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Abstract
Optimization refers to finding the optimal solution to minimize or maximize the 
objective function. In the field of engineering, this plays an important role in design-
ing parameters and reducing manufacturing costs. Meta-heuristics such as the grey 
wolf optimizer (GWO) are efficient ways to solve optimization problems. However, 
the GWO suffers from premature convergence or low accuracy. In this study, a team 
learning-based grey wolf optimizer (TLGWO), which consists of two strategies, is 
proposed to overcome these shortcomings. The neighbor learning strategy intro-
duces the influence of neighbors to improve the local search ability, whereas the 
random learning strategy provides new search directions to enhance global explora-
tion. Four engineering problems with constraints and 21 benchmark functions were 
employed to verify the competitiveness of the TLGWO. The test results were com-
pared with three derivatives of the GWO and nine other state-of-the-art algorithms. 
Furthermore, the experimental results were analyzed using the Friedman and mean 
absolute error statistical tests. The results show that the proposed TLGWO can pro-
vide superior solutions to the compared algorithms on most optimization tasks and 
solve engineering problems with constraints.
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GSA	� Gravitational search algorithm
RO	� Ray optimization algorithm
PSO	� Particle swarm optimization
KH	� Krill herd algorithm
DE	� Differential evolution algorithm
ABC	� Artificial bee colony algorithm
ALO	� Ant lion optimizer
WOA	� Whale optimization algorithm
BOA	� Butterfly optimization algorithm
ELM	� Extreme learning machine
MDM-GWO	� Mutation-driven modified grey wolf optimizer
MsRwGWO	� Multi-strategy random weighted grey wolf optimizer
CGWO	� Gaze cues learning-based grey wolf optimizer
RBGWO	� Randomized balanced grey wolf optimizer
SGWO	� Society-based grey wolf optimizer
AGWO	� Adaptive grey wolf optimizer
RNA-GWO	� Grey wolf optimizer with RNA crossover operation
MCA	� Min-conflict local search algorithm
HGWOP	� Hybrid GWO with PSO
B-GWO	� Balanced grey wolf optimization
SGWO-FH	� Sparsity-based grey wolf optimization algorithm
HGWO	� Hybrid grey wolf optimizer
EEGWO	� Exploration-enhanced grey wolf optimizer
IGWO	� Improved grey wolf optimizer
HPSO	� Self-organizing hierarchical particle swarm optimizer
SADE	� Self-adapting differential evolution algorithm
MABC	� Modified artificial bee colony algorithm
DEKH	� Hybrid krill herd algorithm
sinDE	� Sinusoidal differential evolution algorithm
CMVO	� Chaotic multi-verse optimizer
BMWOA	� Associative learning-based exploratory whale optimizer
BBOA	� Enhanced butterfly optimization algorithm
DALO	� Improved antlion optimizer
MAE	� Mean absolute error
IK	� Inverse kinematics
DOF	� Degrees of freedom

1  Introduction

Optimization is a broad field of research that refers to finding a set of optimal 
variables to minimize or maximize an objective function without violating con-
straints. In the field of engineering, optimization problems usually refer to search-
ing for optimal parameters to minimize manufacturing costs, or designing con-
trollers to minimize control errors. The optimization of complex systems usually 
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involves many difficulties, such as nonlinearity, non-differentiability, high com-
putational cost, large solution space, and multimodality [1]. Conventional math-
ematical methods, such as exact or approximate algorithms, can no longer solve 
these problems efficiently [2].

In contrast to conventional methods, meta-heuristic algorithms have become a 
competitive alternative to solving complex optimization problems owing to their 
simplicity and flexibility. Some meta-heuristic algorithms originated from physical 
rules, such as the multi-verse optimizer (MVO) [3], thermal exchange optimization 
(TEO) [4], gravitational search algorithm (GSA) [5], and ray optimization algorithm 
(RO) [6]. However, most algorithms are inspired by nature, such as the particle 
swarm optimization (PSO) [7], the krill herd algorithm (KH) [8], the differential 
evolution algorithm (DE) [9], the artificial bee colony algorithm (ABC) [10], the ant 
lion optimizer (ALO) [11], the whale optimization algorithm (WOA) [12], and the 
butterfly optimization algorithm (BOA) [13].

Using mathematical methods to describe the group class and hunting mechanism 
of grey wolves, Mirjalili [14] proposed an innovative meta-heuristic algorithm: the 
grey wolf algorithm (GWO). The grey wolf society is divided into four classes. The 
top leader is the alpha, who has the most extensive experience and is responsible 
for directing the wolves to find and hunt prey. The middle class comprises the beta 
and delta. They obey alpha’s leadership and convey alpha orders to their subordinate 
wolves. The remaining wolves form the lowest class, called the omega, and act in 
accordance with the instructions of the leaders. During a hunt, the best wolf replaces 
the original alpha as the new leader.

The hunting mechanism simulated by the GWO includes three steps: tracking, 
surrounding, and assaulting the prey. There are two changing parameters, a and 
C, that adaptively adjust the degree of exploitation and exploration performed by 
the algorithm. Many studies have shown that the GWO has strong competitiveness 
owing to its fewer control parameters and easy implementation. Moreover, the GWO 
has also been widely used in real-world optimization problems, such as feature 
selection [15], image segmentation [16], and economic dispatch [17]. This shows 
that the GWO has great research value and application potential. However, the GWO 
relies only on three chief wolves to update the population, which leads to limitations 
such as insufficient population diversity and premature convergence.

To improve the performance of the GWO and better solve optimization problems, 
we designed two learning strategies to propose a new optimizer called TLGWO. The 
proposed strategies mimic the learning behavior of the grey wolf, including learning 
from its neighbors, as well as learning from random wolves in the team. The main 
features and contributions of our work are shown as follows:

•	 Proposal of a neighbor learning strategy. This strategy defines the sensing dis-
tance for each search agent, and the other search agents within the sensing dis-
tance are its neighbors. Neighbors with higher fitness values attract the search 
agent, whereas neighbors with lower fitness values repel it. The comprehensive 
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influence of neighbors on a certain wolf will prompt it to move closer to its prey, 
which accelerates the convergence of the GWO.

•	 Proposal of a random learning strategy. During the global search, this strategy 
allows a grey wolf to learn from random wolves in the team, which allocates 
some of the wolves to a new area. This random distribution provides grey wolves 
with the opportunity to search for better prey, which enhances the exploration 
ability of the GWO.

•	 Comparison of the proposed TLGWO with the classical version of the GWO, 
three upgraded variants of the GWO, and nine recent state-of-the-art algorithms 
on 21 benchmark functions. Four engineering design problems with constraints 
were also used for the evaluation. The Friedman and mean absolute error statisti-
cal tests were performed to analyze the experimental results.

•	 Enhanced and balanced exploitation and exploration of the GWO due to the 
proposed algorithm, which is conducive to solving the optimization problem of 
complex systems. The two proposed learning strategies are also applicable to 
other algorithms, which provides new ideas for the improvement in meta-heuris-
tic algorithms.

The remainder of this paper is organized as follows. Section 2 summarizes related 
work, including the classical GWO and some GWO variants. Specific team learning 
strategies and the details of the proposed TLGWO are described in Sect. 3. Section 4 
lists the benchmark functions, introduces the experimental conditions, and analyzes 
the experimental results. Section 5 describes the engineering design problems and 
presents the corresponding tests. Finally, Sect. 6 provides a summary statement and 
discusses future work.

2 � Related work

In this section, we introduce the grey wolf optimizer (GWO), as well as some 
recently proposed GWO variants.

2.1 � Grey wolf optimizer

The grey wolf optimizer (GWO) was originally proposed by Mirjalili et al. [14] in 
2014. It uses mathematical methods to show the group hierarchy and hunting laws of 
grey wolves.

2.1.1 � Social hierarchy

According to the description of the GWO, the grey wolf society consists of four 
classes: alpha (α), beta (β), delta (δ), and omega (ω). α, β, and δ are the most suit-
able, second most suitable, and third most suitable results of the current popula-
tion, respectively. They represent the leaders of the wolf pack and have the best 
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understanding of the location of the prey. The other wolves are denoted by ω. Their 
positions are changed based on α, β, and δ in each iteration. Throughout the opti-
mization process, ω wolves were guided by the leaders to capture the best prey (the 
optimal solution) in their hunting space.

2.1.2 � Encircling prey

The first step of hunting is to encircle the prey. The following two equations are pro-
posed to describe the encircling behavior:

where Xp and X indicate the position variables of the prey and grey wolf, respec-
tively. t is the current iteration. A and C are coefficient variables that are calculated 
as follows:

where r1 and r2 are random variables with values in [0, 1]. a linearly decreases from 
2 to 0 during the entire search and is calculated as follows:

where MaxIter is the maximum number of iterations.

2.1.3 � Attacking prey

The second step involves harassing and attacking prey. Assuming that the three 
wolves α, β, and δ have better knowledge of the location of their prey than the other 
wolves, the other wolves (ω) will follow them to get closer to the prey. The positions 
of the ω wolves are updated as follows:

(1)D =
|||C ⋅ Xp(t) − X(t)

|||

(2)X(t + 1) = Xp(t) − A ⋅ D

(3)A = 2a ⋅ r1 − a

(4)C = 2 ⋅ r2

(5)a(t) = 2 − 2t∕MaxIter

(6)X1 = X� − A1 ⋅
||C1 ⋅ X� − X||

(7)X2 = X� − A2 ⋅
|||C2 ⋅ X� − X

|||

(8)X3 = X� − A3 ⋅
||C3 ⋅ X� − X||

(9)X(t + 1) =
(
X1(t) + X2(t) + X3(t)

)
∕3
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where X� , X� , and X� denote the positions of α, β, and δ, respectively. The GWO 
algorithm is presented in Algorithm 1.

Algorithm 1. Grey Wolf Optimizer (GWO)
1:          Initialize the grey wolf population X and the algorithm’s parameters a, A and C
2:          The current iteration t = 1
3:          while t < the maximum number of iterations MaxIter do
4:                for i = 1 to the population size N do
5:                   Calculate the fitness of each search agent
6:                   Select the best-performing wolves α, β, and δ
7:                end for
8:                Calculate the parameter a using Eq. (5)
9:                for i = 1 to N do
10:                 Calculate the parameters A and C using Eq. (3) and (4)
11:                 Update the position of the current search agent using Eq. (9)
12:              end for
13:              t = t + 1
14:          end while

2.2 � Recently proposed GWO variants

The search process of meta-heuristic algorithms includes two stages: exploration 
and exploitation. During exploration, the search agent investigates promising areas 
in the search space as widely as possible, which requires the search to be random 
and global. Exploitation refers to the ability of the search agent to find a better solu-
tion in a promising local search area.

In the GWO, the wolves are led by α, β, and δ to search the optimal solution in 
the search space. This behavior is good at exploitation but weakens exploration, so 
the algorithm may converge prematurely owing to insufficient exploration and fall 
into a local optimum. Another limitation is that when the population update is deter-
mined by only the three best wolves, the diversity of the population decreases, which 
is not conducive to finding the global optimal solution.

Many recent studies are devoted to overcoming the shortcomings of the GWO. 
Ma et al. [18] combined extreme learning machine (ELM) with the GWO and pro-
posed the GWO-ELM algorithm to solve the optimization problem of composite 
beams (CBs). The experimental results showed that the GWO-ELM could determine 
the overall behavior of the CBs quickly and accurately. However, more tests such as 
optimization of benchmark functions are not used to verify the universality of the 
algorithm.

Shehata et  al. [19] combined the autonomous group particle swarm algorithm 
(AGPSO) and the grey wolf optimizer to propose a hybrid optimizer called AGPSO-
GWO. The application on the optimization of the current transmission systems 
verified the effectiveness of the hybrid algorithm. Since the AGPSO-GWO is a 
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hybrid version of two algorithms, the computational complexity of the algorithm is 
increased.

Singh and Bansal [20] designed a new search mechanism and a driven scheme 
to propose the mutation-driven modified grey wolf optimizer (MDM-GWO). The 
mutation mechanism based on Levy flight is used to enhance the global search abil-
ity of the algorithm. The experimental results show that the new strategies improve 
the convergence speed and exploration ability of the GWO.

Inac et al. [21] proposed the multi-strategy random weighted grey wolf optimizer 
(MsRwGWO) containing new strategies such as a boundary checking mechanism 
and a greedy selection mechanism to improve the performance of the GWO. How-
ever, the comparative results show that the MsRwGWO is less competitive on high-
dimensional optimization problems.

Nadimi-Shahraki et  al. [22] designed two new strategies called neighbor gaze 
cues learning (NGCL) and random gaze cues learning (RGCL). The NGCL strategy 
enhances the exploitation ability of the algorithm, and the RGCL strategy improves 
the population diversity. They applied these strategies in the GWO and proposed the 
gaze cues learning-based grey wolf optimizer (CGWO). These new strategies effec-
tively enhance the competitiveness of the GWO.

Adhikary and Acharyya [23] proposed the randomized balanced grey wolf opti-
mizer (RBGWO), which is inspired by the social hierarchy and random walk strate-
gies. Unconstrained and constrained real-world optimization problems are used to 
test the performance of the algorithm. Experimental results show that the added 
strategies effectively improve the search efficiency of the algorithm.

Hosseini-Hemati [24] proposed the society-based grey wolf optimizer (SGWO) 
to optimize power dispatch problem. In the SGWO, the population is divided into 
several societies. Each society has an independent leader who leads other wolves 
closer to their prey. Moreover, a new mechanism for attacking prey was applied. The 
results show that the SGWO can solve the optimization problem of power system 
quickly and effectively.

In order to improve computational efficiency, Meidani et  al. [25] proposed the 
adaptive grey wolf optimizer (AGWO). In the AGWO, the parameters are automati-
cally adjusted according to a three-point fitness history, which effectively accelerates 
the convergence of the algorithm. However, the performance of the algorithm has 
not been further tested on real-world optimization problems with constraints.

Liu and Wang [26] designed a crossover operator according to the structure of 
RNA molecules. The proposed grey wolf optimizer with RNA crossover operation 
(RNA-GWO) is used for optimization problems of benchmark functions and wave-
let neural networks. The results show that the RNA-GWO effectively improved the 
global search ability of the GWO. Optimization problems for complex systems with 
constraints have not been used to test the performance of the algorithm.

Makhadmeh et al. [27] combined the min-conflict local search algorithm (MCA) 
and the GWO to propose a new algorithm called GWO-MCA. The comparison 
results with other algorithms show that the GWO-MCA has great advantages in 
solving the power scheduling problem in smart home. Future work can be consid-
ered to modify the selection strategy of the MCA to further improve the quality of 
the solutions.
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Based on the unique search advantages of the PSO and GWO, Zhang et al. [28] pro-
posed the hybrid GWO with PSO (HGWOP). A poor-for-change strategy organically 
integrates the PSO and GWO to maximize the overall performance. The test results on 
benchmark functions show that the HGWOP has stronger universality. However, the 
proportion of the HGWOP ranking first on different functions is not large, and its appli-
cation in practical problems is not considered.

In the field of terrestrial networks, Gupta et al. [29] proposed the balanced grey wolf 
optimization (B-GWO) algorithm to optimize the unmanned aerial vehicles deploy-
ment and power allocation. In this work, the iterative process of the GWO is divided 
into three stages and each stage has a unique parameter update strategy. The compari-
son results show that the B-GWO has superior performance in solving non-convex 
optimization problems.

Rajput [30] proposed the sparsity-based grey wolf optimization algorithm (SGWO-
FH) to optimize the least square representation problem in face hallucination techniques. 
The concept of sparsity effectively improves the computational speed of the algorithm. 
Furthermore, a domain-specific prior is introduced to initialize the population. Com-
pared with other methods, the SGWO-FH produces better super-resolved faces. How-
ever, the algorithm is easily affected by noise, and its robustness needs to be improved.

3 � Team learning‑based grey wolf optimizer

The proposed team learning-based grey wolf optimizer (TLGWO) contains two differ-
ent strategies: neighbor learning and random learning.

3.1 � Neighbor learning strategy

When chasing prey, grey wolves decide their actions based on the three leaders, as 
described in Eq.  (9). In addition, the influence of neighbor wolves on an individual 
wolf cannot be ignored. This neighbor effect may be attractive or repulsive. If a neigh-
bor is closer to the prey, an individual will be attracted to it. Otherwise, the individual 
stays away from the neighbors. Both cases motivate individuals to move toward the 
prey, so the exploitation of the algorithm is further enhanced. In this paper, we pro-
posed a neighbor learning strategy to introduce the influence of neighbors.

The neighbor learning strategy is presented as follows:

(10)𝛼
neighbor

i
=

M∑
j=1

F̂ijX̂ij

(11)F̂ij =
Fi − Fj

Fworst − Fbest
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where M denotes the number of neighbors of the ith individual. Fi and Fj are the fit-
ness of the ith individual and the jth neighbor, respectively. Fworst and Fbest indicate 
the worst and the best fitness values in the population, respectively. X represents the 
position of an individual or neighbor. X̂ij is a unit vector, and a small positive num-
ber � is added to avoid singularities. F̂ij is the normalized fitness value that deter-
mines whether the effect of the individual and the neighbor is attractive or repulsive.

We take the following example to further explain the neighbor learning strat-
egy. Figure 1 shows a two-dimensional search space. The red point O represents 
the global optimum. The three orange concentric circles represent the contour 
lines of three fitness values F1, F2, and F3. Search agents on the same concentric 
circle have the same fitness value. The closer to the global optimum, the smaller 
the fitness value, so F1 < F2 < F3. The yellow point A refers to an individual in the 
search agents. The points inside the green circle are the neighbors of A. In Fig. 1, 
B, C, and D are neighbors of A, but E is not. There are three types of neighbors of 
A: closer to the global optimum than A (like D), as far as A from the global opti-
mum (like C), and farther from the global optimum than A (like B).

In Eq.  (11), F̂ij ∈ [− 1, 1] is a parameter that determines whether neighbors 
attract or repel the individual. Since F1 < F2, for A and D, F̂AD > 0 . Similarly, 
F̂AB < 0 , F̂AC = 0 . We define the coordinate X of each search agent to be a vector 
whose direction is from the origin O to itself. In Eq. (12), X̂ij is a unit vector and 
its direction is from i to j. For A and D, the direction of vector vAD = F̂ADX̂AD is 
from A to D. Similarly, the direction of vector vAB is from B to A. In other words, 
D has an attractive effect on A, B has a repulsive effect on A, and C has no effect 
on A. In the next iteration, the amount of position change of A is determined by 
all its neighbors, as shown in Eq. (10). In this example, �neighbor

A
= vAB + vAD . The 

direction of �neighbor

A
 is toward the origin O, so the neighbor learning strategy 

(12)X̂ij =
Xj − Xi

∥ Xj − Xi ∥ +𝜀

Fig. 1   Schematic of neighbor 
learning strategy

O

F1

F2

F3

A
B C

E

D

vAD

vAB
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motivates A to move toward the global optimum. The above explanation contin-
ues to apply to search spaces with higher dimensions.

To select the neighbors of the ith individual, the sensing distance is defined:

where �leader
i

 represents the position change calculated by the classical GWO, and its 
calculation method is shown in Eq. (9). If the Euclidean distance between two indi-
viduals is less than the sensing distance dsensing

i
 , the individuals are neighbors.

3.2 � Random learning strategy

Insufficient exploration is one of the main limitations of the GWO, which stems 
from the fact that all grey wolves move in relation to the three wolves α, β, and δ. In 
this paper, we introduce a random learning strategy, so that individuals are not only 
led by the leaders but are also affected by other random individuals in the popula-
tion. The random learning is described as follows:

where Xm and Xn are two different individuals randomly chosen from the population. 
� is a random scale factor that determines the walk distance and � ∈ [0, 1].

Comparing Eq. (14) with Eq. (9), the significant difference is that the motion gen-
erated by Eq. (9) always forces the individual to move toward the current best solu-
tions ( X� , X� and X� ), whereas the position update caused by Eq. (14) is completely 
random. This means that the motion induced by Eq.  (14) may prompt individuals 
to escape from local optima. Therefore, the random learning strategy described by 
Eq. (14) provides enough randomness for exploration. Moreover, the random indi-
viduals Xm and Xn also increase the diversity of the population, which plays an 
important role in overcoming premature convergence.

Random learning provides individuals with the opportunity to avoid local optima, 
which greatly enhances the exploration of the algorithm. It mimics the scattered for-
aging of grey wolves in nature in response to food shortages. If the food found by 
the leaders is not sufficient to supply the entire wolf pack, some grey wolves may 
migrate to new areas with abundant food, which improves their survivability.

3.3 � Proposed TLGWO

When the neighbor learning strategy and random learning strategy are combined, 
the position-updated operator of the GWO is rewritten as follows:

where �leader
i

=
(
X1(t) + X2(t) + X3(t)

)
∕3 is the same as in Eq.  (9). �leader

i
 is the 

movement of the ith individual under the influence of leaders α, β, and δ. �neighbor

i
 

(13)d
sensing

i
=∥ Xi − �leader

i
∥

(14)�random
i

= �
(
Xm − Xn

)
, m ≠ n ≠ i

(15)Xi(t + 1) = B1 ⋅ �1 ⋅ �
leader
i

+ �
neighbor

i
+ B2 ⋅ �2 ⋅ �

random
i
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and �random
i

 are the movements caused by neighbors and random learning, respec-
tively. �1, �2 ∈ [0, 1] are random parameters that are used to determine the distance 
of the movements. B1 and B2 are defined as weighting factors to regulate the explora-
tion and exploitation capabilities of the GWO, and they are calculated as follows:

where � = 1.5 is set based on experience. A similar setting of � can be found in [20].
B1 and B2 are nonlinear variables of iteration t . At the beginning of the search, the 

individuals are dispersed. A larger B1 is set to enhance the exploitation so that the algo-
rithm quickly converges to the optimal solution. At the end of the search, individuals 
are concentrated near the optimal solution. The value of B2 increases to enhance explo-
ration and encourage more individuals to disperse to new search areas to find better 
solutions.

The TLGWO algorithm is presented in Algorithm 2. The neighbor learning strategy 
is good at local search and can help individuals find a precise solution faster. The ran-
dom learning strategy encourages individuals to explore new areas, which is conducive 
to break through the local optimum.

Algorithm 2. Team Learning-based Grey Wolf Optimizer (TLGWO)
1:          Initialize the grey wolf population X and the algorithm’s parameters a, A, C, B1, and B2

2:          The current iteration t = 1
3:          while t < the maximum number of iterations MaxIter do
4:                for i = 1 to the population size N do
5:                   Calculate the fitness of each search agent
6:                   Select the best-performing wolves α, β, and δ
7:                end for
8:                Calculate the parameter a using Eq. (5)
9:                for i = 1 to N do
10:                 Update the parameters A and C using Eq. (3) and (4)
11:                 Calculate the movement caused by leaders using Eq. (9)
12:                 Calculate the sensing distance using Eq. (13)
13:                 for j = 1 to N do
14:                    Select the neighbors of the ith individual
15:                 end for
16:                 for k = 1 to the number of neighbors M
17:                    Calculate the movement caused by neighbors using Eq. (10)
18:                 end for
19:                 Update the parameters B1 and B2 using Eq. (16) and (17)
20:                 Calculate the movement caused by random learning using Eq. (14)
21:                 Update the position of the current search agent using Eq. (15)
22:              end for
23:              t = t + 1
24:          end while

(16)B1(t) =
(
MaxIter − t

MaxIter

)�

(17)B2(t) = 1 − B1(t)
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4 � Experimental results and analysis

In this section, the proposed TLGWO was tested on 21 commonly used benchmark 
functions. The test results were compared with the GWO and three GWO vari-
ants, as well as nine state-of-the-art algorithms. For a fair comparison, we chose 
improved versions of the state-of-the-art algorithms. Moreover, several statistical 
analysis methods were used to discuss the results.

The algorithms used for comparison are as follows: grey wolf optimizer (GWO) 
[14], hybrid grey wolf optimizer (HGWO) [17], exploration-enhanced grey wolf 
optimizer (EEGWO) [31], improved grey wolf optimizer (IGWO) [32], self-organ-
izing hierarchical particle swarm optimizer (HPSO) [33], self-adapting differential 
evolution algorithm (SADE) [34], modified artificial bee colony algorithm (MABC) 
[35], hybrid krill herd algorithm (DEKH) [36], sinusoidal differential evolution 
algorithm (sinDE) [37], chaotic multi-verse optimizer (CMVO) [38], associative 
learning-based exploratory whale optimizer (BMWOA) [39], enhanced butterfly 
optimization algorithm (BBOA) [40], and improved antlion optimizer (DALO) [41].

Table 1 lists the parameter settings of the algorithms mentioned in this study. All 
parameters were set to the values in the original reference studies. All experiments 
were performed on a computer with an Intel® Core™ i7-8750H CPU @ 2.20 GHz 
and 8.00 GB RAM in a Windows 10 environment. The stopping rule for all algo-
rithms is that the number of iterations reaches the maximum number of iterations. In 
this paper, the maximum number of iterations was set to 500.

4.1 � Benchmark functions

Twenty-one benchmark functions with dimensions D = 10, 30, and 50 from a 
series of reference studies [14, 15, 20, 42] were applied to verify the superiority 
of the TLGWO. The selected benchmark functions are presented in Table 2. The 

Table 1   Parameter settings of algorithms

Algorithm Year Parameter settings

GWO 2014 a ∈ [2, 0] , r1,r2 ∈ [0, 1]

HGWO 2016 a ∈ [2, 0] , r1 , r2 ∈ [0, 1] , W = 1,Cr ∈ [0, 0.2]

EEGWO 2017 r1 , r2 ∈ [0, 1] , b1 = 0.1 , b2 = 0.9 , � = 1.5 , ainitial = 2,afinal = 0

IGWO 2021 a ∈ [2, 0] , r1,r2 ∈ [0, 1]

HPSO 2004 c1i = 2.5 , c1f = 0.5 , c2i = 0.5 , c2f = 2.5

SADE 2006 �1 = �2 = 0.1 , Fi = 0.1 , Fu = 0.9

MABC 2012 �ij ∈ [−1, 1] , limit = 200 , MR = 0.4 , SFi = 1

DEKH 2014 Nmax = 0.01 , vf = 0.02 , Ct = 0.5 , FW = 0.1,CR = 0.4

sinDE 2014 Uj ∈ [0, 1] , freq = 0.25

CMVO 2019 WEP ∈ [0.2, 1] , TDR ∈ [0.6, 1],p = 6

BMWOA 2020 l ∼ U(−1, 1) , p ∼ U(0, 1) , � = 0.005 , bw = 0.5

BBOA 2020 a ∈ [0.1, 0.3] , r ∈ [0, 1] , c = 0.01 , p = 0.8

DALO 2021 Jr = 1 , wd = 8,wr = 1.4
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search space (2-D version) for some of these benchmark functions are shown in 
Fig. 2. In Fig. 2, the variables xi (i = 1, 2) and the function value f of the bench-
mark function with dimension D = 2 constitute a three-dimensional surface. 
Below the surface is a contour plot, and the color of the surface changes accord-
ing to the height of f.

The unimodal functions (f1–f9) were implemented to test the global search per-
formance of the algorithms owing to the functions having only one optimal solu-
tion. Comparatively, the multimodal functions (f10–f21) have many local optima, 
which are helpful for examining the exploration ability of algorithms. The mini-
mum value of all functions was 0.

(a)

(d) (e) (f)

(g) (h) (i)

(b) (c)f1 f3 f5

f7 f9 f12

f14 f16 f18

Fig. 2   Search space (2-D version) for benchmark functions
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4.2 � Comparison with the GWO and its variants

To demonstrate the competitiveness of the TLGWO, the GWO and three popu-
lar GWO variants (HGWO, EEGWO, and IGWO) were used for comparison. The 
details of the algorithms are shown in Table 1. The population size and the maxi-
mum number of iterations were 30 and 500, respectively. For each benchmark func-
tion having 10, 30, and 50 dimensions, 30 runs were performed. The results of the 
comparison are presented in Tables 3 and 4, where “Mean” represents the average 
best value and “Std” refers to the standard deviation value. Wilcoxon’s signed-rank 
test with a significance level of 5% was applied to compare the superiority of algo-
rithms. The “ + ” indicates that the TLGWO performs better than this algorithm, “ − ” 
means the performance of the TLGWO is inferior to this algorithm, and “ ∼ ” rep-
resents that the TLGWO is not significantly different from this algorithm. The best 
results are shown in bold.

Tables 3 and 4 show that the TLGWO achieves the best results for most func-
tions. Compared with the GWO, the TLGWO achieves similar results on f15 and bet-
ter results on all other functions. Compared with the HGWO, the TLGWO obtains 
better results for all functions except f9. On f9 with D = 10, the TLGWO loses to the 
HGWO, but as the dimensions increase, the performance of the TLGWO catches up 
to that of the HGWO. Similar behavior can also be observed in comparison with the 
IGWO on f10 and f19.

Compared with the EEGWO, the TLGWO obtains better results on 13 func-
tions and achieves the same optima on seven functions. On f7 with D = 10 and 30, 
the TLGWO and EEGWO show similar performances, but on f7 with D = 50, the 
EEGWO is even better. Compared with the IGWO, the TLGWO performs better 
on 16 functions, worse on f9 and f18, and similarly on f15. According to the above 
analysis, the TLGWO is more competitive than other GWO variants for almost all 
unimodal and multimodal functions, and its performance does not decrease signifi-
cantly with an increase in dimensionality.

Figure  3 shows the convergence curves of the six algorithms mentioned above 
with D = 30 on f4, f7, f14, and f17. It can be seen that the TLGWO converges to the 
global optimum at a fast rate. Similar phenomena were observed for most other 
functions. Owing to space limitations, the resulting figures for the remaining func-
tions are omitted.

4.3 � Comparison with other state‑of‑the‑art algorithms

The TLGWO was compared with nine other state-of-the-art algorithms. For the 21 
benchmark functions, all algorithms were run independently 30 times. The popula-
tion size was 30, and the best result was output after 500 iterations. Tables 5 and 6 
show the average and standard deviation of the optimization results, and the best 
results are highlighted in bold.

From Tables 5 and 6, it can be observed that the TLGWO obtains the best results 
in all dimensions for all functions except functions f9, f10, f18, and f19. On f9 with 
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D = 10, the SADE performs best, and when the dimension is increased to 30 and 
50, the BMWOA achieves the best performance. However, the results obtained by 
the TLGWO are quite close to the best results, especially when the dimension is 
high (when D = 30, the difference between the best result and that of the TLGWO is 
2.8%, and when D = 50, the difference is 0.62%).

On f10 with D = 10, the sinDE finds the optimal solution, and when D = 30 and 50, 
the BMWOA outperforms the other algorithms. On f18 with D = 10, 30, and 50, the 
best results are obtained by HPSO, sinDE, and BMWOA, respectively. The sinDE 
achieves a great advantage on f19 with D = 10 and 30, but when the dimension is 50, 
HPSO is best.

Figure 4 shows the convergence characteristics of the TLGWO and nine state-of-
the-art algorithms on some typical functions. According to Fig. 4, the TLGWO has a 
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Fig. 3   Convergence curves of five algorithms with D = 30 on f4, f7, f14, and f17
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fast convergence rate, and its convergence result is closest to the global optimum for 
most functions.

4.4 � Statistical analysis

Statistical tests can be applied in any experimental framework to determine whether 
a new method significantly improves existing methods. They can evaluate the per-
formance of the algorithms in more aspects to get an objective ranking. In this sec-
tion, we performed statistical analysis including the Friedman test and mean abso-
lute error test to verify the superiority of the TLGWO. In addition, the computation 
time of all algorithms was tested and discussed.
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Fig. 4   Convergence curves of ten algorithms with D = 30 on f4, f7, f14, and f17
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4.4.1 � Friedman test

The Friedman test [43] is a nonparametric analog used to detect significant differ-
ences between algorithms. The Friedman statistic Ff  is defined as follows:

where i and j are the index numbers of the optimization problem and the algorithm, 
respectively. n is the total number of problems. The rank value rj

i
 is from 1 (the best 

result) to k (the worst result). Rj is the average rank of the jth algorithm. When n and 
k are large enough (for example, n > 10 and k > 5), Ff  is a χ2 distribution with k − 1 
degrees of freedom.

For the algorithms mentioned in this paper, the Friedman test results are shown 
in Table 7. It can be seen that the proposed TLGWO achieves the best ranking in 
all dimensions. The TLGWO achieved the best ranking because the team learning 

(18)Ff =
12n

k(k + 1)

[∑
j

R2
j
−

k(k + 1)2

4

]

(19)Rj =
1

n

∑
i

r
j

i

Table 7   Friedman test results of 13 algorithms and TLGWO for 21 benchmark functions (D = 10, 30, 50)

Bold values indicate the best results

Dim Algorithm

GWO HGWO EEGWO IGWO HPSO SADE MABC

Average rank
10 6.14 8.71 3.90 4.47 7.19 7.19 9.04
30 5.09 8.57 3.38 4.57 8.23 10.23 10.42
50 4.92 7.95 3.16 5.00 9.33 10.38 11.57
Overall rank
10 5 9 2 3 7.5 7.5 10
30 5 9 2 3 8 11 12
50 4 7 2 5 9 11 14

Dim Algorithm

DEKH sinDE CMVO BMWOA BBOA DALO TLGWO

Average rank
10 11.85 5.76 10.09 6.33 10.66 10.42 2.57
30 11.61 6.85 10.04 5.04 8.00 10.85 2.04
50 10.71 8.19 10.14 4.26 7.19 10.42 1.73
Overall rank
10 14 4 11 6 13 12 1
30 14 6 10 4 7 13 1
50 13 8 10 3 6 12 1
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mechanism proposed in this study effectively enhanced and balanced the explora-
tion and exploitation capabilities of the algorithm.

The proposed neighbor learning strategy promotes individuals to converge to 
the optimal solution through the influence of neighbors, which enhances the local 
search of the algorithm. Because of its superior exploitation capability, the TLGWO 
achieved the best results on unimodal functions (f1–f9). In addition, the TLGWO 
obtained the best results on multimodal functions (f10–f21), which usually test the 
exploration strength of the algorithm. This is due to the proposed random learning 
strategy guiding the search agent to move in more directions through two random 
individuals, which improves the global search ability.

4.4.2 � Mean absolute error test

Mean absolute error (MAE) is a statistic that shows the difference between the esti-
mated value and the true value [32]. It is calculated as follows:

where N is the number of test functions, fi is the optimization result obtained by 
the ith algorithm, and f is the global optimum. The mean absolute errors between 
the optimization results obtained by each algorithm and the global optimum of test 
functions are shown in Table 8.

When the dimension is 10, the mean absolute error of the IGWO is the smallest. 
The proposed TLGWO obtains the fourth smallest error. However, when the dimen-
sion is increased to 30 and 50, TLGWO has the smallest mean absolute errors. It 
can be seen that the TLGWO has strong competitiveness, especially in high-dimen-
sional optimization problems. Generally, high-dimensional problems have more 
local optima. The random learning strategy in the TLGWO distributes some of the 
search agents to new areas for global search, which is beneficial to escape from local 
optima. Therefore, the TLGWO is better at solving high-dimensional optimization 
problems.

4.4.3 � Computation time analysis

In this section, the computation time of all algorithms was tested. The population 
size was set to 30. The stopping condition was that the number of iterations reaches 
500. For the 21 benchmark functions with dimension D = 30, each algorithm was 
run 10 times. The average computation time (unit: second) is shown in Table 9. To 
get the rank of the computation time of each algorithm, we performed the Friedman 
test on the results in Table 9. The statistical test results are shown in Table 10.

From Table 9, it can be seen that most algorithms except the DALO are within 
1 s of computation time on most benchmark functions. This shows that most of 
the algorithms involved in the study have a very fast computation speed, and the 
difference in computation time is small. The results in Table  10 show that the 
computation speed of the TLGWO ranks 9th among the 14 algorithms, whereas 

(20)E =
1

N

N∑
i=1

||fi − f ||
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the HPSO obtains the best ranking. However, the average computation time of the 
TLGWO is 0.2889 s, which is only 0.1958s longer than the average computation 
time of the HPSO. In addition, it can be seen from Table 7 in Sect. 4.4.1 that the 
quality of the optimization results obtained by the TLGWO is much better than 
that of the HPSO.

The computation time is related to the structure of the algorithm. Due to the 
new team learning mechanism, the average computation time of the TLGWO 
increased by 0.1513 s compared to the classical GWO. Since the new mechanism 
greatly improves the performance, this time consumption is acceptable.

Table 8   Mean absolute errors of 13 algorithms and TLGWO for 21 benchmark functions (D = 10, 30, 50)

Bold values indicate the best results

Dim Algorithm

GWO HGWO EEGWO IGWO HPSO

MAE
10 6.70E+01 7.67E+01 1.39E+02 1.27E+01 8.76E+01
30 3.08E+02 2.93E+02 5.02E+02 2.16E+02 4.25E+02
50 5.47E+02 5.21E+02 8.55E+02 4.73E+02 8.86E+02
Rank
10 7 8 13 1 9
30 5 3 8 2 6
50 4 3 6 2 7

Dim Algorithm

SADE MABC DEKH sinDE CMVO

MAE
10 2.30E+01 1.10E+02 1.46E+02 2.15E+01 5.80E+01
30 5.29E+03 2.29E+03 4.53E+03 5.32E+02 3.04E+02
50 5.65E+04 5.70E+04 1.05E+04 2.81E+03 8.11E+02
Rank
10 3 10 14 2 6
30 14 12 13 9 4
50 13 14 11 9 5

Dim Algorithm

BMWOA BBOA DALO TLGWO

MAE
10 5.37E+01 1.28E+02 1.17E+02 4.35E+01
30 1.79E+03 4.74E+02 5.95E+02 1.79E+02
50 9.61E+03 1.75E+04 1.73E+03 3.46E+02
Rank
10 5 12 11 4
30 11 7 10 1
50 10 12 8 1
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5 � Engineering applications

To verify the effectiveness of the proposed TLGWO in practical applications, three 
constrained engineering design problems, namely tension/compression spring design 
[44], welded beam design [45], and pressure vessel design [46], were selected. In 
addition, the TLGWO and other algorithms involved in this paper were applied to 
solve the inverse kinematics (IK) problem of an 8-degree-of-freedom (DOF) serial 
robot. All algorithms have a population size of 100 and a maximum number of itera-
tions of 1000.

5.1 � Constraint handling method

In this paper, the constraint handling method proposed in [47] was applied. An opti-
mization problem with constraints is usually described as follows:

where f (x) is the fitness function. The dimension of the problem is D, and the value 
range of the dth variable is [ xl

d
 , xu

d
 ]. There are I inequality constraints ci(x) and J 

equality constraints hj(x).
In order to reduce the competitiveness of solutions that do not satisfy the con-

straints (infeasible solutions), a penalty function is used to modify the fitness of the 
solutions. The fitness function F(x) with penalty is designed as follows:

(21)

Minimize f (x)

Subject to ci(x) ≥ 0, i = 1, 2,… , I

hj(x) = 0, j = 1, 2,… , J

xl
d
≤ xd ≤ xu

d
, d = 1, 2,… ,D

Table 10   Friedman test results of computation time

Bold values indicate the best results

Algorithm

GWO HGWO EEGWO IGWO HPSO SADE MABC

Average rank
2.33 7.09 5.28 12.47 1.04 5.38 9.14
Overall rank
2 7 4 13 1 5 10

Algorithm

DEKH sinDE CMVO BMWOA BBOA DALO TLGWO

Average rank
11.76 5.66 3.90 11.23 7.09 14.00 8.57
Overall rank
12 6 3 11 8 14 9
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where fmax is the fitness value of the worst solution. When the operand is positive, [] 
returns 0; when the operand is negative, [] returns the absolute value. Equation (22) 
means that when a solution does not violate any constraints, its fitness is maintained; 
otherwise, its fitness is modified according to the number and degree of constraints 
it violates, and the worst solution in the current population.

Figure  5 is an illustration of the constraint handling method. The six solid 
green dots represent the six solutions in the population, and the solid black line 
represents the modified fitness values. The fitness values of infeasible solutions 
are larger than that of feasible solutions, so the penalized solution loses an advan-
tage in the competition to become the best solution.

5.2 � Engineering problem I: Tension/compression spring design

The tension/compression spring design problem (“Appendix 1.1”) is a minimiza-
tion constraint problem. The goal of the optimization is to minimize the weight 
of the spring. The constraints include shear stress, surge frequency, and minimum 
deflection. This problem has three design variables (see Fig. 6): wire diameter dw, 
mean coil diameter dc, and number of active coils N.

Table 11 shows feasible solutions found by the TLGWO and the other 13 algo-
rithms on the tension/compression spring design problem. The best solution, with 
a cost of 0.012724, was found by the GWO algorithm, and the proposed TLGWO 
algorithm found the second-best solution with a cost of 0.012809. In terms of ten-
sion/compression spring design, TLGWO demonstrates strong competitiveness.

(22)F(x) =

⎧
⎪⎨⎪⎩

f (x), if ci(x) ≥ 0∀i = 1, 2,… , I

fmax +
I∑

i=1

�
ci(x)

�
, otherwise

Fig. 5   Schematic of the con-
straint handling method

c(x)=0

x

Infeasible Feasible

f(x)

[c(x)]

F(x)

fmax

fitness
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5.3 � Engineering problem II: welded beam design

As shown in “Appendix 1.2,” the optimization goal of the welded beam design 
problem is to minimize the manufacturing cost of the welded beam. There are 
four design variables for this problem (see Fig. 7): the thickness of the weld h, 
height of the beam T, length of the attached part of the beam l, and thickness of 
the beam b. Relevant constraints include the shear stress � , buckling load on the 
beam Pc , bending stress in the beam � , and end deflection of the beam �.

The experimental results of the TLGWO and the other 13 algorithms for the 
welded beam design problem are presented in Table  12. For the welded beam 
design problem, the HGWO achieved the best solution with a cost of 1.695400. 
The proposed TLGWO found a solution that was very close to the best result, 
with a cost of 1.727200.

Fig. 6   Tension/compression 
spring design

dw

dc

N

Table 11   Experimental results 
of 13 state-of-the-art algorithms 
and TLGWO for the tension/
compression spring design 
problem

Bold values indicate the best results

Algorithm Optimal values of design variables Optimal cost

dw dc N

HPSO 0.055283 0.449400 7.387500 0.012893
SADE 0.054604 0.408640 9.843800 0.014431
MABC 0.053463 0.388107 10.82120 0.014223
DEKH 0.057207 0.502590 6.399200 0.013815
sinDE 0.054203 0.408439 10.43300 0.014920
CMVO 0.057020 0.499000 6.124000 0.013180
BMWOA 0.058918 0.556850 5.009500 0.013550
BBOA 0.056240 0.475100 6.893200 0.013364
DALO 0.055160 0.446100 7.485400 0.012875
GWO 0.050116 0.319965 13.83240 0.012724
HGWO 0.056058 0.471190 6.776500 0.012995
EEGWO 0.055360 0.396100 11.88630 0.016858
IGWO 0.051855 0.354521 11.97650 0.013324
TLGWO 0.050000 0.317103 14.15790 0.012809
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5.4 � Engineering problem III: pressure vessel design

The goal of the pressure vessel design problem is to reduce the manufacturing 
cost of the vessel as much as possible. “Appendix 1.3” describes the objective 
functions and constraints of the problem. Figure  8 shows the four design vari-
ables of the problem, which are the thickness of the shell Ts, thickness of the head 
Th, inner radius R, and length of the cylindrical section L.

Fig. 7   Welded beam design

b

h

L

T

l

Table 12   Experimental results of 13 state-of-the-art algorithms and TLGWO on the welded beam design 
problem

Bold values indicate the best results

Algorithm Optimal values of design variables Optimal cost

h l T b

HPSO 0.197411 3.315061 10.00000 0.201395 1.820395
SADE 0.213430 6.198200 8.254900 0.257430 2.376900
MABC 0.194050 3.703600 9.753500 0.224880 2.022200
DEKH 0.320250 2.399500 7.638800 0.328250 2.250100
sinDE 0.170170 6.099200 9.047400 0.238460 2.281300
CMVO 0.205611 3.472103 9.040931 0.205709 1.725472
BMWOA 0.131940 8.471700 8.887200 0.212700 2.206600
BBOA 0.188140 4.185900 9.304800 0.204870 1.831500
DALO 0.150170 4.617600 9.036600 0.205730 1.780200
GWO 0.205678 3.471403 9.036964 0.205729 1.724995
HGWO 0.205670 3.254600 9.036700 0.205730 1.695400
EEGWO 0.287580 2.277400 9.367400 0.309460 2.478200
IGWO 0.190190 3.502300 9.319600 0.205130 1.749700
TLGWO 0.195150 3.588500 9.044800 0.205950 1.727200
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Table 13 shows the experimental results of TLGWO and 13 state-of-the-art algo-
rithms on pressure vessel design. As shown in Table 13, TLGWO achieves the best 
solution at x* = (0.785283, 0.388714, 40.56697, 197.6661) with an optimal cost of 
5938.9395. In summary, TLGWO shows excellent performance and great competi-
tiveness in solving constrained practical engineering problems.

5.5 � Engineering problem IV: inverse kinematics solution

In this section, the TLGWO and other 13 algorithms were applied to solve the IK of 
an 8-DOF serial robot. Figure 9 shows the structure of the robot, which is composed 
of one translation joint and seven rotation joints. The IK problem can be described 
as finding a set of joint variables that make the pose of the robot end-effector 

L

R

Th

Ts

Fig. 8   Pressure vessel design

Table 13   Experimental results of 13 state-of-the-art algorithms and TLGWO for the pressure vessel 
design problem

Bold values indicate the best results

Algorithm Optimal values of design variables Optimal cost

Ts Th R L

HPSO 0.916845 0.453197 47.50493 119.4608 6167.1292
SADE 1.567434 2.479227 46.91671 133.3930 19,133.476
MABC 1.662900 0.954586 76.84130 10.28290 15,145.663
DEKH 3.251310 35.98050 65.51910 42.01280 295,354.72
sinDE 2.353231 2.153293 68.79089 164.9708 45,190.344
CMVO 0.787553 0.394033 40.76956 195.9078 5966.0172
BMWOA 0.931951 0.459752 47.32779 121.0679 6303.1592
BBOA 1.321390 0.532168 55.71410 60.98570 7998.8290
DALO 0.826773 0.408675 42.83796 167.7143 5974.4731
GWO 0.812500 0.434500 42.08918 176.7587 6051.5639
HGWO 0.910428 0.450058 47.16467 122.5616 6152.9859
EEGWO 2.804914 0.991835 53.06128 142.1000 29,950.623
IGWO 1.163076 0.723840 52.46822 102.0611 9264.9101
TLGWO 0.785283 0.388714 40.56697 197.6661 5938.9395
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coincide with the pose of the target point. “Appendix 1.4” details the fitness function 
of this problem, as well as the forward kinematics of the robot.

Many studies [48–50] have shown that using meta-heuristic algorithms to solve 
IK problems can effectively avoid singularity and complex computation. The pseu-
docode for solving IK based on meta-heuristic is shown in Algorithm  3. In this 
work, we randomly selected a set of joint variables to calculate the pose matrix of 
the end-effector. This pose matrix contains the position and orientation information 
of the target point. The joint configuration is selected as [0.5 m, 30°, 60°, 90°, 60°, 
30°, 60°, 90°]. The pose matrix of the target point is calculated by forward kinemat-
ics as follows:

The population size of all algorithms is set to 100. For each algorithm, the IK 
solution is output after 1000 iterations. Table 14 shows the results of the TLGWO 
and other 13 meta-heuristic algorithms for solving IK problems, where the unit of 

(23)0
8
T =

⎡⎢⎢⎢⎣

0.3683 0.6998 0.6121 0.3326

−0.8248 −0.0580 0.5625 0.1533
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d1 is meter and the units of �2–�8 are radian. The IK of redundant robots (with more 
than 6 DOF) has multiple solutions. In other words, there are infinite joint configu-
rations that enable the end-effector to reach the target point represented by Eq. (23). 
In Table 14, the pose error between the end-effector and the target point is used to 
evaluate and compare the solutions.

Algorithm 3. Meta-heuristic IK solver
1:   Initialize the population and parameters of meta-heuristic algorithm
2:   while stopping rule is not true do 
3:         for each search agent Xi do
4:               Calculate the forward kinematics Fi of Xi
5:               Calculate the fitness value f (Fi)
6:               Update search agent Xi' by meta-heuristic algorithm
7:               Calculate the forward kinematics Fi' of Xi'
8:               Calculate the fitness value f (Fi')
9:               if f (Fi') <  f (Fi)            
10:                Update search agent Xi = Xi'
11:             end if
12:       end for
13: end while
14: return the best search agent as the IK solution

It can be seen from Table 14 that the TLGWO obtains the best solution with a 
pose error of 0.00147. Therefore, the proposed TLGWO can effectively solve the 
IK problem of redundant robots and can find the best solution compared with other 
state-of-the-art algorithms.

Table 14   Experimental results of 13 state-of-the-art algorithms and TLGWO on the IK problem

Bold values indicate the best results

Algo-
rithm

Optimal values of joint variables Pose 
error

d
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

HPSO 0.37583  − 0.26874 1.44510  − 0.16366  − 1.47800  − 0.52089  − 0.67831  − 0.96871 0.01496
SADE 0.00000 2.87980 1.54260 2.87980  − 2.12930  − 0.89002  − 0.33170  − 0.69845 0.14019
MABC 0.47298  − 0.44856 0.20371  − 0.09356 1.07630 2.87980 1.91990 1.69790 0.00824
DEKH 0.08324  − 0.73903 1.22270  − 2.87540 1.88010 1.53060  − 0.12253 0.08721 0.05566
sinDE 0.42699 0.02820 0.15271  − 2.66360  − 1.28380  − 1.02630 1.71670 1.32190 0.00320
CMVO 0.56116  − 0.67054 0.40800  − 0.44641 0.94484 0.10642  − 1.86910  − 1.66930 0.11739
BMWOA 0.14843  − 0.66928 1.30030  − 2.82760 1.82500  − 1.31030 0.42167 2.99730 0.00764
BBOA 0.11408  − 2.11440 1.70920 1.68400  − 2.12930  − 1.43420  − 0.30302 0.28462 0.09839
DALO 0.02552 2.63780 3.39220 0.70945 0.00973  − 1.37990 0.45240 2.31190 0.18766
GWO 0.14501 1.89670 3.36830 2.07440 1.82480 0.49659  − 1.67840  − 0.63662 0.00845
HGWO 0.02828 1.74390 3.49070 1.59290 1.94660  − 0.06333  − 1.46510  − 0.19934 0.09369
EEGWO 0.42803 1.12300 1.73380 1.81300 1.44810 2.36340  − 0.94844  − 0.87596 0.02932
IGWO 0.12232  − 1.39710 0.13475 1.76320  − 1.85060  − 2.33780  − 1.45320  − 0.31762 0.00958
TLGWO 0.50094  − 2.74130 2.42500  − 2.02320 1.03980 1.17890 1.27230 1.36730 0.00147
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6 � Conclusions and future work

This paper proposed an improved team learning-based grey wolf optimizer 
(denoted as TLGWO) to enhance and balance the exploitation and exploration 
abilities of the grey wolf optimizer (GWO). The team learning strategies include 
the neighbor learning strategy and random learning strategy. The neighbor learn-
ing strategy assigns neighbors to each search agent. The influence of neighbors 
on the search agent may be attractive or repulsive, but both will prompt the search 
agent to move toward the optimal solution, which improves the local search abil-
ity of the algorithm. The random learning strategy selects two random individuals 
in the population to guide the movement of the search agent, which is beneficial 
to the global search. Furthermore, an adaptive parameter tuning method was pro-
posed to balance the exploitation and exploration of the algorithm.

The proposed TLGWO was tested on optimization tasks and engineering prob-
lems. First, 21 benchmark functions were used to prove the superiority of the 
TLGWO. In a comparison of nine state-of-the-art algorithms and three GWO-
derived algorithms, the TLGWO achieved the best results in most cases. The 
Friedman test and mean absolute error statistical test were used to compare and 
discuss experimental results. Second, four engineering design problems with con-
straints were used to test the capabilities of the algorithm. The results revealed 
that the TLGWO provided the best or close to the best results. In summary, the 
TLGWO proposed in this study exhibits generally superior performance.

In the future, we will further investigate adaptive strategies to improve the per-
formance of the GWO. In addition, the application of meta-heuristic algorithms 
will be extended to more fields, such as the inverse kinematics and trajectory 
optimization of robots. We will continue to refine the team learning-based strat-
egy proposed in this paper and apply it to other algorithms.

Appendix 1: Engineering problems

Appendix 1.1: Tension/compression spring design problem

Consider x =
[
x1x2x3

]
=
[
dwdcN

]
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Appendix 1.2: Welded beam design problem

Consider x =
[
x1x2x3x4

]
= [hlTb]

where �(x) =
√

(��)2 + 2�����
x2

2R
+ (���)2,

Minimize f (x) =
(
x3 + 2

)
x2x

2
1

Subject to

g1(x) = 1 −
x3
2
x3

71785x4
1

≤ 0,

g2(x) =
4x2

2
− x1x2

12566
(
x2x

3
1
− x4

1

) +
1

5108x2
1
− 1

≤ 0,

g3(x) = 1 −
140.45x1

x2
2
x3

≤ 0,

g4(x) =
x1 + x2

1.5
− 1 ≤ 0

Variable range 0.05 ≤ x1 ≤ 2.00,

0.25 ≤ x2 ≤ 1.30,

2.00 ≤ x3 ≤ 15.0

Minimize f (x) = 1.10471x2
1
x2 + 0.04811x3x4

(
14.0 + x2

)

Subject to

g1(x) = �(x) − �max ≤ 0,

g2(x) = �(x) − �max ≤ 0,

g3(x) = �(x) − �max ≤ 0,

g4(x) = x1 − x4 ≤ 0,

g5(x) = P − Pc(x) ≤ 0,

g6(x) = 0.125 − x1 ≤ 0,

g7(x) = 1.10471x2
1
+ 0.04811x3x4

(
14.0 + x2

)
− 5.0 ≤ 0
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Appendix 1.3: Pressure vessel design problem

Consider x =
[
x1x2x3x4

]
=
[
TsThRL

]

Appendix 1.4: Inverse kinematics problem

The solution of the IK problem can be expressed as

�� =
P√
2x1x2

, ��� =
MR

J
, M = P

�
L +

x2

2

�
, R =

�
x2
2

4
+

�
x1 + x3

2

�2

,

J = 2

�√
2x1x2

�
x2
2

4
+

�
x1 + x3

2

�2
��

, �(x) =
6PL

x2
3
x4
, �(x) =

6PL3

Ex2
3
x4
,

Pc(x) =

4.013E

�
x2
3
x6
4

36

L2

�
1 −

x3

2L

�
E

4G

�
,

P = 6000 lb, L = 14 in., �max = 0.25 in.,

E = 30 × 106 psi, G = 12 × 106 psi, �max = 13, 600 psi, �max = 30, 000 psi

Variable range 0.1 ≤ x1 ≤ 2.0,

0.1 ≤ x2 ≤ 10.0,

0.1 ≤ x3 ≤ 10.0,

0.1 ≤ x4 ≤ 2.0.

Minimize f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3
+ 3.1661x2

1
x4 + 19.84x2

1
x3

Subject to

g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −�x2
3
x4 −

4

3
�x3

3
+ 1, 296, 000 ≤ 0,

g4(x) = x4 − 240 ≤ 0

Variable range 0 ≤ x1 ≤ 99,

0 ≤ x2 ≤ 99,

10 ≤ x3 ≤ 200,

10 ≤ x4 ≤ 200

x =
[
x1x2x3x4x5x6x7x8

]
=
[
d1�2�3�4�5�6�7�8

]
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where d1 is the joint variable of the translational joint (unit: m), �2 ~ �8 are the joint 
variables of the rotational joints (unit: °).

The fitness function is designed as follows:

where k1 = k2 = 0.5 are the weight coefficients. Perr is the position error between the 
robot end-effector and the target point, and Oerr is the orientation error between the 
end-effector and the target point. They are calculated as follows:

where Pe and Pt are the position vectors of the end-effector and the target point, 
respectively. { �1, �1 } and { �2, �2 } are quaternions corresponding to the orientation 
matrices of the end-effector and the target point, respectively. When the orientation 
of the end-effector coincides with the orientation of the target point, Oerr = 0 ; other-
wise, Oerr = 1.

The position and orientation of the end-effector or target point are solved by for-
ward kinematics, which is expressed as follows:

where R is the orientation matrix and P is the position matrix. i−1
i

T  is the transfor-
mation matrix of the coordinate system {i} relative to the coordinate system {i − 1}. 
i−1
i

T  can be obtained from DH parameters of the robot, which are shown in Table 15.
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