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Abstract: Object detection in remote sensing is becoming a conspicuous challenge with the rapidly
increasing quantity and quality of remote sensing images. Although the application of Deep Learning
has obtained remarkable performance in Computer Vision, detecting multi-scale targets in remote
sensing images is still an unsolved problem, especially for small instances which possess limited
features and intricate backgrounds. In this work, we managed to cope with this problem by designing
a neck attention block (NAB), a simple and flexible module which combines the convolutional
bottleneck structure and the attention mechanism, different from traditional attention mechanisms
that focus on designing complicated attention branches. In addition, Vehicle in High-Resolution
Aerial Imagery (VHRAI), a diverse, dense, and challenging dataset, was proposed for studying small
object detection. To validate the effectiveness and generalization of NAB, we conducted experiments
on a variety of datasets with the improved YOLOv3, YOLOv4-Tiny, and SSD. On VHRAI, the
improved YOLOv3 and YOLOv4-Tiny surpassed the original models by 1.98% and 1.89% mAP,
respectively. Similarly, they exceeded the original models by 1.12% and 3.72% mAP on TGRS-HRRSD,
a large multi-scale dataset. Including SSD, these three models also showed excellent generalizability
on PASCAL VOC.

Keywords: remote sensing; multi-scale object detection; small object detection; attention mechanism;
YOLOv3; YOLOv4-Tiny; SSD

1. Introduction

In remote sensing, multiple satellites and aircraft are used to capture images that
contain significant information, such as the characteristics and changes of landscape,
man-made targets, and traces. Object detection is a critical approach to extracting useful
information from remote sensing images. It plays a vital role in environmental monitoring,
geological hazard detection, land-use/land-cover mapping, geographic information system
update, military reconnaissance and location, and land planning [1].

Traditional object detectors, which are usually composed of region proposal, feature
extraction, feature fusion, and classifier training, require elaborately hand-made features
and must be trained step by step. Therefore, these methods have inferior efficiency, accuracy,
and generalizability. Especially with the rapid advancement of the quantity and quality of
optical remote sensing images, these methods can not meet the requirement of practical
applications by degrees.

In the last decades, convolutional neural networks (CNNs) have made tremendous
breakthroughs in various computer vision tasks, including image classification, object
detection, and semantic segmentation. The application of CNNs in object detection for
remote sensing images achieves better accuracy, higher efficiency, and more powerful
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generalizability than traditional methods. A common CNN detector is composed of
a backbone, which is pretrained with large datasets and used to extract feature maps;
a neck, which can enhance feature representation and make feature transition smooth
from feature maps to output; and a head, which is used to generate regression and
classification predictions.

The backbone, the most significant part of a CNN model, determines the fundamental
performance of a CNN model. Since the advent of AlexNet [2], a variety of backbones
have been designed for improving the capability of feature extraction, such as VGG16 [3],
Inception [4], ResNet [5], ResNeXt [6], and Darknet53 [7]. In these backbones, an important
research direction is to increase the depth and width of the network. AlexNet only has
five convolutional layers, and VGG16 has sixteen convolutional layers. After the creation
of a residual block, ResNet-152 contains 152 convolutional layers. Meanwhile, the set of
Inception structures. which concentrates on increasing the width of a model, also obtains
excellent performance.

The purpose of the neck is to refine feature maps from the backbone and transmit them
to the head. In order to aggregate bottom and top features, a Feature Pyramid Network
(FPN) [8] is designed to combine low-resolution features and high-resolution features by
adding a top-down path. To address the shortcoming that top feature maps lack location
information in FPN, a Path Aggregation Network (PAN) [9] further adds a down-top path
on the basis of the FPN. Although the neck has a significant function in enhancing feature
representation and making feature transition from feature maps to output smooth, the
research for the neck is still inadequate. Most CNN models neglect its essentiality; for
example, SSD [10] directly transmits feature maps from the backbone to the head, while
YOLOv3 and RetinaNet [11] simply append several convolutional layers after FPN.

The head is a simple structure that only contains several convolutional layers. It can
generate regression and classification predictions, including the coordinates of bounding
boxes and the class probabilities.

Most well-known object detectors, which are composed of the above modules, could be
split into two-stage detectors and one-stage detectors. The central idea of two-stage detec-
tors is to generate region proposals by the region proposal network, then predict sparse out-
put by detecting each proposal, such as R-CNN [12], Fast R-CNN [13], Faster R-CNN [14],
and Mask R-CNN [15]. Compared with two-stage detectors, one-stage ones predict dense
output straight from CNNs with the goal of improving detection speed while maintaining
comparative performance. YOLOv1 [16], YOLOv2 [17], YOLOv3, YOLOv4 [18], SSD, and
RetinaNet are examples of one-stage detectors.

Although these detectors are designed for nature images, their applications in remote
sensing have made unprecedented progress. For instance, Yuanxin Ye et al. developed a
model with the adaptive feature fusion mechanism based on EfficientDet [19]; the authors
of [20] improved YOLOv3 by combining DenseNet with YOLOv3 for multi-scale detection;
Ke Li et al. proposed DetectIon in Optical Remote sensing images (DIOR), a large-scale
dataset, and compared various detectors in DIOR [21]; Zhenfang Qu et al. designed an aux-
iliary network with CBAM to improve YOLOv3 [22]; the authors of [23] modified YOLOv4
with MobileNet v2 and depth-wise separable convolution to achieve the tradeoff between
detection accuracy and speed; and Yafei Jing et al. introduced the vision transformer and
Bi-Directional FPN into YOLOv5s [24]. In remote sensing, multi-scale object detection has
made obvious advances by transferring and improving existing detectors. However, it still
cannot meet the requirements of practical applications, especially in small object detection.

To address the aforementioned problem, we concentrate on the neck of detectors
and carefully design neck attention block (NAB), a simple and flexible module which
combines the attention mechanism and the convolutional bottleneck structure to enhance
the feature representation capability and promote feature transition from feature maps to
dense output. It can extract global information and calibrate the channels of feature maps.
It can be inserted straightforwardly after the feature maps generated by the backbone or
the path aggregation structure. In addition, we propose a publicly dataset, Vehicle in High
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Resolution Aerial Imagery (VHRAI) for small object detection. YOLOv3, YOLOv4-Tiny, and
SSD were modified simply with NAB, and the improved models were validated on various
datasets. By conducting experiments compared with the original models, we demonstrate
that NAB is beneficial to small object detection and multi-scale object detection in remote
sensing. In addition, it had excellent generalizability on various datasets and models.

The rest of this paper is organized as follows. In Section 2, we introduce some papers
about one-stage detectors, attention mechanisms, and small object detection. Section 3
describes NAB, the improved one-stage detectors with NAB, and VHRAI created for small
object detection in detail. Section 4 shows the experiments of the improved models on
various datasets. Section 5 discusses NAB and the improved models. Lastly, the conclusion
is shown in Section 6.

2. Related Work
2.1. One-Stage Detector

In remote sensing, most applications, such as target tracking, military reconnais-
sance, and disaster relief, have an increased demand for real-time detection. To bal-
ance the accuracy and speed of object detection, we concentrate on the research of one-
stage detectors.

One-stage detectors can be divided into anchor-based ones and anchor-free ones. For
improving recall rate, anchor-based detectors set pre-defined boxes with different scales
and ratios for predictions, such as YOLOv2-v4, SSD, and RetinaNet. SSD appends several
layers after VGG16 to produce muti-scale output. Based on YOLOv2, YOLOv3 selects
the more powerful Darknet-53 as the backbone and uses the FPN to generate multi-scale
predictions. YOLOv4 chooses many measures, including CSPNet [25], CIOU [26], and
Mosaic, to modify YOLOv3. For real-time detection, YOLOv4-Tiny obtains an extremely
higher speed by decreasing the parameters of YOLOv4. Anchor-free detectors directly
predict the boxes without the limitation of anchor boxes, such as CornerNet [27], FCOS [28],
and YOLOX [29]. FCOS, based on RetinaNet, takes the location, which falls into any ground-
truth box, as a positive sample and adds the center-ness branch to depress low-quality
predictions. YOLOX proposes more powerful SimOTA as label assignment. Although
anchor-free detectors do not need to search for the hyperparameters of anchor boxes and
have less complexity, they have lower precision in detecting remote sensing images whose
scale of instances changes enormously. By comparing many detectors, we decide to select
YOLOv3 and SSD as our baselines to analyze NAB. In addition, we improved YOLOv4-Tiny
with NAB for real-time detection.

2.2. Attention Mechanism

Inspired by human vision, attention mechanisms, which enhance meaningful features
and depress noise, have shown remarkable improvement in deep learning. In this paper, we
focus on the attention mechanisms about CNNs rather than Scaled Dot-Product Attention
in Transformer [30]. This method can be well combined with the convolution operation
and has lower computational complexity and a faster convergence rate. It can be divided
into channel attention and spatial attention. Channel attention focuses on the importance
of different channels, and spatial attention focuses on the importance of different locations.
In the past few years, many representative blocks have emerged in attention mechanisms,
such as SE [31], ECA [32], CA [33], and CBAM [34]. SE is the paradigm of channel
attention which adaptively rescales the channels by utilizing the information of feature
maps. Figure 1 shows the structure of the SE block in detail. It obtains global information
by GAP (global average pooling) and then utilizes two fully connected layers to produce
the response of each channel. Finally, channel-wise multiplication is implemented between
the response and the original feature map. ECA thinks the two fully connected layers
of SE are unnecessary and adopts one-dimensional convolution to achieve local cross-
channel interaction. CBAM combines channel attention and spatial attention to acquire
the importance of every channel and location. It concatenates the results of GAP and
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GMP (global maximum pooling) to extract more robust information, as shown in Figure 2.
CA proposes coordinate attention to calculate the width attention and height attention,
respectively. Then, CA implements channel-wise multiplication between them. In remote
sensing, AAFM based on CBAM is proposed to create the basic block of EfficientNet.
MCA-YOLOv5-Light adopts the MCA attention mechanism to extract more productive
information [35].
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Figure 1. The structure of the SE block. w, h, and c denote the width, height, and channel of a feature
map, respectively. ’GAP’ is the average-pooling operation along the weight and height axes. ‘FC’
represents a fully connected layer with an activation function.
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Figure 2. The structure of CBAM. ‘CAM’ and ‘SAM’ denote the channel and spatial attention
modules, respectively. Similar to ’GAP’, ‘GMP’ is the max-pooling operation along the spatial
dimension. Similarly, ‘CAP’ and ‘CMP’ are the operations along the channel axis, respectively.
The results of ‘GAP’ and ‘GMP’ use the identical ‘MLP’, which is composed of sequential fully
connected layers.

Although current studies about attention mechanisms design various architectures
in the attention branch, they have a common characteristic that they obtain attention by
performing some operations on the feature map and then utilizing the attention to rescale
the original feature map. However, NAB, proposed by us, introduces an extra branch to
adaptively enhance the information of feature maps, as illustrated in Section 3.1.

2.3. Small Object Detection

In multi-scale detection, detecting small targets which have limited features, diverse
distributions, and arbitrary orientations is a big problem. First, there is no uniform defi-
nition of small objects. The most universal definition is from MS COCO, which regards
objects less than 32 × 32 pixels as small objects [36]. In DOTA [37], an object whose height
of the horizontal bounding box ranges from 10 to 50 pixels is defined as a small object.
TinyPerson takes an object that ranges from 20 to 32 pixels as a small object [38]. Chen et al.
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established a small object dataset whose ratio of the bounding box over the image of all
instances was between 0.08% and 0.58% [39]. With the consideration of limited receptive
field and down-sampling rate, we selected the above definition of MS COCO for small
objects in this paper.

For small object detection in remote sensing, the datasets and related research are
inadequate. The significant targets of remote sensing images usually contain almost
20 categories, such as soccer ball fields, vehicles, planes. In these categories, vehicles, ships,
and planes, which generally have a large number of small instances. TAS [40], VEDAI [41],
and COWC [42] only focus on vehicles; HRSC2016 only contains ships [43]; and UCAS-
AOD is concerned with vehicles and planes [44]. These datasets have many instances that
do not meet our definition of small objects. DOTA and DIOR contain enormous multi-scale
instances, but they do not specialize in annotating small objects.

With respect to object detectors, YOLO-fine, which is based on YOLOv3, increases
the resolution of feature maps for detecting small targets [45]. Deconv R-CNN introduces
a deconvolution layer to recover more details [46], and SOON constructs a receptive
field enhancement module to extract spatial information [47]. Most research ignores the
importance of the neck. Our proposed NAB is a flexible module which is used to extract
global information and propel the transition of features in the neck.

3. Materials and Methods
3.1. NAB

In the early stages of CNNs, the neck of an object detector, which is usually used to
transmit feature maps generated by the backbone to the head, is generally composed of
several convolutional layers. With the advent of FPN and PAN, the neck plays another im-
portant role in producing multi-scale feature maps that possess strong sematic information
by appending top-down and down-top paths. Then, these feature maps are sent into the
head via the identical layers. The way of stacking layers in the neck has a large burden
for the models with multi-scale output. For example, every output of FPN is connected
with 5 convolutional layers in the neck of YOLOv3. This way increases the parameters
of YOLOv3 and causes overfitting in the training process, especially for remote sensing
datasets that contain inadequate images.

In order to enhance representation capability in the neck, we carefully designed NAB,
which combines the channel attention and the convolutional bottleneck structure. It consists
of an attention branch, which adopts attention mechanisms to learn where and what to
focus on, and a bottleneck branch, which utilizes the convolutional bottleneck structure to
refine features and obtain robust feature representation adaptively.

Whereas attention mechanisms contain channel attention and spatial attention, we
only utilized channel attention in the attention branch. There is an empirical explanation
why we excluded spatial attention: for the dense output of one-stage detectors: Each grid
cell predicts the result of the corresponding region in an input image. Every region should
be weighted equally. Because the neck is close to the final output, spatial attention would
breach this equality and result in bad performance. However, the channels of a grid cell
denote different properties, such as the coordinates of a bounding box and the categories.
Using channel attention can propel feature representation and convergence.

Inspired by SE, the attention branch adopts GAP to aggregate global information,
as illustrated in Equation (1). The input is assumed as X, and Xi, j denotes the value of
a specific spatial location. Then, the information is forwarded to successive multi-layer
perceptrons (MLPs) composed of two fully connected layers. It is notable that the last layer
in the branch follows a Sigmoid function to generate factors which are restricted to the
range of 0–1.

FGAP(X) =
1

h × w

w

∑
i=1

h

∑
j=1

Xi, j (1)
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The purpose of appending a bottleneck branch is to enhance the adaptive ability of the
attention mechanism and to produce a more robust feature map via convolutional layers.
We opted to utilize the factors generated by the attention branch to recalibrate the output
of the bottleneck branch, which is the most distinctive point compared with traditional
attention mechanisms that remodify the original feature maps with the factors. The reasons
why this novel method feasible are as follows: The outputs of both branches originate from
the identical feature map. This can increase the flexibility of the attention mechanism and
make the block refine features adaptively. Our proposed NAB can acquire more robust
features and decrease the extra complexity introduced by traditional attention mechanisms.

The structure of NAB is shown in Figure 3. In NAB, the first and second lines denote
the attention branch and the bottleneck branch, respectively. The bottleneck branch is
composed of ‘BB’, which contains 3 × 3 and 1 × 1 convolution layers. It is notable that
each convolutional layer is connected with BN (Batch Normalization) [48] and ReLU. The
attention branch is composed of ‘GAP’ and several ‘MLP’. We set ‘BB’ and ‘MLP’ to have
an identical number, denoted by m. The output feature map has the same size and channel
as the input one. Our proposed NAB is an innovation for traditional attention mechanisms
which rescale the original feature map. It can decrease the parameters of neck and enhance
feature representation ability. If m is 1, then the attention branch and the bottleneck branch
can be represented as Equations (2) and (3), respectively. ‘F f c’ denotes one FC layer with
an activation function. ‘F1c’ and ‘F3c’ represent 1 × 1 and 3 × 3 convolutional layers with
Batch Normalization and a ReLU function, respectively. By implementing channel-wise
multiplication, the output of NAB can be obtained, as shown in Equation (4). In Section 4,
we show the excellent performance of NAB for small object detection and multi-scale object
detection on various datasets.

Fattention(X) = F f c(F f c(F GAP(X))) (2)

Fbottleneck(X) = F1c(F 3c(X)) (3)

FNAB(X) = Fattention(X)⊗ Fbottleneck(X) (4)
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Figure 3. The structure of NAB. ‘BB’ is the abbreviation of bottleneck block. The number of ‘MLP’
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3.2. Improved Models

In remote sensing, the instances, which usually have complicated backgrounds, un-
even distributions, and diverse scales, bring enormous computational complexity for object
detectors. To balance the accuracy and speed of object detection, we concentrated on the
research of one-stage detectors. In addition, NAB, which assigns different attributes to
the channels of a feature map, is consistent with the output of one-stage detectors whose
every channel denotes a kind of attribute, such as the coordinates of bounding boxes and
the probabilities of classes. We selected YOLOv3, YOLOv4-Tiny, and SSD as the improved
models from various one-stage detectors.

YOLOv3 is the baseline of many detectors, including YOLOv4, YOLOv5, and YOLOX.
It has important values for researching one-stage detectors; therefore, we selected YOLOv3
to verify the effectiveness of NAB. On the basis of YOLOv2, YOLOv3 adopts more powerful
Darknet53 as the backbone to enhance the capability of feature extraction and FPN to
generate multi-scale output. Due to the way that YOLOv3 transmits semantic information
to finer-grained feature maps by the top-down path, it obtains salient performance on small
object detection. In the neck, it is notable that YOLOv3 has five sequential ‘CBL’ blocks
before each head. It has an inferior ability in fusing feature maps generated by FPN and
Darknet53 and introduces redundant parameters to increase the risk of overfitting. Aiming
at achieving higher performance while decreasing computational complexity, the original
five ‘CBL’ were replaced with our proposed NAB and 1× 1 ‘CBL’ which was used to reduce
the channels of the feature map. Figure 4 depicts the modification in the neck of YOLOv3.
In Section 4, we contrast different models and show the highlighted performance of NAB
on a variety of datasets.
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Figure 4. The network of the improved YOLOv3. It can be divided into the backbone, called
Darknet53; the neck, which contains FPN and NAB; and the head, which is composed of two
convolutional layers. ‘Cat’ and ‘US’ denote the operations of concat and up-sampling, respectively.
‘LR’ is the abbreviation of Leaky ReLU.

SSD is another paradigm of one-stage detectors. The backbone is composed of the
truncated VGG16 and several auxiliary convolutional layers. It selects six multi-scale
feature maps that are generated by different convolutional blocks of the backbone. Then,
these feature maps are transmitted to the corresponding detection layers in the head. Each
layer has two convolutional layers, one for predicting the probabilities of classes and the
other for predicting the information of bounding boxes. If the input size is 300 × 300,
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then SSD will generate 8732 outputs. Because of the large size of optical remote sensing
images, the application of SSD in remote sensing has extremely tremendous computation
complexity and low detection efficiency. As a result, we improved SSD for validating the
generality of NAB in nature images rather than remote sensing images. In the original
SSD, the author introduced ‘L2_norm’ to scale the feature map of ‘Conv_4′, which is
different from others. Because NAB also has the same function, we concisely removed
the ‘L2_norm’. We inserted NAB and ‘CBL’ between the backbone and the head of SSD
to enhance the capability of feature representation and facilitate the feature transition, as
depicted in Figure 5. Section 4.3 shows the excellent generalizability of NAB in detecting
nature images.
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For real-time detection, YOLOv4-Tiny, which has an excellent balance between accu-
racy and speed, was modified with NAB. It is a simple version of YOLOv4 and has only
about one-tenth of YOLOv4′s parameters. YOLOv4-Tiny introduces the idea of CSPnet,
which is the largest difference between it and YOLOv3. It only has two outputs for reducing
the parameters. We improved it by inserting NAB into the neck, as shown in Figure 6.
Because YOLOv4-Tiny has fewer channels than YOLOv3 and SSD, we did not append
‘CBL’ before NAB. By conducting experiments on various datasets, we found that the
improved YOLOv4-Tiny has a more powerful capability in multi-scale object detection
than the original one, though it increases computational complexity slightly.

3.3. Datasets

Deep learning is a science driven by data. Thanks to substantial datasets that are
available in remote sensing, multi-scale object detection with CNNs has made remarkable
progress. However, small object detection remains a challenge. Besides the characteristics of
small targets, another reason is the lack of appropriate datasets that specialize in detecting
small instances. In order to boost the performance of small object detection, we created
Vehicle in High-Resolution Aerial Imagery (VHRAI), a dataset that contains 900 aerial
images with 960 × 540 pixels captured at a height of 1000 m for vehicle detection. We
utilized LabelImg, an open-source image annotation tool, to annotate instances [49]. Each
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object instance was manually labeled by a horizontal bounding box which was composed
of the coordinates of the central point, the size of the box, and the category.
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Because VHRAI is created for small object detection, we compared it with some well-
known datasets which mainly concentrate on researching vehicles and ships, including
TAS, UCAS-AOD, HRSC2016, DLR-MVDA [50], COWC, and VEDAI, as listed in Table 1.
The average area per instance of DLR-MVDA and VHRAI is far smaller than other datasets.
DLR-MVDA and VHRAI are annotated with oriented bounding boxes (OBB) and hori-
zontal bounding boxes (HBB), respectively. Both have important value in object detection.
Compared with VEDAI (512), VHRAI has more instances and smaller bounding boxes.
However, VHRAI has fewer instances than some large datasets, including UCAS-AOD and
COWC. In the future, we will further capture more images to enlarge VHRAI.

Table 1. Comparisons between the proposed VHRAI and several publicly available datasets in
remote sensing. VEDAI (512) denotes the version of VEDAI, whose image width is 512. Because the
annotations of the testing set in DLR-MVDA are unavailable, we only display the properties of the
training set. ‘#’ represents the meaning of ‘the number of’.

Datasets # Categories # Images # Instances Image Width Average Area per
Instance

TAS 1 30 1319 792 805
UCAS-AOD 2 1510 14,597 1280 4888
HRSC2016 1 1070 2976 ~1000 56,575

DLR-MVDA 2 10 3505 5616 239
COWC 1 53 32,716 2000~19,000 1024

VEDAI (512) 9 1250 3757 512 3108

VHRAI (ours) 1 900 5589 960 369

Figure 7 shows the characteristics of VHRAI. It has diverse backgrounds, uneven
distributions, and tiny scales. In the Earth observation community, VHRAI is a challenging
dataset for small object detection.
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To validate the effect of NAB for multi-scale object detection in remote sensing, we
selected TGRS-HRRSD, a public dataset which has 21,761 images and 13 categories [51].
This elaborate dataset achieves an excellent balance between all categories. The average
scale per category of TGRS-HRRSD ranges from 41.96 to 276.50 pixels. In addition, aiming
at indicating the generalizability of NAB, we conducted experiments on PASCAL VOC [52],
a commonly used natural scene dataset. The entire results are displayed in the next section.

4. Results
4.1. Evaluation Criteria

The output of an object detector can be divided into four categories: True Positive
(TP), False Positive (FP), True Negative (TN), and False Negative (FN). TP and FP denote
a positive sample that is classified correctly and incorrectly, respectively. TN and FN
represent a negative sample that is classified correctly and incorrectly, respectively. Through
analyzing these categories, we can obtain Precision, which illustrates the proportion of
TP in all positive samples, and Recall, which indicates the proportion of TP in all positive
ground-truth samples, depicted in Equations (5) and (6). These two indicators have some
limitations as evaluation criteria. Confidence is the threshold that estimates a sample is
positive or negative. Different Confidence can generate different Precision and Recall.
Precision increases and Recall decreases in general as Confidence gradually increases.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

We can acquire the Precision/Recall Curve by setting a different Confidence. Average
Precision (AP) denotes the area under Precision/Recall Curve for a class. The mean
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Average Precision (mAP) is the mean value of every class’s AP. The mAP is a significant
evaluation criterion in object detection. In this paper, we considered Precision and Recall
for a comprehensive comparison. AP_s proposed in MS COCO was also adopted to show
the performance of detecting small objects. In addition, the number of parameters was
used to evaluate computational complexity and detection speed.

4.2. VHRAI

VHRAI, whose average size of instances is 19.22× 19.19 pixels, is a valuable dataset for
small object detection. On this dataset, we validated the effectiveness of NAB by comparing
the improved YOLOv3 and YOLOv4-Tiny with the original ones. We also compared
traditional methods that contained SE and CBAM with NAB to reveal the importance of the
bottleneck branch in NAB, as shown in Figure 8. Furthermore, we analyzed the influence
of ‘m’, a hyperparameter in NAB. It is notable that these improvements were adopted in all
multi-scale paths.
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All experiment results on VHRAI are listed in Table 2. YOLOv3-NAB (m = 1) ob-
tained the best AP 90.29% among all models, surpassing YOLOv3 by 1.94%. The accuracy
and recall of YOLOv3-NAB were also better than the original model. At the same time,
YOLOv3-NAB (m = 1) reduced parameters by almost 11% compared with YOLOv3. We
also compared the loss and mAP curves of YOLOv3-NAB (m = 1) and YOLOv3 to acquire
a more robust conclusion, as shown in Figure 9. With respect to traditional attention
mechanisms, YOLOv3-SE had a slightly poorer performance than YOLOv3, and YOLOv3-
CBAM exceeded YOLOv3 by 0.74%. However, YOLOv3-NAB (m = 1), which improved
the attention mechanism by appending a bottleneck branch, achieved more salient per-
formance and had fewer parameters compared with YOLOv3-CBAM and YOLOv3-SE.
The reason why YOLOv3-NAB (m = 1) had fewer parameters is that traditional attention
mechanisms only can rescale the feature map generated by the layer and cannot serve as
an independent module. With this limitation, YOLOv3-SE had more convolutional layers
than YOLOv3-NAB (m = 1). These results clearly show the effectiveness of NAB, which
is a better way to utilize the attention mechanism in the neck. In addition, when we set
‘m’ = 2, YOLOv3-NAB (m = 2) obtained worse AP and had more parameters than YOLOv3-
NAB (m = 1). This may be attributed to the fact that more parameters increase the risk of
overfitting with the limitation of inadequate images. In the next experiments, the default
value of ‘m’ in NAB was 1.
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Table 2. Detection results on VHRAI. For a fair comparison, the models based on YOLOv3 had the
same configuration. The models based on YOLOv4-Tiny also had the same configuration. YOLOv3-SE
and YOLOv3-CBAM adopted the improved ‘CBL5’ with attention mechanisms in Figure 8b.

Model # Parameters Precision (%) Recall (%) AP (%) AP_s (%)

YOLOv3 61.52 M 83.73 83.87 88.35 41.9
YOLOv3-SE 63.24 M 84.44 83.5 88.15 39.5

YOLOv3-CBAM 63.24 M 85.88 83.76 89.09 41.4
YOLOv3-NAB (m = 1) 54.81 M 86.62 84.36 90.29 42.9
YOLOv3-NAB (m = 2) 61.87 M 81.01 87.45 89.16 41.9

YOLOv4-Tiny 5.87 M 71.35 58.77 63.99 20.6
YOLOv4-Tiny-NAB 7.05 M 72.05 60.39 65.82 21.6
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For real-time detection, we conducted experiments on YOLOv4-Tiny. YOLOv4-Tiny-
NAB achieved better precision, recall, and AP, exceeding the original model by 0.7%, 1.62%
and 1.83%, respectively, despite having slightly more parameters. Furthermore, due to
YOLOv4-Tiny, which cut an important path for small object detection, we found that
YOLOv4-Tiny-NAB had a large gap in performance compared with YOLOv3-NAB (m = 1).
It is notable that YOLOv4-Tiny-NAB had an extremely fast speed in detection.

In addition, we compared the AP_s of the above models, which is used to evaluate the
performance for small object detection precisely in MS COCO. Undoubtedly, YOLOv3-NAB
(m = 1) obtained the best AP_s, outperforming YOLOv3-SE and YOLOv3-CBAM by 3.4%
and 1.5%, respectively. In addition, YOLOv4-Tiny-NAB was better than YOLOv4-Tiny.
These experiments on VHRAI apparently demonstrate the effectiveness of NAB in small
object detection. Different from traditional attention mechanisms, we introduced an extra
branch to enhance the ability of adaptively extracting features rather than focusing on
designing a more complicated attention branch. Furthermore, NAB can be inserted into a
model flexibly as an independent structure, similar to the above models.

4.3. TGRS-HRRSD

Although we proved the effectiveness of NAB in small object detection, which is a
crucial part of multi-scale detection, it is necessary to conduct experiments on a multi-
scale dataset to acquire a reliable conclusion. TGRS-HRRSD is a large dataset for multi-
scale object detection. It has 13 categories, and the average scale per category ranges
from 41.96 pixels to 276.50 pixels. We selected TGRS-HRRSD as the dataset and com-
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pared YOLOv3-NAB, YOLOv3-SE, YOLOv3-CBAM, and YOLOv4-Tiny-NAB with the
original models.

Table 3 shows the detection results. YOLOv3-NAB, which had fewer parameters than
YOLOv3, scored 92.16% mAP, surpassing YOLOv3 by 1.06%. With respect to traditional
attention mechanisms, YOLOv3-SE had an inferior performance than YOLOv3-NAB, and
YOLOv3-CBAM was comparable with YOLOv3-NAB, but its parameters increased by 13%.
Compared with YOLOv4-Tiny, YOLOv4-Tiny-NAB, which was improved with NAB in the
neck, obtained a remarkable performance that exceeded the original model by 3.72% mAP.
It also outperformed in all categories. Its mAP was even close to YOLOv3, though it only
had about one-tenth of YOLOv3’s parameters. These experiments clearly illustrate that
NAB can obtain robust feature representation and is helpful for multi-scale object detection
as a flexible module.

Table 3. Detection results on TGRS-HRRSD.

Model Ship Bridge
Ground

Track
Field

Storage
Tank

Basketball
Court

Tennis
Court Airplane Baseball

Diamond Harbor Vehicle Crossroad T
Junction

Parking
Lot mAP (%)

YOLOv3 92.65 92.04 98.40 93.99 83.17 96.06 99.57 93.05 95.02 92.69 93.92 83.62 70.09 91.10
YOLOv3-SE 94.37 92.72 98.31 94.47 84.05 95.81 98.73 93.62 92.79 96.91 92.31 82.86 70.67 91.35

YOLOv3-CBAM 94.63 92.78 98.71 96.89 82.35 95.12 99.54 93.63 97.27 97.02 92.51 84.72 72.03 92.09
YOLOv3-NAB 94.59 93.33 98.33 96.12 82.84 95.83 99.02 93.34 96.79 97.05 94.08 85.03 71.79 92.16

YOLOv4-Tiny 86.34 73.18 92.31 97.20 69.60 93.53 98.88 89.90 84.36 90.27 87.13 68.85 53.36 83.44
YOLOv4-Tiny-NAB 89.72 85.31 95.89 97.28 71.30 93.61 98.94 91.61 92.11 93.43 89.98 73.15 60.79 87.16

4.4. PASCAL VOC

NAB had excellent performance in multi-scale remote sensing images, and we spec-
ulate that it is not limited in remote sensing. The experiments on PASCAL VOC, a well-
known dataset that contains 21504 nature images, were conducted to validate the general-
izability of NAB. All models were trained on the union of VOC2007 and VOC2012 trainval,
and they were evaluated with the VOC2007 test. The detection results are shown in Table 4.
The improved models, including YOLOv3-NAB, YOLOv4-Tiny-NAB, and SSD-NAB, ac-
quired a better performance than the original models, surpassing them by 0.88%, 1.98%,
and 0.82% mAP, respectively. Compared with traditional mechanisms, YOLOv3-NAB
outperformed YOLOv3-SE and YOLOv3-CBAM by 0.86% and 0.57%, respectively, while
decreasing 13% parameters. Consequently, we confirm that NAB can be generalized to
natural scenes and applied to various one-stage detectors.

Table 4. Detection results on PASCAL VOC. We chose 10 categories at random to show the compar-
isons of their AP (%). We retrained YOLOv3, YOLOv4-Tiny, and SSD for a fair comparison using the
same configuration of the improved models.

Model Aero Bike Bird Bottle Car Cow Dog Horse Sofa Train mAP (%)

YOLOv3 88.84 85.88 80.11 63.78 90.90 84.40 86.62 86.99 73.91 88.86 80.47
YOLOv3-SE 89.28 86.81 81.81 63.21 90.89 83.38 86.82 86.46 78.58 89.80 80.49

YOLOv3-CBAM 89.18 87.26 82.68 62.37 91.32 84.31 85.54 89.97 80.94 89.86 80.78
YOLOv3-NAB 89.65 87.78 81.74 65.97 91.02 86.89 86.38 87.18 71.55 88.70 81.35

YOLOv4-Tiny 84.06 85.29 74.35 62.55 90.54 81.41 77.86 86.55 73.10 84.39 77.08
YOLOv4-Tiny-NAB 87.21 87.09 76.97 66.72 91.77 80.75 79.52 87.67 73.18 86.75 79.06

SSD 77.81 84.93 75.35 42.32 86.50 77.35 86.99 88.60 73.52 84.93 75.8
SSD-NAB 79.75 85.06 77.55 45.79 85.61 77.15 85.67 87.80 74.46 86.66 76.62

5. Discussion

In this paper, we presented NAB, an architectural module designed to enhance the
capability of feature representation and promote feature transition in the neck by combining
the attention mechanism and the convolutional bottleneck structure. Since the output of
NAB has the same dimensions as the input, it is simple and flexible to utilize in the neck of
one-stage detectors. In addition, VHRAI, whose instances have an extremely small size,
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was created to address the challenge of small object detection, which is a crucial part of
multi-scale object detection in remote sensing.

We improved several classic one-stage detectors with NAB and conducted many
experiments on various datasets. YOLOv3-NAB, YOLOv4-Tiny-NAB, and SSD-NAB
achieved a better performance than the original models. Figure 10 shows some detection
examples of YOLOv3-NAB on different datasets. VHRAI is a diverse and challenging
dataset whose average area per instance is 369 pixels. It perfectly meets our definition of
small objects and is smaller than other famous datasets, such as VEDAI (512), HRSC2016,
UCAS-AOD, and TAS. The results of YOLOv3-NAB and YOLOv4-Tiny-NAB on VHRAI
clearly illustrate the effectiveness of NAB for small object detection. Furthermore, we
compared NAB with SE and CBAM in the neck. NAB, which appends a convolutional
bottleneck branch, showed better flexibility and performance while decreasing the model’s
parameters. The experiments on TGRS-HRRSD demonstrate the capability of NAB for
multi-scale detection in remote sensing. YOLOv4-Tiny had poor feature representation
with the limitation of parameters. However, the result that YOLOv4-Tiny-NAB exceeded
the original model by 3.72% mAP clearly verifies NAB can enhance the capability of feature
representation and propel feature transition. These improved models also obtained better
detection precision on PASCAL VOC. This fact indicates that NAB is not limited in remote
sensing and can be generalized to detect nature images.

Whereas NAB brings promising results in remote sensing and natural scenes, some
issues still remain and call for further research. NAB is restricted in the neck of a model.
Whether it can replace traditional attention mechanisms in the backbone or not remains
unknown. In addition, there are some similarities in the neck of one-stage and two-stage
detectors. In the future, we will further focus on the backbone and improve two-stage
detectors with NAB for object detection.
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In this paper, we designed a simple and flexible module for the neck of a model,
called NAB. Unlike traditional attention mechanisms which focus on designing a more
complicated attention branch, NAB appends a convolutional bottleneck branch with the
attention branch for enhancing feature representation capability and promoting feature
transition. In addition, VHRAI, a challenging dataset whose instances have an extremely
small size, was proposed for small object detection. The improved models, including
YOLOv3-NAB, YOLOv4-Tiny-NAB, and SSD-NAB, achieved excellent performance on
various datasets, which clearly proves the effectiveness and generalizability of NAB in
small object detection and multi-scale object detection. In the future, we will focus on
improving the backbone of a model and two-stage detectors on the basis of NAB.
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