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A B S T R A C T

Subaperture stitching interferometry (SSI) is an essential method for the map testing of large-aperture optical
components. The surface map of a reference surface is a typical error source. In this study, we propose a
hybrid self-calibration method to eliminate the reference surface error in SSI by combining the modified
shift-rotation method and the maximum likelihood method. The traditional shift-rotation method is a general
full-aperture absolute interferometric measurement that can retain localized irregularities. The shift-rotation
operations are leveraged to generate a couple of subapertures covering the surface under test, whereby a ring of
subapertures and a central subaperture are acquired by rotations and a lateral shift, respectively. The modified
shift-rotation method is proposed to obtain the rotationally asymmetric components of the test surface in the
ring of subapertures. The same components within the central subaperture are retrieved using the maximum
likelihood method. Then, the rotationally symmetric components of the test surface are acquired using the least
squares method, utilizing the measured data before and after the shift. Reference surface maps are sufficiently
eliminated from the measured data. High-frequency components of the test surface are also retained, which
engender high-accuracy SSI. Simulations are conducted to verify the proposed method. The positioning errors
of the proposed method are analysed and discussed. Subaperture testing experiments of a 100-mm aperture
flat are performed and compared with full-aperture absolute measurement results. The stitched errors with
0.018 𝜆 PV and 0.003 𝜆 RMS are obtained.
. Introduction

Interferometry is a general testing method for large-aperture optical
lements. In interferometric testing, the reference aperture should at
east be equal to the test optics, which involves high cost for test-
ng large-aperture optics. Subaperture stitching interferometry (SSI)
s a promising measurement method that eliminates the need of a
arge-aperture reference surface, which was first proposed by Kim and

yant [1]. In the subaperture testing process, there are two ways
o generate subapertures. The first one involves translating the test
urface or reference surface along the X and Y axis, whereas the
ther one involves rotating the test surface. Mechanisms that induce
urface shape deformations are non-negligible when testing a large
perture flat. Therefore, an appropriate method of generating subaper-
ures needs to be selected to minimize the surface shape deformations
n different interferometric systems. Considering that the surface grav-
ty induces deformations, the X/Y translation operations can be used
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E-mail address: karmen86913@gmail.com (Q. Yuan).

in both horizontal and vertical interferometric configurations, whereas
the rotation operation is more suitable for SSI with a vertical interfero-
metric configuration. Relative alignment errors, such as piston and tilt
between adjacent subapertures, are calculated with least squares fit to
the differences in the overlapping regions. Another factor called posi-
tioning error, which is induced by mechanical scanning, will introduce
a mismatch of the corresponding points in the overlapping regions of
two adjacent subapertures. Maurer and Zhang proposed marker point
methods to eliminate the positioning errors [2,3]. In addition, Tang
and Chen proposed algorithms to retrieve the positioning errors [4,5].
Reference surface errors are also important error sources that affect the
accuracy of SSI.

In general, two schemes are applied to calibrate reference surfaces.
The first one involves calibrating the reference surface with absolute
measurements before conducting the stitching test, whereas the other
one involves calibrating the reference surface during the stitching
process. Absolute measurements, such as three-flat tests, the Zernike
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polynomials fitting method and the even–odd function method, require
three independent flats including two transmission flats and a flat under
test [6–8]. These methods are complex and expensive.

QED Technologies proposed a self-calibration method [9]. Data
consistency in the overlap region is used to reconstruct the reference
surface described by Zernike polynomials. Then, the reference surface
is removed from each subaperture during the stitching process. Su
et al. proposed a maximum likelihood reconstruction method for testing
a 1.6-m aperture flat [10,11]. Both the reference and test surfaces
are rotated to reconstruct the reference surface and the test surface
using Zernike polynomials. Yan et al. extended the maximum likelihood
reconstruction method and proposed an orthonormal polynomial fitting
method for testing a flat mirror with arbitrary shape [12]. In the
above methods, high-frequency components of the reference surface are
coupled with the test surface, since only the Zernike polynomial surface
of the reference surface is calibrated during the stitching process.
Owing to the higher testing accuracy, high-frequency components of
the reference surface are expected to be eliminated during the stitching
process. Chen et al. decomposed the reference surface into power,
astigmatism, residual Zernike polynomial surface and high-frequency
components, which are estimated and calibrated, respectively [13].
In this method, the power and astigmatism of the reference surface
are measured with a modified three-flat testing method. The residual
Zernike polynomial surface and high-frequency components of the ref-
erence surface are calibrated during the stitching process. This method
is more suitable when the reference surface aperture is small since
the three-flat testing method will be much more expensive when the
reference surface aperture is large. In addition, the calculation of high-
frequency components of the reference needs abundant subapertures,
which also calls for a small-aperture reference surface. Kim et al. pro-
posed a dual-subaperture stitching method to eliminate surface errors
of the reference sphere in the Ritchey–Common test [14]. The test flat is
decomposed into the surface form error and the rotationally symmetric
(RS) components, such as power and spherical aberrations. The surface
form error is acquired through rotations of the test flat, while the RS
components are obtained by scanning along the centreline of the test
flat. In this method, the diameter of the reference sphere needs to be
larger than the semi-diameter of the test flat so that the surface form
error can be calculated.

It is important to accurately calibrate the reference surface during
the stitching process. The shift-rotation method, which requires shift
and rotations of the test surface, involves general full-aperture absolute
interferometric measurements and can retain localized irregularities.
Since the subapertures generated by rotations are similar to those gen-
erated using the shift-rotation method, we suppose the latter method
can be modified to eliminate the reference surface during the stitching
process. In SSI, a ring of subapertures and a central subaperture are
generated by rotations and a lateral shift. The modified shift-rotation
method is applied to obtain the rotationally asymmetric (RAS) com-
ponents of the test surface in the ring of subapertures. The absolute
test surface in the central subaperture is calculated using the maximum
likelihood method. Then, the RS components of the test surface can be
acquired by applying the least squares method using the measured data
before and after the shift. Therefore, a hybrid self-calibration method
that is suitable for SSI with a vertical interferometric system is proposed
to obtain the absolute test surface based on the combination of the
modified shift-rotation method and the maximum likelihood method.
The principle and procedure of the proposed method are elaborated
in Section 2. In Section 3, simulations are conducted to verify the
proposed method. Experimental results derived from the subaperture
testing of a 100-mm aperture flat are presented in Section 4. Finally,

Section 5 presents the conclusions. a

2

2. Principle

The geometric setup of the subaperture stitching test is shown
in Fig. 1. The green circle represents the reference surface, whereas
the blue circle represents the surface under test. The shaded regions
represent subapertures. The centre of the test surface is first measured
and then the test surface is laterally shifted. The test surface is rotated
through N equal angular intervals to generate a sufficient number of
subapertures, while the reference surface is kept stationary. A central
subaperture and a ring of subapertures are generated. In this case, 𝑊𝐶
represents the measured data in the central subaperture and 𝑊𝑖 (where
𝑖 = 1, 2,. . . , N) represents the measured data in the ring of subapertures.

2.1. Modified shift-rotation method

An interferometric measurement is mainly composed of the surface
under test and the reference surface. The shift-rotation method involves
general full-aperture absolute measurements. The surface map of an
optical flat T (x, y) can be decomposed into RS components 𝑇 𝑆 (x, y)
and RAS components 𝑇𝐴𝑆 (x, y), which can be expressed as Eq. (1) [15].

𝑇 (𝑥, 𝑦) = 𝑇 𝑆 (𝑥, 𝑦) + 𝑇𝐴𝑆 (𝑥, 𝑦) (1)

To separate the reference and test surfaces, the shift-rotation method
is further modified in SSI. The measured data in subapertures 𝑊𝑖 and
𝑊𝐶 are expressed as Eqs. (2) and (3).

𝑊𝑖 (𝑥, 𝑦) = 𝑅 (𝑥, 𝑦) + 𝑇𝑖 (𝑥, 𝑦) = 𝑅 + 𝑇 𝑆 (𝑥, 𝑦) + 𝑇𝐴𝑆
𝑖 (𝑥, 𝑦) (2)

𝑊𝐶 (𝑥 − 𝑡) = 𝑅 (𝑥, 𝑦) + 𝑇𝐶 (𝑥 − 𝑡, 𝑦) = 𝑅 + 𝑇 𝑆 (𝑥 − 𝑡, 𝑦) + 𝑇𝐴𝑆
𝐶 (𝑥 − 𝑡, 𝑦) (3)

here R represents the reference surface that is kept stationary during
he test; 𝑇𝑖 and 𝑇𝐶 represent the surface map of the test surface in
he ring of subapertures and the central subaperture, respectively. 𝑇𝐴𝑆

𝑖
nd 𝑇𝐴𝑆

𝐶 represent the RAS components of the test surface in the 𝑖th
ubaperture and the central subaperture, respectively; The parameter
represents the lateral shift of the test surface. The RAS components
f the test surface for each subaperture can be further calculated using
q. (4), except the central subaperture.

𝑖 (𝑥, 𝑦) −
1
𝑁

𝑁
∑

𝑖=1
𝑊𝑖 (𝑥, 𝑦) = 𝑇𝐴𝑆

𝑖 (𝑥, 𝑦) − 1
𝑁

𝑁
∑

𝑖=1

(

𝑇𝐴𝑆
𝑖 (𝑥, 𝑦)

)

= 𝑇𝐴𝑆
𝑖 (𝑥, 𝑦) − 𝑇 𝑘𝑁𝜃

𝑖 (𝑥, 𝑦) (4)

where 𝑇 𝑘𝑁𝜃
𝑖 (x, y) is the test surface deviation of the kN𝜃 order terms,

𝑘 = 1, 2, 3, . . . . Considering the kN𝜃 order terms are usually small
enough to be neglected, the kN𝜃 order terms are excluded in our
following simulations and experiments. The RS components of the test
surface can be calculated from Eqs. (2) and (3) as shown in Eq. (5).

𝑊𝐶 (𝑥 − 𝑡, 𝑦) −𝑊𝑖 (𝑥, 𝑦) = 𝑇 𝑆 (𝑥 − 𝑡, 𝑦) − 𝑇 𝑆 (𝑥, 𝑦) + 𝑇𝐴𝑆
𝐶 (𝑥 − 𝑡, 𝑦)

− 𝑇𝐴𝑆
𝑖 (𝑥, 𝑦) (5)

The least squares method is further used to calculate 𝑇 𝑆 , which
s expressed as an even polynomial except the 2nd order term. How-
ver, the component 𝑇𝐴𝑆

𝐶 cannot be obtained in the above process.
o acquire the component 𝑇𝐴𝑆

𝐶 , the maximum likelihood method is
mplemented without the auxiliary experimental process as detailed
n Section 2.2.

Considering the diameter difference between the reference and test
urfaces, a more complex but generalized arrangement of subapertures
s considered, as shown in Fig. 2. Multiple shifts and rotations are
arried out so that a central subaperture and several rings of sub-
pertures are generated to test the surface’s full aperture. The radial
ubapertures generated by shifts as shown in the red rectangle can be
sed to reconstruct the RS components of the test surface with Eq. (5).
ach ring of subapertures generated by rotations is calculated using
q. (4) to gain the RAS components of the test surface. We suppose that
he modified shift-rotation method is suitable for different subaperture
rrangements.



W. Liu, Z. Gao, R. Wang et al. Optics Communications 517 (2022) 128278
Fig. 1. Geometric setup of subaperture stitching test.
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Fig. 2. Subaperture arrangement with multiple shifts and rotations.

2.2. Maximum likelihood method

For each subaperture measurement, the height differences between
the reference and test surfaces are measured. The testing data can be
expressed as shown in Eq. (6) [11].

𝐷𝑖𝑗= 𝐷𝑇
𝑖𝑗 +𝐷𝑅

𝑖𝑗 +𝐷𝑟𝑒𝑠 = 𝑃𝑖𝑍1
(

𝜌𝑎, 𝜃𝑎 + 𝜑𝑎𝑖
)

+ 𝑇𝑥𝑖𝑍2
(

𝜌𝑎, 𝜃𝑎 + 𝜑𝑎𝑖
)

+ 𝑇𝑦𝑖𝑍3
(

𝜌𝑎, 𝜃𝑎 + 𝜑𝑎𝑖
)

+𝐷𝐸𝑖𝑍4
(

𝜌𝑎, 𝜃𝑎 + 𝜑𝑎𝑖
)

−
𝑟𝑚
∑

𝑘=5
𝐵𝑟𝑘𝑍𝑘

(

𝜌𝑏, 𝜃𝑏 + 𝜑𝑏𝑖
)

+
𝑡𝑚
∑

𝑘=5
𝐴𝑡𝑘𝑍𝑘

(

𝜌𝑎, 𝜃𝑎 + 𝜑𝑎𝑖
)

+𝐷𝑟𝑒𝑠

(6)

where 𝐷𝑖𝑗 is the phase data of point j in the 𝑖th subaperture; 𝐷𝑅
𝑖𝑗 and 𝐷𝑇

𝑖𝑗
are the phase data of the reference and test surfaces, respectively; 𝑍𝑘
are Zernike polynomials that represent surfaces; 𝑃𝑖, 𝑇𝑥𝑖, 𝑇𝑦𝑖 and 𝐷𝐸𝑖
are the mutual alignment errors, which are piston, tilt and defocus
between the subapertures; rm and tm are the highest indexes of terms
to describe the reference and test surfaces, respectively; 𝐵𝑟𝑘 and 𝐴𝑡𝑘 are
Zernike coefficients of the reference and test surfaces, respectively; 𝜌,
𝜃 and 𝜑 are global coordinates of the reference and test surfaces in a
subaperture; and 𝐷𝑟𝑒𝑠 represents the residual phase value that cannot
be described by the Zernike polynomials.

When the residual testing errors are small enough to be ignored,
the likelihood function of a subaperture testing map can be written as
Eq. (7) because the phase data of each subaperture meets the Gauss
distribution.

𝐿
(

𝐴𝑡𝑘, 𝐵𝑟𝑘|𝐷𝑖𝑗
)

= 1
(
√

2𝜋𝜎
)𝑁𝑉𝑖

𝑒𝑥𝑝(− 1
2𝜎2

𝑁
∑

𝑖=1

𝑉𝑖
∑

𝑗=1
(𝐷𝑖𝑗 −𝐷𝑇

𝑖𝑗 −𝐷𝑅
𝑖𝑗 )

2) (7)

d

3

where N represents the number of the testing subapertures and 𝑉𝑖
represents the number of phase data in the 𝑖th subaperture.

The goal of the method is to obtain the Zernike coefficient 𝐴𝑡𝑘 of the
test surface so that Eq. (8) is obtained by maximizing the logarithm of
the likelihood function.

𝑆 =
𝑁
∑

𝑖=1

𝑉𝑖
∑

𝑗=1
((𝐷𝑖𝑗 −𝐷𝑇

𝑖𝑗 −𝐷𝑅
𝑖𝑗 )

2) = min (8)

𝑇𝐴𝑆0
𝐶 =

37
∑

𝑛=5
𝐴𝑛𝑍𝑛

(

𝜌𝑎, 𝜃𝑎
)

, 𝑛 ≠ 11, 22 (9)

The coefficients 𝐴𝑡𝑘 and 𝐵𝑟𝑘 can be obtained from Eq. (8) using the
least squares method. 𝑍𝑛 denotes the RAS polynomials in the Zernike
circle polynomials [16]. The coefficient 𝐴𝑛 is a Zernike coefficient
extracted from the coefficient 𝐴𝑡𝑘. The component 𝑇𝐴𝑆0

𝐶 , which lack
of high-frequency components compared with 𝑇𝐴𝑆

𝐶 mentioned in the
above Section 2.1, can be reconstructed using Eq. (9). Moreover, the
component 𝑇𝐴𝑆0

𝐶 are used to calculate the RS components 𝑇 𝑆 of the
test surface by Eq. (5). However, the high-frequency components in
the central subaperture are abandoned, considering that the component
𝑇𝐴𝑆0
𝐶 is constructed using Zernike coefficients. The surface map of

the high-frequency central subaperture 𝑇𝐶 is further obtained from
Eq. (10). The surface maps of subapertures 𝑇𝑖 are acquired by the sum
of the components 𝑇 𝑆 and 𝑇𝐴𝑆

𝑖 . The full surface map of the test surface
is obtained from the stitching algorithm for all subapertures.

𝑇𝐶 = 𝑊𝐶 − 1
𝑁

𝑁
∑

𝑖=1
(𝑊𝑖 − 𝑇𝑖) (10)

The flow chart of the proposed method is shown in Fig. 3. A suf-
icient number of subapertures are generated by the shift and rotation
f the test surface. Then, the maximum likelihood method is applied
o reconstruct the RAS components in the central subaperture 𝑇𝐴𝑆0

𝐶
described by the Zernike polynomials. The RAS components in the
ring of subapertures are calculated using Eq. (4). The RS components
of the full aperture of the test surface are calculated using the sub-
apertures 1 and 7 using Eq. (5). The surface maps of the ring of
subapertures are acquired by summing the RAS components 𝑇𝐴𝑆

𝑖 and
the RS components 𝑇 𝑆 . The surface map of the central subaperture
that maintains a high frequency is obtained using Eq. (10). Then, the
stitching algorithm for subapertures 𝑇𝑖 and 𝑇𝐶 is implemented to obtain
bsolute measurements of the test surface.

. Simulations

.1. Comparison of the traditional stitching algorithm and the hybrid self-
alibration method

The proposed method is validated by simulating two flat surfaces, in
hich the surface maps as shown in Fig. 4 are experimentally measured
ata. The reference surface cannot be ignored during the stitching
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Fig. 3. Flow chart of the stitching algorithm.
Fig. 4. Surface maps for simulations. (a) Reference surface; (b) Test surface.
E
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process because the PV and RMS of the reference are 0.0466 𝜆 and
.0067 𝜆, respectively, which are close to those of the test surface—
.0446 𝜆 and 0.01 𝜆, respectively. In Fig. 5, seven subapertures are
rtificially generated by shift and rotations of the test surface. The
ateral shift is 180 pixels and the rotation angle step is 60◦.

Fig. 6 shows the results of the test surface using the traditional
titching method without removing the reference surface and the
titched surface errors compared to the original test surface. The PV and
MS of the surface errors are 0.048 𝜆 and 0.0072 𝜆, demonstrating that

he low accuracy of the traditional stitching algorithm for the impacts
f reference surface are non-ignorable. In addition, there are steps at
he edges of the subapertures, as shown in Fig. 6.

The proposed method is also implemented by leveraging the above
ubapertures. The RAS components described by the Zernike polyno-
ials are reconstructed by the maximum likelihood method, as shown

n Fig. 7(a). Subsequently, the RS components are acquired with the
entral and shifted subapertures, as shown in Fig. 7(b). Further, the
entral region of the test surface is independently calculated using
4

q. (10), while the high-frequency RAS components are calculated
sing Eq. (4). The stitched test surface is finally figured out after the
alculation with Eq. (1) and stitching algorithm as shown in Fig. 7(c).
he residual errors of the stitched test surface after point-to-point
ubtraction with the original test surface are shown in Fig. 7(d). The
V and RMS values of the residual errors are 0.0046 𝜆 and 0.0005

𝜆, respectively, which demonstrate the high accuracy of the proposed
method. The simulation errors are mainly derived from the kN𝜃 order
terms, which are neglected in the simulations. A practical method was
proposed by Song to eliminate the kN𝜃 order terms in the calculation
of the RAS components [17]. In addition, the average of the high-
frequency components in all subapertures is approximately equal to 0.
Therefore, the residual high-frequency components also contribute to
the simulation errors.

Furthermore, simulations utilizing QED’s method are carried out for
comparison with our proposed method. Fig. 8 shows the simulation
results of the test surface using QED’s method [9]. The surface form
error of the reference surface is sufficiently eliminated during the
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Fig. 5. Artificially generated subapertures.
Fig. 6. Results of the test surface. (a) Surface map without removing reference surface; (b) Surface map of the residual errors.
titching process, as shown in Fig. 8(a). The PV and RMS of the residual
rrors are 0.0189 𝜆 and 0.0024 𝜆, respectively, as shown in Fig. 8(b).
igh-frequency components of the reference surface are coupled with

he stitched test surface, which dominates the residual errors in the
est surface. However, the high-frequency components of the reference
urface are removed using our proposed method, which improves the
ccuracy of the stitching algorithm.

.2. Analysis of positioning error

Lateral shift and rotations are inevitable mechanical movements
hen using the hybrid self-calibration method. Except for the common
ositioning errors caused by displacement and rotation angle errors, the
ilt introduced by the shift affects the accuracy of the proposed method.
he RS components of the test surface are calculated by the difference
f the measured data before and after the lateral shift. For example, the
ifference in the pure power of the test surface f (x, y) = 𝑥2 + 𝑦2 before

and after the shift by t is given as follows:

𝑓 (𝑥 + 𝑡, 𝑦) − 𝑓 (𝑥, 𝑦) = 2𝑡𝑥 + 𝑡2 (11)

The x-tilt in the measured data is mixing with the power term when
calculating the RS components of the test surface using the least squares
5

method. The x-tilts with the maximum angle of 3 × 10−4◦ are added to
the shifted subaperture, and then the stitching process is conducted.
Residual errors are calculated by the difference between the stitching
results and the original test surface. The PV and RMS results of the
residual errors are shown in Fig. 9(a). The effects of the overlapping
area of subapertures are simulated, with lateral displacement vary-
ing from 155 to 205 pixels. The corresponding results are shown in
Fig. 9(b). The lateral shift and rotation angle errors with 10 pixels
and 1◦ maximum, respectively, are also simulated. The corresponding
results are shown in Fig. 9(c) and (d).

In Fig. 9(a), the PV values of the residual errors increase from
0.0046 𝜆 to 0.024 𝜆 when tilt occurs in the shifting process. In this
way, the shifting mechanism should possess good linearity so that the
tilt angle does not exceed 5 × 10−5◦ , thereby guaranteeing the stitch-
ing accuracy. Therefore, the calculation accuracy of the power term
through the subapertures before and after the displacement is restricted
by the extremely high requirements for linearity of mechanism. The
tilt induced by mechanism during the lateral displacement needs to
be tested and then removed from the measured data to acquire the
accurate power term of the test surface. The tilt testing method was
proposed by Chen to calibrate the power induced by the reference
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Fig. 7. Simulation results with the proposed method. (a) Rotationally asymmetric components of the test surface; (b) Rotationally symmetric components of the test surface; (c)
Surface map of the test surface; (d) Surface map of the residual errors.
Fig. 8. Simulation results with QED’s method. (a) Surface map of the test surface; (b) Surface map of the residual errors.
surface in subaperture stitching measurements [18]. In addition, the
pentaprism scanning method and the three-flat testing method are
commonly employed to obtain the power term of the test surface. The
effects of the overlapping area are quite small as shown in Fig. 9(b),
which demonstrates that the proposed method is insensitive to the
overlapping area of subapertures. In Fig. 9(c), the stitching errors with
PV = 0.016 𝜆 and RMS = 0.0011 𝜆 are introduced by displacement
errors with 10 pixels maximum. However, many algorithms have been
proposed to calibrate displacement errors up to the sub-pixel level. The
rotation angle errors can be ignored as shown in Fig. 9(d) since the
rotation accuracy of 1◦ can be easily realized.

4. Experimental results

To verify the feasibility of the proposed method, we performed
experiments utilizing a 4-inch aperture commercial interferometer from
Zygo Inc. A 60-mm iris is placed at the exit of the interferometer to
simulate a 100-mm aperture flat mirror test by using a small-aperture
interferometer. A six-dimensional mechanism was used to shift and
6

rotate the test surface, as shown in Fig. 10. Although a horizontal inter-
ferometric system was adopted in the experiment, we supposed that the
surface deformation induced by rotations could be neglected. Interfer-
ometric measurements at seven subapertures were implemented. The
lateral displacement was 40 mm and the rotation angle step was 60◦.
The original interference fringes and the corresponding surface maps
are shown in Fig. 11. The position deviations caused by the mechanism
were calibrated using our previously published algorithm during the
stitching process [19].

In Fig. 12(a) and (b), the RAS and the RS components of the test
surface described by the Zernike polynomials are reconstructed using
the maximum likelihood method. The test surface map described by the
Zernike polynomials, as shown in Fig. 12(c), is acquired by the sum
of the surface data in Fig. 12(a) and (b). Although the surface form
error of the test surface is well extracted from the subapertures, the
high-frequency components of the test surface are lost, decreasing the
testing accuracy.

Full-aperture absolute measurements using the shift-rotation method
were carried out to acquire the absolute surface map of the test surface.
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Fig. 9. Residual errors considering positioning error. (a) Residual errors induced by tilt angle in the shifting process; (b) Residual errors induced by varying lateral shift; (c)
Residual errors induced by lateral shift errors; (d) Residual errors induced by rotation angle errors.
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Fig. 10. Experimental setup.

he results are shown in Fig. 13(a), where PV is 0.111 𝜆 and RMS is
.018 𝜆.

The stitching results of the test surface utilizing QED’s method are
hown in Fig. 13(b), where PV and RMS are 0.105 𝜆 and 0.021 𝜆,
espectively. The stitching results of the test surface using our proposed
ethod are shown in Fig. 13(c), where PV and RMS are 0.097 𝜆 and
.019 𝜆, respectively. Both the stitching results using QED’s method and
ur proposed method are compared with the results using full-aperture
bsolute measurements. The corresponding residual errors are shown in
ig. 13(d) and (e). The PV and RMS of the residual errors using QED’s
ethod are 0.025 𝜆 and 0.003 𝜆, respectively. The PV and RMS of the

esidual errors using our proposed method are 0.018 𝜆 and 0.003 𝜆,
espectively. The results of the proposed method are quite similar to
hose derived from QED’s method. Considering the tiny high-frequency
omponents of the reference surface compared to those of the surface
ap of the test surface, the stitching results using the proposed method

nd QED’s method perform both well. Therefore, the residual errors of
he proposed method demonstrate that the impacts of reference surface
re well eliminated and that the surface details are precisely retained.
 f

7

. Conclusions

In this study, we proposed a hybrid self-calibration algorithm for
ubaperture testing of an optical flat, considering the impact of the
eference surface. Subapertures are generated by shift and rotations
f the test surface. In this case, we found the proposed method to
e suitable for SSI with vertical interferometric system. The surface
ap of the reference surface is well eliminated in all subapertures.
he test surface is accurately reconstructed by retrieving the RAS and
S components. Although the calculation of power of the test flat still
eeds auxiliary measurements, such as tilt testing during the lateral
isplacement, the pentaprism scanning method or the three-flat testing
ethod, the impact of the reference surface can be eliminated with
igh accuracy in the stitching process using our proposed method. Both
he simulation and experimental results confirm the feasibility of the
roposed method. However, a limitation is that only flat mirrors were
ested. Thus, future work will focus on the testing of spherical mirrors
nd more complex surfaces.
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Fig. 11. Subaperture stitching testing of a 100-mm flat. (a) Interference fringes; (b) Surface maps of the all subapertures.
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t

R

Fig. 12. Components of the test surface. (a) Rotationally asymmetric components; (b) Rotationally symmetric components; (c) Test surface described by Zernike polynomials.
Fig. 13. Experimental results of the test surface. (a) Surface map utilizing full-aperture absolute measurement; (b) Surface map utilizing QED’s method; (c) Surface map utilizing
he proposed method; (d) Residual errors between (b) and (a); (e) Residual errors between (c) and (a).
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