  0.42803 1.12300 1.73380 1.81300 1.44810 236340 —0.94844 —0.87596 0.02932
IGWO 0.12232  —1.39710 0.13475 1.76320 —1.85060 —2.33780 —1.45320 —0.31762 0.00958
TLGWO  0.50094 —2.74130 2.42500 —2.02320 1.03980 1.17890 1.27230 1.36730 0.00147

Bold values indicate the best results

d, is meter and the units of 6,0, are radian. The IK of redundant robots (with more
than 6 DOF) has multiple solutions. In other words, there are infinite joint configu-
rations that enable the end-effector to reach the target point represented by Eq. (23).
In Table 14, the pose error between the end-effector and the target point is used to
evaluate and compare the solutions.

Algorithm 3. Meta-heuristic IK solver

1: Initialize the population and parameters of meta-heuristic algorithm
2: while stopping rule is not true do
for each search agent X; do
Calculate the forward kinematics F;of X;
Calculate the fitness value f'(F})
Update search agent X;’ by meta-heuristic algorithm
Calculate the forward kinematics F;’ of X}’
Calculate the fitness value f'(F;")
: iff(F)) < f(F)
10: Update search agent X;= X;'
11: end if
12: end for
13: end while
14: return the best search agent as the IK solution

Yo kW

It can be seen from Table 14 that the TLGWO obtains the best solution with a
pose error of 0.00147. Therefore, the proposed TLGWO can effectively solve the
IK problem of redundant robots and can find the best solution compared with other
state-of-the-art algorithms.
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6 Conclusions and future work

This paper proposed an improved team learning-based grey wolf optimizer
(denoted as TLGWO) to enhance and balance the exploitation and exploration
abilities of the grey wolf optimizer (GWO). The team learning strategies include
the neighbor learning strategy and random learning strategy. The neighbor learn-
ing strategy assigns neighbors to each search agent. The influence of neighbors
on the search agent may be attractive or repulsive, but both will prompt the search
agent to move toward the optimal solution, which improves the local search abil-
ity of the algorithm. The random learning strategy selects two random individuals
in the population to guide the movement of the search agent, which is beneficial
to the global search. Furthermore, an adaptive parameter tuning method was pro-
posed to balance the exploitation and exploration of the algorithm.

The proposed TLGWO was tested on optimization tasks and engineering prob-
lems. First, 21 benchmark functions were used to prove the superiority of the
TLGWO. In a comparison of nine state-of-the-art algorithms and three GWO-
derived algorithms, the TLGWO achieved the best results in most cases. The
Friedman test and mean absolute error statistical test were used to compare and
discuss experimental results. Second, four engineering design problems with con-
straints were used to test the capabilities of the algorithm. The results revealed
that the TLGWO provided the best or close to the best results. In summary, the
TLGWO proposed in this study exhibits generally superior performance.

In the future, we will further investigate adaptive strategies to improve the per-
formance of the GWO. In addition, the application of meta-heuristic algorithms
will be extended to more fields, such as the inverse kinematics and trajectory
optimization of robots. We will continue to refine the team learning-based strat-
egy proposed in this paper and apply it to other algorithms.

Appendix 1: Engineering problems

Appendix 1.1: Tension/compression spring design problem

Consider x = [x1x2x3] = [deCN]
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Minimize f(x) = (x3 + 2)x,x;

Subject to
X
x)=1- 2 <
100 =1 S s
) = 4x§ XXy 1
g x = —_— b
= 12566 (ryr 1) 5108 — 1
140.45x,
&) =1-—F—<0,
X33

x|+
= —_ 1 < 0
$="75 1=

Variable range 0.05 < x; < 2.00,
0.25 <x, < 1.30,
2.00 <x; < 15.0

Appendix 1.2: Welded beam design problem

Consider x = [x,x,x3x,] = [hITD]

where 7(x) =

@ Springer

Minimize f(x) = 1.10471x7x, + 0.0481Lx3x, (14.0 + x,)
Subject to

81(X) = T(X) = Ty <0,

8,(%) = 0(x) — 0, <0,

83(x) = 6(x) = 6,0, < 0,

81(x) =x; —x, <0,

8s(x) =P —-P.(x) <0,

g¢() =0.125 —x, <0,

g7(x) = 1.10471x] + 0.0481 1x3x,(14.0 + x,) =5.0 <0

\/(r’)2 + 21’1”;—; + (T")z,
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2
x

g=_PF ,T”zg,M=P<L+ﬁ>,R=\/—2+
\/Exlxz J 2 4

.X'2 + 2
J=2 Vaxn |2+ (B22) | 1 o = 22,
4 2 X3,
40136 22
P.(x) = Ve[ _8s JE
¢ 2 VG )

P=60001b, L=14in., 6, =0.25in,

E =30x 10° psi, G = 12 x 10° psi, 7,,,, = 13,600 psi, o

Variable range 0.1 <x; < 2.0,
0.1 <x, £10.0,
0.1 <x; £10.0,
0.1 <x, <£2.0.

Appendix 1.3: Pressure vessel design problem

Consider x = [x,x,x3x,] = [T, T,RL]|

max

= 30,000 psi

Minimize f(x) = 0.6224xx;x, + 1.7781x,x; + 3.1661x7x, + 19.84x7 x5

Subject to
g1(x) = —x; +0.0193x; <0,

2,(x) = —x, +0.00954x; < 0,
83(x) = —mx3x, — %nxi + 1,296,000 < 0,

g1(x)=x,—-240<0

Variable range 0 < x; <99,
0<x <99,
10 < x5 < 200,
10 < x, <200

Appendix 1.4: Inverse kinematics problem

The solution of the IK problem can be expressed as

X = [XIX2X3X4XSX6X7XS] = [d192036495060798]
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where d| is the joint variable of the translational joint (unit: m), 8,~0; are the joint
variables of the rotational joints (unit: °).
The fitness function is designed as follows:

f()C) = klPerr + k20€rr

where k; = k, = 0.5 are the weight coefficients. P.,, is the position error between the
robot end-effector and the target point, and O,,, is the orientation error between the
end-effector and the target point. They are calculated as follows:

Pey = ”Pe_Pt”z

O = [|0192 — 0201 + 1 X 13|,

where P, and P, are the position vectors of the end-effector and the target point,
respectively. {@,, p;} and {@,, p,} are quaternions corresponding to the orientation
matrices of the end-effector and the target point, respectively. When the orientation
of the end-effector coincides with the orientation of the target point, O, = 0; other-
wise, O, = L

The position and orientation of the end-effector or target point are solved by for-

ward kinematics, which is expressed as follows:

RP
f) = [ ]=gT T TST TLTTSTT

cos b, —siné, 0 a;_,
i~ _ | Sin 0,cosa;_ cosb;cosq;_; —sina;_; —sina;_;d,
i sinf;sine;_; cosf;sina;_; cosq;_; cosa,_,d;

0 0 0 1

where R is the orientation matrix and P is the position matrix. E‘IT is the transfor-
mation matrix of the coordinate system {i} relative to the coordinate system {i—1}.
;‘l T can be obtained from DH parameters of the robot, which are shown in Table 15.
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Table 15 DH parameters of the

Jointi a_;(°) a_,(m) d(m)  6(°) Range

robot
1 -90 0 d, -90 Otolm
2 180 1.525 0 0, —165° to 165°
3 90 0 0 0;490  —20° to 200°
4 90 0 0.3635 6, —165° to 165°
5 -90 0 0 05 —122°to 122°
6 90 0 0.418 O —165° to 165°
7 -90 0 0 0, —110°to 110°
8 90 0 0.265 ;490  —175°to 175°
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