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Abstract: The temporal characteristics of the free space optical communication (FSOC)
turbulence fading channel are essential for analyzing the bit error rate (BER) performances and
compiling the rationale of adaptive signal processing algorithms. However, the investigation is still
limited since the majority of temporal sequence generation fails to combine the autocorrelation
function (ACF) of the FSOC system parameters, and using the simplified formula results in the
loss of detailed information for turbulence disturbances. In this paper, considering the ACF of
engineering measurable atmospheric parameters, we propose a continuous-time FSOC channel
fading sequence generation model that obeys the Gamma-Gamma (G-G) probability density
function (PDF). First, under the influence of parameters such as transmission distance, optical
wavelength, scintillation index, and atmospheric structural constant, the normalized channel
fading models of ACF and PSD are established, and the numerical solution of the time-domain
Gaussian correlation sequence is derived. Moreover, the light intensity generation model obeying
the time-domain correlation with statistical distribution information is derived after employing
the rank mapping, taking into account the association between the G-G PDF parameters and
the large and small scales turbulence fading channels. Finally, the Monte Carlo numerical
method is used to analyze the performances of the ACF, PDF, and PSD parameters, as well as
the temporal characteristics of the generated sequence, and the matching relationships between
these parameters and theory, under various turbulence intensities, propagation distances, and
transverse wind speeds. Numerical results show that the proposed temporal sequence generation
model highly restores the disturbance information in different frequency bands for the turbulence
fading channels, and the agreement with the theoretical solution is 0.999. This study presents
essential numerical simulation methods for analyzing and evaluating the temporal properties
of modulated signals. When sophisticated algorithms are used to handle FSOC signals, our
proposed temporal sequence model can provide communication signal experimental sample data
generating techniques under various FSOC parameters, which is a crucial theoretical basis for
evaluating algorithm performances.
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1. Introduction

Free space optical communication (FSOC) offers the advantages of good directionality, enormous
bandwidth, high speed, and no electromagnetic interference (EMI). It may be employed as a
key technology in the field of 5G and 6G communication [1,2]. The effects of atmospheric
turbulence disturbances, which cause light wavefront distortion, light intensity random flicker, and
communication signal intersymbol interference (ISI), leading in a deterioration in signal-to-noise
ratio (SNR) and bit error rate (BER), are the main hurdle for FSOC. In order to analyze and
mitigate the effects of turbulence on different FSOC systems, it is necessary to understand the
statistical properties of light intensity fluctuations. Reference [3] shows that the atmospheric
turbulence channel fading probability density function (PDF) can more accurately describe the
statistical characteristics of light intensity fluctuations. These distribution functions, such as
lognormal, exponential, K, Gamma-Gamma (G-G), etc., are frequently employed to depict the
distribution characteristics of turbulence channel fading. The communication BER performances
are also investigated by combining different communication modulation methods, such as on-off
keying (OOK), m-ary pulse amplitude modulation (MPAM), m-ary phase shift keying (MPSK)
and multiple quadrature amplitude modulation (MQAM). These PDFs are convincingly verified
by numerical simulations and actual field experiments, which portray a process of Gaussian laser
beam propagation in statistically uniform and isotropic turbulence fading channel [4–6].

The continuous time variation properties of the atmospheric turbulence fading channel are well
known. Under the "Tyler Freeze" assumption, there are reasonable theoretical approximation
studies. However, the temporal characteristics are neglected. It prevents the generation of
turbulence time-domain continuous signals since the present beam propagation model of light
intensity random fluctuation cannot be adequately and accurately defined. Therefore, it is
challenging to employ Monte Carlo numerical simulation method to obtain time-continuous
signal passing through atmospheric turbulence to process FSOC signal. Usually, when verifying
the proposed digital processing algorithm, many FSOC experiments are carried out to sample
experimental data in this scenario which need a real field experimental environment or a built
equivalent simulation environment in the laboratory [7,8]. However, the experimental equipment
used in this method, especially for high-speed FSOC systems, is exceedingly harsh and expensive.
Furthermore, it is incomplete because all the turbulence states from strong to weak cannot be
traversed.

A continuous Markov process can accurately define this distribution property, according to
the PDF analysis of radio frequency (RF) communication fading channel [9,10]. The numerical
simulation approach allows for any fading parameter values and non-isotropic fading scenarios.
Autoregressive (AR) stochastic models can be employed to compute colored noise and non-
Gaussian processes, and autocovariance functions (ACFs) can be employed to generate sequences
that fit the temporal characteristics of RF fading channels [11–18]. Stochastic differential
equations (SDEs) relying on accurate ACF solutions can also be utilized to describe and estimate
its power spectral density (PSD) [10]. The above two methods focus on the PDF analysis of the
RF fading channel. Their analytical solutions for PSD and ACF are generally straightforward.
However, these functions derivation in turbulence fading channels are a process of solving
complex analytical equations because the effects of turbulence disturbances under different scales
need to simultaneously be considered. Under certain conditions, atmospheric turbulence ACF
can be approximated and simplified to a simple form. Based on Markov models of non-Gaussian
exponentially correlated processes, D. Bykhovsky approximated the ACF of turbulence fading
channel as a simple exponential form exp(−τ) (see [19], Eq. (4); [20], Eqs. (3)–(5)). More
than that, he generated a time-domain correlation sequence of lognormal, K, Gamma, and
Gamma-Gamma (G-G) by employing stochastic differential equations (SDEs). Assumed that
turbulence exists l0 ≪ ρ ≪

√
λL (l0, ρ, λ and L denote the inner scale of turbulence, the spatial

coherence radius of the optical wave at the receiving point, wavelength, and propagation distance,
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respectively. A. Jurado et al. deduced ACF into the square form of exponent and then used the
Fourier transform to obtain PSD which is the filter function (see [21], Eqs. (5)–(6)). Meanwhile,
the AR multi-channel generalization model (see [22], Eq. (8)) was used to solve the temporal
sequence under various turbulence. According to the assumptions of Ref. [19], our study team
also used the SDEs algorithm to obtain a numerical solution for the Jonson SBs PDF of the
Fiber-FSOC system and employed the real-time sequence to investigate the relationships between
system time delay and reciprocity (see [23], Eqs. (15)–(19)).

However, the generation accuracy of the aforementioned temporal sequences is entirely
dependent on the ACF approximation, which ignores the high-frequency information of the
theoretical values. Despite the existence of a definition for coherence time, it fails to adequately
integrate the real FSOC system characteristics (such as propagation distance, light wavelength,
scintillation index, atmospheric structure constant, etc.). As a result, the temporal performance
of the FSOC fading channel cannot be accurately characterized by calculating these simulation
sequences under the engineering measurable parameters for a unified experimental procedure.
Therefore, we need to investigate a more accurate method for generating the temporal sequence
model of the FSOC fading channel, which can provide an important numerical simulation
approach for the analysis of the modulated signal’s time-domain characteristics and the BER
evaluation. we can provide a signal experimental sample generation technique for advanced
FSOC signal processing algorithms under various turbulence fading channel characteristics, and
a theoretical basis for algorithm performance evaluation.

In this paper, our purpose is to properly employ the ACF of the atmospheric turbulence channel,
which significantly restores turbulence disturbance information at multiple frequency bands, to
generate a temporal sequence related to the FSOC parameters without simplifying them. Section
1 is the introduction. a time-domain correlation sequence generation model for turbulence fading
channel is given in Section 2. Section 3 indicates the experiments and analysis for temporal
sequence generation. Finally, the conclusion is elaborated in Section 4.

2. Time-domain correlation sequence generation model for turbulence fading
channel

We begin to consider Bln X (ρ) large-scale and Bln Y (ρ) small-scale log-irradiance covariance
functions, the ACF model for optical turbulence is given by [24]

BI (ρ)= exp [Bln X (ρ) + Bln Y (ρ)] − 1, (1)

In Ref. [25], complete expressions for Bln Y (ρ) and Bln X (ρ) are, respectively,

Bln X(ρ) = 1.06σ2
R

∫ 1

0

∫ ∞

0
η−11/6 exp (−η/ηX) J0(ρ

√︁
kη/L)(1 − cos ηξ)dηdξ

≅ 0.16σ2
Rη

7/6
X 1F1

(︃
7
6

; 1;−
kρ2ηX

4L

)︃
,

(2)

Bln Y (ρ) = 1.06σ2
R

∫ 1

0

∫ ∞

0
(η + ηY )

−11/6J0(ρ
√︁

kη/L)(1 − cos ηξ)dηdξ

≅ 1.27σ2
R

(︃
kρ2

LηY

)︃5/12

K5/6

(︄√︃
kρ2ηY

L

)︄
.

(3)

where, σ2
R = 1.23C2

nk7/6L11/6 is Rytov variance, C2
n, L, k = 2π/λ and λ are atmospheric structure

constant, propagation distance, number of waves and wavelength, respectively. 1F1 (·) and
K5/6 (·) denote a confluent hypergeometric function and a modified Bessel function of the second
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kind. ηX and ηY are given by

ηX =
2.61

1 + 1.11σ12/5
R

, (4)

ηY = 3
(︂
1 + 0.69σ12/5

R

)︂
. (5)

Substitute Eqs. (2)–(5) into Eq. (1), and let ρ = V⊥τ, we can deduce the ACF of time

BI (τ) =exp

⎡⎢⎢⎢⎢⎢⎣
0.49σ2

R(︂
1 + 1.11σ12/5

R

)︂7/6 1F1

(︃
7
6

; 1;−
kV2

⊥τ
2ηX

4L

)︃

+
0.50σ2

R(︂
1 + 0.69σ12/5

R

)︂5/6

(︃
kV2

⊥τ
2ηY

L

)︃5/12

K5/6
⎛⎜⎝
√︄

kV2
⊥τ

2ηY

L
⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦ − 1.

(6)

where V⊥ and τ represent transverse wind speed and time index, respectively. We also define
normalized ACF by the expression

ψI (τ) =
BI (τ)

BI (0)
. (7)

According to the Ref. [26], Eq. (7) is a stationary stochastic process and we can derive its
power spectrum form

SI(Ω) = 4
∫ ∞

0
ψI (τ) cos (Ωτ) dτ. (8)

where, Ω = 2πυ, and υ = 1/λ denotes light frequency. fs is sampled to obtain the normalized
digital frequency as ω = 2π/fs in order to further discretize the data. When additive white noise
(AWGN) with a power of σ2 through a transfer function composed of rational filter H (ω), the
temporal signal can be produced [27]. Hence, Eq. (8) can be written as

SI(ω) =

∞∑︂
n=1

ψI (n)e−jωn =

|︁|︁|︁|︁B (ω)

A (ω)

|︁|︁|︁|︁σ2 = H (ω)σ2. (9)

where A (ω) = 1 + a1e−jω + · · · ane−jnω , B (ω) = 1 + b1e−jω + · · · bme−jmω . Observing the
covariance structure of the autoregressive moving average (ARMA) process [28,29], it can be
deduced ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψI (0) +
N∑︁

n=1
aiψI (−n) = σ2

ψI(m) +
N∑︁

n=1
anψI (m − n) = 0

, (10)

ΨI,(n+1)×(n+1)

⎡⎢⎢⎢⎢⎣
1

θn×1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
σ2

n×1

0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψI (0) ψI (−1) · · · ψI (−n)

ψI (1) ψI (0)
...

...
. . . ψI (−1)

ψI (n) · · · ψI (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

a1
...

an
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(11)
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where ai represents the coefficient of the filter, which can be regarded as the transfer function of
the turbulence fading channel. Let αn = ψI (n + 1) +˜︂Ψ∗

I,1×nθn×1, Eq. (11) can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎣
ΨI,(n+1)×(n+1)

ψI (−n − 1)

ΨI,n×1

ψI (n + 1) ˜︂Ψ∗
I,1×n ψI (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

θn×1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
σ2

n×1

0

αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Here, ΨI,n×1 =
[︂
ψI (1) · · · ψI (n)

]︂T
, ˜︂ΨI,n×1 =

[︂
ψI

∗ (1) · · · ψI
∗ (n)

]︂T
. According to

Ref. [30], we employ the Yule-Walker equation to solve Eq. (12) by using the order recursive
solution method, we can get

θ(n+1)×1 =

⎡⎢⎢⎢⎢⎣
θn

0

⎤⎥⎥⎥⎥⎦ + ξn+1

⎡⎢⎢⎢⎢⎣
θn

1

⎤⎥⎥⎥⎥⎦ , σ2(n + 1) = σ2(n)
(︂
1 − |ξ(n + 1)|2

)︂
, σ2(n)θ(n) = Y(n),

(13)
σ2(n + 1) = σ2(n)

(︂
1 − |ξ(n + 1)|2

)︂
, (14)

σ2(n)H (ω) = Y(n). (15)
where ξ (n + 1) = −αn

/︁
σ2(n). In this way, we can deduce the coefficients θ(n) of the transfer

function of the turbulence fading channel in turn, and can calculate the time-domain correlation
sequence Y employing Eqs. (13)–(15). The above is a time-dependent calculation based on
AWGN as random values. Still, the PDF is not taken into account, resulting in the generated
sequence not obeying the turbulence disturbance theory. For this reason, assuming this system is
a free-space receiver and the aperture smoothing effect is not considered, this paper uses the G-G
function as the PDF of the turbulence fading channel, its parameters α and β can be related to
the turbulence structure constant C2

n , which is given by [31]

pI (I) =
2(αβ)(α+β)/2

Γ (α) Γ (β) I

(︃
I
⟨I⟩

)︃ (α+β)/2
Kα−β

(︄
2

√︄
αβI
⟨I⟩

)︄
, I>0, (16)

α = 1
σ2

X
= 1

exp(σ2
ln X)−1 , β = 1

σ2
Y
= 1

exp(σ2
ln Y)−1 , (17)

σ2
ln X =

0.49σ2
R(︂

1+1.11σ12/5
R

)︂7/6 , σ2
ln Y =

0.51σ2
R(︂

1+0.69σ12/5
R

)︂5/6 . (18)

where ⟨In⟩ represents the nth moment of the light intensity I, Γ (·) denotes Gamma function. Note
that here I is the theoretical light intensity sequence. When the normalized random light intensity
sequence

{︂
În

/︂
⟨I⟩

}︂
1×N

obtained from the simulation obeys the Gamma-Gamma PDF, it can be
expressed as[︂

Î1

/︂ ⟨︁
Î
⟩︁
, Î2

/︂ ⟨︁
Î
⟩︁
, . . . În

/︂ ⟨︁
Î
⟩︁]︂T
= Î ∈ PDFGamma−Gamma, i = 1, 2, . . . , n . (19)

According to Ref. [11], I⃗ is obtained after Î rearranging in order of Y rank, the correlation
coefficient (CC) of the sequence ρI⃗,Y can be calculated by

ρI⃗,Y =

⟨︂(︂
I⃗ (i) −

⟨︂
I⃗
⟩︂)︂

(Y (i) − ⟨Y⟩)
⟩︂

√︄⟨︃(︂
I⃗ (i) −

⟨︂
I⃗
⟩︂)︂2

⟩︃ ⟨︁
(Y (i) − ⟨Y⟩)2

⟩︁ = 1. (20)
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Therefore, we perfectly map the temporal correlation information of Y to I⃗ and satisfy⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I⃗ ∈ PDFGamma−Gamma⟨︂(︂

I⃗ (i) −
⟨︂
I⃗
⟩︂)︂ (︂

I⃗ (i − m) −

⟨︂
I⃗
⟩︂)︂⟩︂

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
ψ⃗(m)

= ψI⃗ (m). (21)

Equation (21) shows that the I⃗ generated ACF ψI⃗ (m) is equal to the numerical simulation result
of the theoretical solution Eq. (7) ψI (m), and the PDF information is preserved. The modeling
process of the above Eqs. (1)–(21) can be depicted in Fig. 1. That is, the ACF created is the same
as the numerical solution of the theoretical solution (6), and the PDF information is preserved.
Figure 1 depicts the modeling method as mentioned above Eqs. (1)–(21).
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Fig. 1. Implement route for modeling turbulent time-domain correlation signal generation.
Where all modeling procedures correspond to Eqs. (1)–(21). The ACF and PSD are
determined first, and then the turbulence fading channel function structure is designed using
spectral estimation theory. The filter coefficients are calculated utilizing the Yule-Walker
algorithm. Moreover, a sequence of temporal Gaussian correlation is generated by combining
AWGN. Finally, according to the rank mapping principle of the time-domain Gaussian
correlation, the random light intensity sequence obeying the G-G PDF is reordered, which
highly restores the turbulence disturbance information in different frequency bands.

3. Experiments and analysis for temporal sequence generation

As shown in Fig. 2, we first investigate the normalized ACF performance under various turbulence
intensities, following the implement route of Fig. 1. The blue, black and red lines represent
C2

n = 5 × 10−14 m−2/3, C2
n = 5 × 10−15 m−2/3 and C2

n = 5 × 10−16 m−2/3, respectively. The
light wavelength, propagation distance and transverse wind speed at this time are given by
λ = 1550 nm, L = 5000 m, and v⊥ = 1 m/s, respectively. Therefore, the Rytov variances σ2

R
of turbulence fading channel obtained by our numerical simulation are 19.03, 1.903 and 0.19,
respectively, corresponding to the three cases of strong, medium and weak turbulence. The
normalized ACF decreases as turbulence intensity increases, and the entire line trend is slanted
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towards the Y-axis. According to Refs. [23,32], the coherence time τd is defined as

ψI (τd) = e−1. (22)
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Fig. 2. Normalized ACF and PDF performances for different turbulence fading channels.
(a) normalized ACF performances for different turbulence intensities, the blue, black and red
lines represent C2

n = 5 × 10−14 m−2/3, C2
n = 5 × 10−15 m−2/3 and C2

n = 5 × 10−16 m−2/3,
respectively. The coherence times τd are 6.4 ms, 26.0 ms and 35.2 ms, respectively. When
ACF tends to 0, i.e., ψI (τ) → 0, the blue, black and red lines denote τd = 0.3616 s,
τd = 0.1181 s and τd = 0.0821 s, respectively. The parameters of corresponding normalized
light intensity G-G PDF are (b) α = 7.2306, β = 1.0453,(c) α = 3.9935, β = 1.7438 and (d)
α = 12.1495, β = 10.6132, respectively. The light wavelength, propagation distance and
transverse wind speed at this time are given by λ = 1550 nm, L = 5000 m, and v⊥ = 1 m/s,
respectively.

After statistical calculation, we can see that the coherence times τd corresponding to strong,
medium and weak turbulence are 6.4 ms, 26 ms and 35.2 ms, respectively. The coherence
time τd becomes smaller as turbulence intensity increases, which is demonstrated in Fig. 2(a).
Equations (16)–(18) of the aforesaid atmospheric parameters are numerically analyzed for further
studying the distribution performance of normalized light intensity at this period. Its form is
skewed from exponential to "bell-shaped," and the normalized light intensity distribution is
more concentrated, indicating that the scintillation variance is lesser at this time, as illustrated
in Figs. 2(b)–2(d), The light intensity scintillation effect mainly consists of large-scale and
small-scale scintillation when the turbulence intensity is moderate to weak. The large-scale
logarithmic scintillation index tends to zero as turbulence intensity increases, i.e., σ2

ln x → 0, while
the small-scale turbulence logarithmic scintillation index tends to be saturated, i.e., σ2

ln y → 0.69.
The small-scale is mostly affecting the turbulence disturbance, see Eq. (18), which is one of the
reasons for using the G-G PDF as turbulence fading channel function in this paper.

According to Eq. (6), the transverse wind speed v⊥ is another important element impacting the
coherence time τd, as it can invoke atmospheric movement and trigger random turbulence medium
fluctuations on the light wave propagation path. Therefore, the coherence time τd performances
under various wind speeds v⊥, and propagation distances L and atmospheric turbulence structure
constants C2

n are depicted in Fig. 3(a). For the convenience of plotting, the turbulence state at this
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time is set to medium C2
n = 5 × 10−15 m−2/3. When the wind speed v⊥ remains constant, the

coherence time τd increases as the propagation distance L grows. This is because the coherence
time τd is a function of 1/L, indicating that the random medium can be comparable to a sizeable
random function in the airspace as the propagation distance L rises. The higher correlation
between their media and the longer distance, which reflects the more substantial blocking effect
in the time-domain and the larger system robustness, that is, with the increase of distance, the
optical time variation characteristics of the entire system weaken, as plotted in Fig. 3(b). However,
when the propagation distance L is constant, the coherence time τd decreases as the wind speed
v⊥ increases. The wind speed accelerates the unpredictability of the turbulence random phase
and diminishes spatial coherence under the "Taylor freeze" assumption, resulting in a drop in
coherence time, as illustrated in Fig. 3(c).
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Fig. 3. Contributions of transverse wind speed v⊥ and light wave propagation distance L
for the coherence time τd of atmospheric turbulence fading channel. (a) Coherence time τd
distribution performances of atmospheric turbulence fading channel under different transverse
wind speeds v⊥ and light wave propagation distances L, the turbulence state at this time is
set to medium C2

n = 5 × 10−15 m−2/3; (b) the relationships between light wave propagation
distance L and coherence time τd when the transverse wind speed v⊥ = 1m/s; (c) the
relationships between transverse wind speed v⊥ and coherence time τd when the propagation
distance L = 5000 m; (d) the relationships between Fresnel frequency ωτ = v⊥/

√︁
L/k

and coherence time τd . The blue, black and red lines represent C2
n = 5 × 10−14 m−2/3,

C2
n = 5 × 10−15 m−2/3 and C2

n = 5 × 10−16 m−2/3, respectively. The light wavelength is set
to λ = 1550 nm.

We define Fresnel frequency to better assess the effect of factors on temporal correlation [33].

ωτ =
v⊥√︁
L/k

. (23)

Equation (23) takes into account the effects of wind speed, propagation distance and light
wavelength, as shown in Fig. 3(d). The coherence time reduces from 25.1331 ms to 18.2480 ms
when ω⊥ = 40 rad/s and the turbulence intensity increases from C2

n = 5 × 10−16 m−2/3 to
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C2
n = 5 × 10−15 m−2/3. The coherence time at this moment drops to 4.4143 ms if the turbulence

level is further enhanced to C2
n = 5 × 10−14 m−2/3. Because large-scale turbulence clusters lose

energy and become small-scale turbulence clusters when the turbulence intensity rises. The
diffraction effect of light increases at this time, increasing the phase randomness of the medium
of the light wave propagation route, destroying the light wavefront, and shortening the coherence
time. As the Fresnel frequency increases further, the coherence time approaches zero.

The atmospheric characteristics of Eq. (6) can be precisely represented, allowing us to construct
turbulence fading channel random signals that directly mirror the real turbulence state, as observed
in Fig. 3. Therefore, combining Eqs. (1)–(21), the light wavelength λ, transverse wind speed v⊥
and transverse wind speeds v⊥ are set to λ = 1550 nm, v⊥ = 1 m/s and L = 5000 m, respectively.
Atmospheric turbulence state are also given by C2

n = 5 × 10−14 m−2/3, C2
n = 5 × 10−15 m−2/3

and C2
n = 5 × 10−16 m−2/3, respectively. These parameters are easily measured directly in the

actual FSOC system. We can simulate and create time-domain correlated continuous sequence
signals in the different turbulent fading channels using the Monte Carlo approach, as illustrated
in Figs. 4(a)–4(c). According to Ref. [24] (see Chapt. 8, Eq. (9)), the scintillation index can be
expressed as

σ2
I⃗
=

(︃⟨︂
I⃗2

⟩︂
−

⟨︂
I⃗
⟩︂2

)︃/︃ ⟨︂
I⃗
⟩︂2

. (24)

Despite the insufficient sampling interval and generated data capacity, the scintillation index of
Figs. 4(a)–4(c) can be approximated by 1.2210, 0.9667, and 0.1839, respectively. It reveals that
with the increase of the turbulence degree, the temporal signal jitter degree increases, and the
random fluctuation trend increases. These signals are all time continuity, and the signal envelopes
are highly similar to the previous experiments done by our research team (see Ref. [23]).
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Fig. 4. Generation of time-domain correlated continuous sequence signals in different
turbulence fading channel. (a) blue, (b) black and (c) red lines represent C2

n = 5×10−14 m−2/3,
C2

n = 5 × 10−15 m−2/3 and C2
n = 5 × 10−16 m−2/3, respectively. The light wavelength λ,

transverse wind speed v⊥ and propagation distance L are set to λ = 1550 nm, v⊥ = 1 m/s
and L = 5000 m.

Moreover, we know that Eq. (24) is the scintillation index obtained by engineering calculation,
which is mainly composed of the refraction of large-scale turbulence and the diffraction of
small-scale turbulence. It can be written as

σ2
I = exp

⎡⎢⎢⎢⎢⎢⎣
0.49σ2

R(︂
1 + 1.11σ12/5

R

)︂7/6 +
0.51σ2

R(︂
1 + 0.69σ12/5

R

)︂5/6

⎤⎥⎥⎥⎥⎥⎦ − 1, 0 ≤ σ2
R<∞. (25)

The theoretical scintillation indices of Figs. 4(a)–4(c) can be obtained using theoretical numerical
computation, and they are 1.2273, 0.9675, and 0.1843, respectively. Meanwhile, we found that
the data deviations are 0.005, 0.0008, 0.006, respectively, all of which are lower than 0.006,
manifesting that for different turbulence fading channels, the generation mode of time-domain
correlated continuous sequence signal conforms to the theoretical calculation Eq. (25).
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We plot Fig. 5 in order to verify the matching degree between the time-domain signals in
Fig. 4 and the theoretical normalized ACFs, Under the three turbulence states of strong, medium
and weak (corresponding to Figs. 5(a)–5(c), respectively), the normalized ACFs ψI⃗ (τ) after rank
matching are well matched with the ACFs ψI (τ) calculated theoretically.
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Fig. 5. ACF performance of time-domain correlated continuous sequence signals in
Different turbulence fading channel. (a), (b) and (c) represent C2

n = 5 × 10−14 m−2/3,
C2

n = 5×10−15 m−2/3 and C2
n = 5×10−16 m−2/3, respectively. The light wavelength λ, and

transverse wind speeds v⊥ are set to λ = 1550 nm, v⊥ = 1 m/s and L = 5000 m, respectively.
The blue dotted, black solid and red dashed line denote theoretical calculation I, after rank
mapping I⃗ and before rank mapping Î, respectively.

According to Eq. (20), the correlation coefficients ρI,I⃗ between the three turbulence states
can be calculated as 0.9990, 0.9993 and 0.9998 , respectively. It shows that the time-domain
signals after rank matching contain strong time-domain correlation and atmospheric turbulence
disturbance characteristic information. However, the statistical value of this correlation coefficient
is not 1, indicating an error in the AR random process. We also draw the ACF curve ψÎ (τ) of
the time domain signal Î before rank matching for explaining the error source. The theoretical
correlation coefficients ρI,Î can be calculated as 0.9992, 0.9998 and 0.9998. Obviously, Î and I⃗
share the same time characteristics. The ACF ψI (τ) temporal information of signal I is not lost
during rank matching, and it precisely inherits the ACF ψÎ (τ) of I⃗, i.e., ψI⃗ (τ) = ψÎ (τ) = ψI (τ),
proving that our proposed model Eq. (20) is correct.

It is worth noting that one of the key parameters used to evaluate FSOC system BER is the
statistical distribution properties of time-domain light intensity signals. Therefore, the PDF
cures of the time-domain continuous light intensity signal of Fig. 4 and Fig. 5 are plotted in
Fig. 6. According to Eq. (20), we calculate that the correlation coefficients of Figs. 6(a)–6(c)
are 0.9999, 0.9998 and 0.9999, respectively. We can deduce from Fig. 6 that the time-domain
continuous light intensity signals I⃗ generated under various turbulence fading channels conform
to the statistical characteristics of G-G PDFs, proving that our proposed time-domain continuous
light intensity signal generation model Eq. (21) is correct.

In addition, PSD is also one of the most essential characteristics of time signals. We obtain I⃗n,
however, by ACF ψI (τ) Monte Carlo simulation. It’s challenging to offer an analytical solution
to Eq. (8) because of its intricate nature. According to the Ref. [24,33,34], we employ the weak
turbulence approximation theory to simplify Eq. (8) into
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(26)

Equation (26) is taken logarithm, the attenuation envelope tends to a straight line with 0
slope when ω<ωt, i.e., lg (SI (ω)) = lg

(︁
6.95σ2

R/ωτ

)︁
. Moreover, Eq. (26) can be equal to a
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Fig. 6. PDF performances of time-domain correlated continuous sequence signals and
theoretical calculations in different turbulence fading channels. (a), (b) and (c) represent
C2

n = 5 × 10−14 m−2/3, C2
n = 5 × 10−15 m−2/3 and C2

n = 5 × 10−16 m−2/3, respectively.
The light wavelength λ, transverse wind speed v⊥ and propagation distance L are set to
λ = 1550 nm, v⊥ = 1 m/s and L = 5000 m, respectively. The blue (a), black (b) and red
(c) lines represent the theoretical PDFs, respectively, and the fitting efficiencies are 0.9999,
0.9998, and 0.9999, respectively.

function with a slope of −8/3 when ω>ωt, i.e., greater than the Fresnel frequency, indicating
that the power spectrum attenuation here obeys the −8/3 rule. We have plotted theoretical
fitting curves in Fig. 7(a) for turbulence intensities C2

n = 5 × 10−14 m−2/3, C2
n = 5 × 10−15 m−2/3

and C2
n = 5 × 10−16 m−2/3, propagation distance L = 5000 m, and wind speed v⊥ = 1m/s,

for example, the red, black and blue lines denote lg (SI (ω)) = − (8/3) lg (ω/ωτ) + 5.2749,
lg (SI (ω)) = − (8/3) lg (ω/ωτ)+5.62749, lg (SI (ω)) = − (8/3) lg (ω/ωτ)+7.2749, respectively.
The above relationships can be written as

lg (SI (ω)) ∝

⎧⎪⎪⎨⎪⎪⎩
− 8

3 lg
(︂
ω
ωτ

)︂
+ lg

(︂
6.95σ2

R
ωτ

)︂
, ω ≥ ωτ

lg
(︂

6.95σ2
R

ωτ

)︂
, ω<ωτ

(27)

where ∝ represents the envelope trend. We perform a fitting analysis on the PSD envelopes of
the time-domain continuous light intensity signals I⃗n generated in Figs. 4(a)–4(c), as shown in
Figs. 7(b)–7(d). The first segments of the PSD envelopes are discovered to be a comparatively
smooth straight line with a slope of approximately 0 that conform to the law that the value
of a straight line reduces dramatically as turbulence weakens. The curves are fitted to the
second segments in Figs. 7(b)–7(d), for example blue cure lg

(︁
SI⃗ (f )

)︁
= − (8/3) lg (f ) - 0.5, black

cure lg
(︁
SI⃗ (f )

)︁
= − (8/3) lg (f ) −1.5, red cure lg

(︁
SI⃗ (f )

)︁
= − (8/3) lg (f ) − 2.5, which are an

attenuation with a slope of −8/3 and conform to the theory shown in Eq. (27). In the comparison
of Fig. 7(a), Eq. (21) highly restores the attenuation information of the atmospheric turbulence
fading channel in different frequency bands. Synthesizing the information presented in Figs. 1–7,
it turns out that when analyzing the FSOC performance, our proposed time-domain signal
generation model may help researchers estimate the channel state information of the simulated
FSOC in real-time based on the actual system and atmospheric parameters. This provides a
strong theoretical basis and simulation method for signal regeneration [35], as well as being
beneficial for real-time signal advanced algorithms processing [1], temporal characteristics study
and adaptive optics control algorithm optimization [7], and real-time simulation of turbulent
environments [20].
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Fig. 7. Fitted PSD cure performances of time-domain correlated continuous sequence
signals and theoretical calculations in different turbulence fading channels. (a) PSD curves
of theoretical calculation for (b) - (d), see Eqs. (26)–(27); (b), (c) and (d) represent
C2

n = 5 × 10−14 m−2/3, C2
n = 5 × 10−15 m−2/3 and C2

n = 5 × 10−16 m−2/3, respectively.
The light wavelength λ, transverse wind speed v⊥ and propagation distance L are set to
λ = 1550 nm, v⊥ = 1 m/s and L = 5000 m, respectively. The blue (a), black (b) and red (c)
cures represent the fitted PSDs, respectively.

4. Conclusion

This paper proposes a continuous-time FSOC channel fading sequence generation model obeying
G-G PDF, which incorporates the ACF time characteristic information of atmospheric parameters.
First, the normalized channel fading function ACF model and PSD analytical formula are
established under the influence of parameters such as transmission distance, optical wavelength,
scintillation factor, and atmospheric structure constant. The Yule-Walker function is utilized to
calculate the filter coefficients in the AR stochastic process, and the numerical solution of the
time-domain Gaussian correlation sequence is derived using white Gaussian noise. Moreover,
after rank mapping, a light intensity signal generation model that obeys time-domain correlation
with PDF information is established, taking into account the association between the G-G
parameters and the large and small scale turbulence parameters. The performances of ACF in
different atmospheric conditions are then analyzed using the Monte Carlo numerical approach,
and the corresponding PDFs are given. The investigations reveal that the defined Fresnel
frequency ωd may comprehensively characterize the physical meaning of ACF, and that the
FSOC fading channel coherence time degradation rises as ωd grows. We generate the sample
signals of the temporal sequence under various turbulence sequences that match the waveform
time characteristics reported in our previous experiments, and the scintillation indexes are highly
consistent with the theoretical solution. The correlation coefficients are greater than 0.9996,
and the PSDs obey the decay trend of −8/3 in case of various turbulence situations. The results
show that the temporal sequences we generated effectively restore the fading time-domain and
frequency-domain informations for the FSOC turbulence channels, providing an important
theoretical basis and numerical analysis methods for the construction of real-time simulations
of turbulent environments, as well as in the performances evaluation of communication BER,
channel estimation, and the sample data formation of advanced modulation and demodulation
algorithms.
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