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Abstract
Defocus blur detection (DBD) aims to separate blurred and unblurred regions for a given image. Due to its potential and
practical applications, this task has attracted much attention. Most of the existing DBD models have achieved competitive
performance by aggregating multi-level features extracted from fully convolutional networks. However, they also suffer from
several challenges, such as coarse object boundaries of the defocus blur regions, background clutter, and the detection of low
contrast focal regions. In this paper, we develop a hierarchical edge-aware network to solve the above problems, to the best of
our knowledge, it is the first trial to develop an end-to-end network with edge awareness for DBD. We design an edge feature
extraction network to capture boundary information, a hierarchical interior perception network is used to generate local and
global context information, which is helpful to detect the low contrast focal regions. Moreover, a hierarchical edge-aware
fusion network is proposed to hierarchically fuse edge information and semantic features. Benefiting from the rich edge
information, the fused features can generate more accurate boundaries. Finally, we propose a progressive feature refinement
network to refine the output features. Experimental results on two widely used DBD datasets demonstrate that the proposed
model outperforms the state-of-the-art approaches.

Keywords Defocus blur detection · Edge guidance aggregation ·Hierarchical interior perception · Low contrast focal regions

Introduction

Defocus blur is a very common phenomenon in digital pho-
tos, arising from that the scene point is not at the camera’s
focal distance. Defocus blur detection (DBD) aims to dis-
tinguish blurred and unblurred regions from a given image.
Defocus blur detection benefits much attention due to its
practical applications such as salient object detection [1],
defocus estimation [2], image restoration [3], blur region seg-
mentation [4], and so on.

In the past decade, many defocus blur detection methods
have been proposed. These methods can be simply divided
into two categories: traditional methods and deep learning
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based methods. The former one is based on hand-crafted fea-
tures and utilizes low-level cues to predict DBD maps, such
as frequency [5–9] and gradient [10–15]. However, these tra-
ditional methods can not well obtain global information of
high-level semantic features; thus they can not accurately
detect the low contrast focal regions (see green box region
of Fig. 1a) and suppress the background clutter (see red box
region of Fig. 1b). Otherwise, as shown in the blue box region
of Fig. 1a, the boundaries of in-focus objects have not well
been detected.

Recently, convolutional neural networks (CNNs) have
beenwidely used in various computer vision tasks because of
its powerful extraction capabilities, such as image denoising
[19], image classification [20], super-resolution [21], salient
object detection [22], and object tracking [23]. Similarly,
CNNs have also been well applied in DBD [16,17,24–35].
Although deep learning based approaches achieve higher
performance and significant improvements compared with
the traditional methods, there remain several problems that
need to be further addressed: (1) the complementary of local
and global information generated by different layers can not
be well utilized, which causes ambiguous detection of low-
contrast regions and background clutter of the final DBD
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Fig. 1 Qualitative comparison of three models on the Shi’s dataset [8]
and DUT dataset [16], the first and the second columns show input
images and their ground-truth images, respectively. From the third to
the last columns, includingOurDBDmaps,DeFusionNet [17], andLBP
[18]. Images in the green boxes are low contrast focal region patches,
the red boxes are background clutter patches, and the blue boxes are the
boundaries of in-focus objects patches

map; (2) the boundaries of in-focus objects can not be fully
distinguished.

In this paper, we exploit a hierarchical edge-aware net-
work (HEANet) to improve above-mentioned problems,
which consists of four sub-networks: hierarchical interior
perception network (HIPNet), edge feature extraction net-
work (EFENet), hierarchical edge-aware fusion network
(HEFNet), progressive feature refinement network (PFR-
Net). Specifically, considering the contextual information
can benefit for detecting lowcontrast focal regions,we design
a receptive field context module (RFCM) to capture multi-
receptive field features. In addition,we cascade threeRFCMs
and form a top-bottom manner as the HIPNet. Then, we
develop anEFENet to obtain the edge information of in-focus
objects from feature maps. Subsequently, the multi-scale
contextual features and the edge information are transmit-
ted to the HEFNet, which consists of some progressive edge
guidance aggregation modules (EGAMs). With this module,
the edge cues and multi-scale semantic features can be hier-
archically fused, making better performance on localization.
Finally,we design a PFRNet to refine the featuremaps to gen-
erate a DBDmapwith clear region boundaries, and supervise
the predictive DBD map with the ground truth.

Our major contributions can be summarized as follows:

1. We propose a hierarchical edge-aware network (HE-
ANet) for DBD, to the best of our knowledge, it is the
first trial to develop an end-to-end network with edge
awareness for DBD.

2. We design a receptive field context module (RFCM) to
capture local and global context information, which aims
to distinguish low contrast focal regions and suppress the
background clutter. In addition, we cascade threeRFCMs
as HIPNet to extract the multi-scale contextual features
hierarchically.

3. We develop an edge guidance aggregation module
(EGAM), which incorporates edge information into the

hierarchical feature maps to guide the DBDmaps to pos-
sess clear region boundaries.

4. Compared with 10 state-of-the-art approaches on two
widely used datasets, our method outperforms the state-
of-the-art approaches under five evaluation metrics.

Related work

In the past years, many DBD methods have been proposed.
Traditional methods based on the hand-crafted features, such
as frequency [5–9], gradient [10–15], and so on [18,36,37].
Shi et al. [8] propose a few local blur features, such as image
gradient, Fourier domain, and data-driven local filters, to
enhance the capabilities of defocus blur detection. Pang et al.
[14] develop a new kernel-specific feature vector for DBD,
which incorporates the multiplication of the variance of fil-
tered kernel and the variance of filtered patch gradients. Yi et
al. [18] present a sharpness metric based on local binary pat-
terns to distinguish defocus regions. Tang et al. [36] design
a blur metric based on the log averaged spectrum residual to
obtain a coarse blur map, then an iterative updating mech-
anism is used to refine the blur map. Golestaneh et al. [37]
propose a novel method based on high-frequencymulti-scale
fusion and sort transform of gradient magnitudes to compute
blur detection maps. These traditional methods can be effec-
tive in some cases; however, they are the limited capacity to
obtain high-level semantic information in complex scenarios.

Due to the powerful multi-level feature extraction capa-
bilities, most deep learning based models can achieve better
performance than traditional hand-craftedmethods. In recent
years, many approaches have adopted CNNs for DBD.
Among these methods, Park et al. [25] propose a deep learn-
ing model to extract high-level features, then integrate the
hand-crafted and high-level features to obtain a DBD map.
Karaali et al. [24] develop an edge-based defocus blur esti-
mation method. In this method, two CNNs are utilized to
compute an edgemap and estimate the unknown defocus blur
amount, a fast image-guided filter is designed to propagate
the sparse blur estimation to the whole image. However, each
of these two methods is not a complete end-to-end network,
the edges of the in-focus objects they generated are mostly
blurry. Zhao et al. [16] adopt a multi-stream bottom–top–
bottom fully convolutional network (BTBNet) to aggregate
the multi-scale low-level and high-level features to predict
the DBD map. Zhao et al. [26] propose a cross ensemble
network to enhance the diversity of the features for DBD.
Ma et al. [27] present an end-to-end local blur mapping
algorithm for better detecting defocus blur regions. Lee et
al. [28] develop a defocus map estimation network for spa-
tially varying defocus map estimation and produced a novel
depth-of-field dataset for the training network. Lately, Tang
et al. [17] design a cross-layer structure to integrate low-level
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Fig. 2 The architecture of our HEANet. EFENet represents the edge feature extraction network. HIPNet is the hierarchical interior perception
network. HEFNet represents the hierarchical edge-aware fusion network. PFRNet is the progressive feature refinement network

and high-level features step by step. Tang et al. [29] build a
cross-layer framework and utilized an attention mechanism
to integrate multi-level features. Tang et al. [30] propose a
bidirectional residual feature refining method and introduce
channel-wise attention to extract valuable features. Tang et al.
[31] present a residual learning strategy to learn the residual
maps, then use a recurrent method to combine the low-level
and high-level features. Li et al. [32] design a complementary
attention network by exploiting the complementary infor-
mation of defocus feature maps. Zhao et al. [33] propose a
cascaded DBD map residual learning architecture to recur-
rently refine theDBDmaps. Zhao et al. [34] present two deep
ensemble networks to boost diversity while costing less com-
putation for DBD. Zhao et al. [35] adopt a method to train
themodel without using any pixel-level annotation that intro-
duces dual adversarial discriminators, then, the generator is
forced to generate an accurate DBD mask.

Inspired by but different from these approaches, in this
paper, we concentrate on fusing the edge cues and semantic
information hierarchically with a complementary mecha-
nism. Experimental results show that our method has been
achieved promising results.

Proposed HEANet

The framework of our method is illustrated in Fig. 2. Our
approach includes four sub-networks: hierarchical interior
perception network (HIPNet) which captures multi-scale
contextual information, edge feature extraction network
(EFENet) which extracts edge information, hierarchical
edge-aware fusion network (HEFNet) which guides the
extracted features hierarchical fusion by taking advantage
of the edge information of low-level features, finally, pro-
gressive feature refinement network (PFRNet) is used to fuse
and refine features progressively to generate the defocus blur
map. These sub-networks consist of different modules. The
details are introduced as follows.

Hierarchical interior perception network

The HIPNet consists of three channel attention modules
(CA) [38] and three receptive field contextmodules (RFCM),
first, we use CAs to reduce redundant information, then we
cascade three RFCMs to hierarchically extract multi-scale
contextual features from multi-level feature maps.

In HIPNet, the key requirement is to capture multi-scale
contextual features. To expand such capability, we design
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a receptive field context module (RFC-M) to extract multi-
scale contextual information to detect the low contrast focal
regions.

The proposed RFCM consists of 5 parallel branches, and
we show the structure of RFCM in Fig. 3. First, we use 1 ×
1 convolution to compress the channel of the feature map.
Then, four branches from left to right, we employ a convo-
lutional layer and dilated convolutional layer in each branch.
The global convolutional network (GCN) [39] is utilized in
the convolutional layer, we use GCNs with k = 1, 3, 5, 7 to
obtain multi-scale features in the four branches. As shown
in Fig. 4. The k × k convolutional operation is replaced by
the combination of k × 1 + 1 × k and 1 × k + k × 1 con-
volutions to reduce parameters. In the dilated convolutional
layer, we utilize 3 × 3 kernels but different dilation rates
in the four branches to expend receptive fields and obtain
local information. The dilation rates of the four dilated con-
volutional layers are set to {1,3,5,7}, respectively. To obtain
the successive dilation rates, we add three inter-branch short
connections from the first branch to the fourth branch. In this
way, the featuremaps generated from the previous branch are
encoded in the feature maps of subsequent branches. After
that, the feature maps of four branches are up-sampled and
concatenated,merging into a convolution array. Furthermore,
an average pooling branch is adopted to obtain global infor-
mation of feature maps. Finally, the convolution array of four
branches and the output features of the pooling branch is inte-
grated with an add operation, a ReLU layer is used to ensure
the nonlinearity.

Edge feature extraction network

In this network, we intend to effectively extract edge features
of in-focus objects. Inspired by the work of [40], we embed a
channel attention (CA) module [38] to reduce the redundant
information. The structure of CA is shown in Fig. 5. In order
to enhance edge features, we embed self refinement (SR)
module [41] on the side path to refine the final edge features.
The structure of self refinement (SR) module is shown in
Fig. 6. Specifically, the prediction of the edge map is super-
vised by the defocus blur edge ground truth.

Hierarchical edge-aware fusion network

We utilize EFENet to obtain low-level edge cues, and lever-
age three RFCMs in the HIPNet to hierarchically extract
multi-scale contextual features at three different levels of
backbone. These different levels have different discrimi-
native information. High-level features have semantic and
global information, these features can recognize the position
of defocus blur regions. Low-level features retain spatial and
local information, which can help divide the blur and clear
regions.

1×1

1×1 GCN k=3

C

Input

GCN k=5 GCN k=7 Avg_pooling

3×3,r=1 3×3,r=3 3×3,r=5 3×3,r=7

1×1

Output
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Fig. 3 The structure of receptive field context module (RFCM). “3 ×
3, r = 3” represents the “3× 3” convolutional operation and the dilation
rate 3. “Avg_pooling” represents an average pooling operation. The
symbol “c” denotes concatenation
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Fig. 4 The structure of global convolutional network (GCN). The k×k
convolutional operation is replaced by the combination of k×1+1×k
and 1× k + k × 1 convolutions to reduce parameters

Fig. 5 The structure of channel attention (CA) module

After obtaining the low-level edge cues and high-level
semantic features, we aim to leverage the edge information to
guide the semantic features to perform better in localization.
Therefore, as shown in Fig. 2, we develop an HEFNet, which
uses multiple edge guidance aggregation modules (EGAMs)
to embed the edge information into hierarchical featuremaps,
and guide them to possess clear region boundaries.

In order to integrate low-level edge cues and high-level
semantic features effectively, we propose an edge guidance
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Fig. 6 The structure of self refinement (SR) module

Fig. 7 The structure of edge guidance aggregation module (EGAM).
fe represents the input of edge features, fh is the input of high level
semantic features. fout is the output of EGAM

aggregation module (EGAM). As shown in Fig. 7. EGAM
receives two inputs, including the high-level features from
the output of HIPNet, and the low-level edge cues from the
EFENet. Specifically, its inner structure can be divided into
two stages: fusion strategy and features refinement.

The fusion stage consists of two branches, from left to
right, the first branch is to enhance the edge information
of feature maps, we adopt the multiplication operation to
strengthen the boundaries of defocus blur regions, mean-
while, suppressing the background noises. In this manner,
we use the nature of edge cues fe to guide semantic fea-
tures fh. At first, the channels of low-level edge features fe
are compressed to the same number of high-level features
fh through a 1 × 1 convolutional layer Conv1. Then, the
edge cues f1 and semantic features fh through multiplica-
tion operation and feed into one 3 × 3 convolutional layer
Conv2. Furthermore, the fused features f2 will be added to
the edge features f1 for refine representations. The above
process can be formulated as:

f1 = Conv1( fe), (1)

f2 = Conv2( f1 × fh), (2)

f12 = f2 + f1. (3)

The second branch is to capture consistent semantics of
high-level features. First, we combine edge features f1 and
high-level semantic features fh by concatenation, one 3 ×
3 convolutional layer Conv3 is used to obtain more local
information, and thenwe add the fused feature f3 to the high-
level semantic features fh. Further, the aggregated features
f12 of the first branch and the features f3h of the second
branch will be added. The output of the fusion stage is then
passed to the features refinement stage. The above process
can be described as:

f3 = Conv3(concat( f1, fh)), (4)

f3h = f3 + fh, (5)

f4 = f12 + f3h . (6)

As shown in Fig. 7, the features refinement stage also
consists of two branches, one connects the input and output
directly, the other branch consists of two 3× 3 convolutional
layers. Two branches are fused by an add operation, which is
beneficial to learn the edge information and semantic infor-
mation, thus the features f4 from the first stage can be refined.
The whole process can be defined as follows:

fout = f4 + Conv5(Conv4( f4)). (7)

With this design, the output of the first stage will obtain
the properties of clear boundaries and consistent semantics.
Each of the above-mentioned 3× 3 convolutional layers con-
sists of a convolutional layer with 3 × 3 kernel size, a batch
normalization layer, and a ReLU layer. The output of the
HEFNet is then fed to the PFRNet.

Progressive feature refinement network

In order to aggregate the multi-scale features from HEFNet
effectively, we develop a PFRNet, which is inspired but
different from coarse-to-fine residual learning in [33], the
method in [33] only applies residual learning to reconstruct
the output to the original resolution from the small scale
to the large scale step by step. In our PFRNet, we com-
bine coarse-to-fine residual learning and cross-level features
fusion manner to enhance residual learning. At first, the
multi-scale output features of EGAMs are cascaded fusion
through cross-level features fusion manner as the input fea-
tures of PFRNet, which are guiding the current step to
learn residual features. Then, coarse-to-fine residual learning
strategy is utilized to reconstruct the output to the original
resolution through multiple SR modules. The SR module is
used to refine and enhance the feature maps. After multiple
adding operations and SR modules in PFRNet, we utilize a
convolutional layer with 1× 1 kernel size to obtain the final
DBD map.
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Fig. 8 Visualization of the ground truth of edge. Thefirst and the second
columns show input images and their ground-truth images, respectively.
The last column shows the ground truth of edges, which are generated
through the gradients of the ground truth of the images

Loss function

In defocus blur detection, binary cross-entropy (BCE) is
widely used as a loss function, which calculates the loss
between the final DBD map and ground truth. However, the
BCE loss function does not consider the structural infor-
mation of the defocus blur region, which may reduce the
performance of the model. Inspired by the work of [42], we
use a pixel position-aware (PPA) loss as our loss function,
which is formed as:

Lppa(pi j , gi j ) = αi j × Lbce(pi j , gi j ) + Lwiou(pi j , gi j ), (8)

where pi j and gi j represent the DBD prediction and ground
truth of the pixel (i,j), respectively. Lbce is the binary cross-
entropy loss, Lwiou is the weighted IOU loss. αi j is the edge-
ware weight, which is defined as :

αi j = 1+ γ × |avg_pool(gi j ) − gi j |, (9)

where γ denotes the hyper-parameter , it is set as 5 in this
work. Lwiou is formed as:

Lwiou = 1− αi j × inter + 1

αi j × union − αi j × inter + 1
, (10)

where inter = pi j × gi j , and union = pi j + gi j .
The dominant loss of output corresponds to the Lppa

(pi j , gi j ), we use the binary cross-entropy (BCE) loss as
the edge loss function, the total loss is defined as:

L total = Lppa(pi j , gi j ) + λ × Lbce(pei j , gei j ), (11)

where λ represents the weight of different loss, λ is set to 0.3,
Lppa(pi j , gi j ) and Lbce(pei j , gei j ) denote the output loss
and edge loss, respectively. The pei j and gei j are the edge
prediction and ground truth of the edge pixel (i,j), respec-
tively.

Experiments

Datasets and evaluationmetrics

Datasets The proposed approach is evaluated on two pub-
lic blurred image datasets, including Shi [8], DUT [16].
Shi’s dataset [8] is the earliest public blurred image dataset.
There are 604 defocus blurred images for training and 100
defocus blurred images for testing. DUT [16] consists of
500 challenging defocus blurred images. There are complex
background and low contrast focal regions in many images.

Evaluation metrics Five standard metrics are used to eval-
uate the model, including E-measure [43], S-measure [44],
mean absolute error (MAE), precision and recall (PR) curve
[8,24,37] and F-measure. E-measure metric is used to evalu-
ate the similarity between the prediction and the ground truth.
S-measure aims to evaluate region-aware and object-aware
structural similarity between the defocus map and ground
truth. More details about the E-measure and S-measure can
be found in [43,44]. F-measure denotes an overall perfor-
mance measurement, and it is formed as:

Fβ = (1+ β2) × precision × recall

β2 × precision + recall
, (12)

where β2 is 0.3. MAE is used to evaluate the average dif-
ference between prediction map and ground truth, and it is
defined as:

MAE = 1

H ×W

H∑

i=1

W∑

j=1

|P(i, j) − G(i, j)|, (13)

W and H represent the width and height of images, respec-
tively.

Implementation details

We utilize Pytorch to implement our model. ResNet-50 [45]
is used as the backbone network,which is pre-trained on Ima-
geNet. 604 defocus blurred images of Shi’s dataset are used to
train HEANet and other above-mentioned datasets are used
to test HEANet. OurMethod requires ground truth of regions
and edges for training, while the above datasets can not pro-
vide the ground truth of edges. As shown in Fig. 8, the ground
truth of edges is generated through the gradients of the ground
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Table 1 Quantitative comparison including F-measure (Fβ , larger is better), MAE (smaller is better), S-measure (larger is better) and E-measure
(larger is better) over two widely used datasets

36
14
18
37
28

27
25
16

17
34

35

The best two results are marked in red, blue

truth of the images. For data augmentation, we use multi-
scale, random crop, and horizontal flip input images. The
initial learning rate is set to 0.05. We use stochastic gradient
descent (SGD) to optimize the network. Warm-up and linear
decay strategies are used to adjust the learning rate. Momen-
tum and weight decay are set to 0.9 and 0.0005, respectively.
The batch size is set to 10 and the whole training process is
completed in 6K iterations with the maximum epoch of 101.
The training process is about 1.5 h. Two RTX 3090 GPUs are
used for acceleration. During testing, we resize each image
to 320 × 320 and then feed it to HEANet to predict defocus
blur maps without any post-processing.

Comparison with state-of-the-art methods

To evaluate the proposed HEANet, we compare it against
12 state-of-the-art algorithms, including defocus blur detec-
tion via recurrently fusing and refining multi-scale deep
features (DeFusionNet) [17], defocus map estimation using
domain adaptation (DMENet) [28], high-frequency multi-
scale fusion and sort transform of gradient magnitudes
(HiFST) [37], multi-scale deep and hand-crafted features
for defocus estimation (DHDE) [25], local binary patterns
(LBP) [18], discriminative blur detection features (DBDF)
[8], spectral and spatial approach (SS) [36], multi-stream
bottom–top–bottom fully convolutional network (BTBNet)
[16], deep blur mapping via exploiting high-Level semantics
(DBM) [27] and classifying discriminative features (KSFV)
[14], defocus blur detection via boosting diversity of deep
ensemble networks (DENets) [34], self-generated defocus
blur detection via dual adversarial discriminators (SG) [35].
For the results of these methods except DENets and SG,
we download the results from Tang’s [17] homepage. As for
DENets and SG, we use the authors’ recommended and orig-
inal implementations parameters.

Quantitative comparison Table 1 shows our method out-
performs other approaches under four evaluation metrics,
including F-measure, MAE, S-measure, and E-measure. Our
model achieves the top two results on Shi’s dataset and
DUT dataset for four metrics. It demonstrates the superior
performance of our proposed HEANet. Fig. 9 shows the
precision-recall curves of above-mentioned approaches on
two datasets, from these curves, we can observe that the per-
formance of HEANet is better than other models. It means
that our method has a good capability to detect defocus blur
regions aswell as generate accurate defocus blurmaps.Qual-
itative comparison In Fig. 10, we visualize some defocus
blur maps produced by our model and other methods to eval-
uate the proposed HEANet. It can be seen that the HEANet
clearly detects defocus blur regions and suppresses the back-
ground clutter. The HEANet is superior in handling a variety
of challenging scenes, including low contrast focal regions
(row 1 and row 6) and cluttered backgrounds (row 3 and row
4). Compared with other counterparts, the HEANet can not
only distinguish the blur and clear regions but also retain
their sharp boundaries. The edges of in-focus objects pre-
dicted by our HEANet are clearer, and the DBD maps are
more accurate.

Ablation studies

The proposed HEANet contains four sub-networks, includ-
ing the HIPNet, the EFENet, the HEFNet, and the PFRNet.
Among them, the EFENet and the HEFNet are combined to
extract and fuse edge information. In this section, we carry
out a series of experiments to investigate the effectiveness of
each component. The quantitative results of ablation studies
are summarized in Table 2. In addition, the qualitative results
are shown in Figs. 11 and 12.
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Fig. 9 PR and F-measure curves of 12 state-of-the art methods over two datasets. The first row shows comparison of PR and F-measure curves on
Shi’s dataset [8]. The second row shows comparison of PR and F-measure curves on DUT dataset [16]

Effectiveness of HIPNet We utilize the HIPNet to capture
multi-scale global contextual features, which is the key sub-
network to detect low contrast focal regions. As it can be
seen in the 1st and 2nd rows of Table 2, when we add the
HIPNet to the backbone (HIPNet + ResNet-50), the quanti-
tative results of HIPNet + ResNet-50 can comprehensively
surpass the performances of ResNet-50. To further verify the
effectiveness of the HIPNet, we show a visual comparison
in Fig. 11. It can be seen that our proposed HIPNet is more
deliberate to deal with the complex scene and can detect low
contrast focal regions. Both results can illustrate the effect of
the HIPNet in our model.

Effectiveness of EFENet and HEFNet The EFENet and
HEFNet are the key sub-networks for our model to intro-
duce and incorporate edge information, to investigate the

effect of our proposed EFENet and HEFNet, we have done
two experiments across all two datasets comparisons. One
is without EFENet and HEFNet, the other is embedded with
EFENet and HEFNet. By comparing the 3rd and 5th rows
of Table 2, the model embedded EFENet and HEFNet has
much better performance than that without edge information.
Several visual examples are shown in Fig. 12, with the help
of EFENet and HEFNet, our method retains both accurate
semantic information and edge information.

Effectiveness of PFRNet As shown in the 4th and 5th rows
of Table 2, it can be observed that the model wih PFRNet has
a better performance than that without PFRNet.
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Fig. 10 Qualitative comparisons of the state-of-the-art methods and
our approach. The first and the second columns show input images
and their ground-truth images, respectively. The third column are the
output images of our approach. The fourth to last columns are the
state-of-the-art methods, including defocus blur detection via boost-
ing diversity of deep ensemble networks (DENets) [34], self-generated
defocus blur detection via dual adversarial discriminators (SG) [35],
defocus blur detection via recurrently fusing and refining multi-scale

deep features (DeFusionNet) [17], multi-stream bottom–top–bottom
fully convolutional network (BTBNet) [16], multi-scale deep and hand-
crafted features for defocus estimation (DHDE) [25], defocus map
estimation using domain adaptation (DMENet) [28], high-frequency
multi-scale fusion and sort transform of gradient magnitudes (HiFST)
[37], local binary patterns (LBP) [18], spectral and spatial approach
(SS) [36] and discriminative blur detection features (DBDF) [8]

Table 2 Different module of
ablation studies

F-measure (Fβ , larger is better), MAE (smaller is better). The best results are highlighted in red

Conclusion

In this paper, we propose a DBD approach named HEA-
Net. To our knowledge, it is the first trial to develop an
end-to-end network with edge awareness for defocus blur
detection. First, we adopt an HIPNet to efficiently extract
and aggregate multi-scale contextual information. Further-
more, the EFENet is used to capture the edge features of
in-focus objects. Then, we propose an HEFNet to hierar-

chically fuse edge cues and semantic features to perform
better in localization. Finally, we develop a PFRNet to refine
the feature maps to generate a DBD map with clear edges.
Experimental results demonstrate that our network outper-
forms state-of-the-art methods on two widely used datasets
without any pre-processing or post-processing.
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Fig. 11 Visual comparisons of our ablation studies. a input images, b
ground truth, c results of backbone + HIPNet, d results of backbone

Fig. 12 Visual comparisons of our ablation studies. a input image,
b ground truth, c with EFENet and HEFNet, d without EFENet and
HEFNet
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