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Abstract

This study considers the problem of fault estimation for rigid satellite in the presence of
external disturbances, parameter perturbations, and actuator time-varying faults. Firstly, a
Takagi-Sugeno (T-S) fuzzy model with interval matrix for satellite attitude system under
large attitude angle scope is established, along with a detailed analysis of actuator faults in
terms of additive and multiplicative descriptions. Then, a novel fuzzy adaptive observer
with adjustable parameter is proposed to estimate both system states and actuator faults.
The estimated errors are proved to be uniformly ultimately bounded, based on descriptor
augmentation technique and Lyapunov stability theory. The proposed observer realizes a
lower estimation performance index in terms of quantitative assessment compared to exist-
ing observer methods. Furthermore, an auxiliary optimization variable and the elimination
method are applied to decrease the conservatism of the proposed design. And an intuitive
quantitative performance index of fault estimation is introduced to obtain reliable evalua-
tion and decision. Finally, numerical simulations and analyses of rigid satellite illustrate the
effectiveness and benefit of the proposed strategy.

1 INTRODUCTION

For remote sensing satellites, attitude manoeuvres with actua-
tor faults could lead to the failure of observation missions due
to the unexpected behaviour and degraded stability. In order
to strengthen system stability and maintainability, as well as
to lower the operating cost, timely fault estimation and fault-
tolerant control schemes of the satellite attitude system are
developed to maintain desired performance and stability even
when faults occur [1–4]. Hence, the research on fault estima-
tion to ensure the long-term normal operation of satellite has
obtained considerable attention.

Adaptive observer is widely used in fault diagnosis due to
its simple structure, strong practicability and the ability that is
able to estimate system state and fault simultaneously [5–7].
Adaptive observer-based fault estimation is applied to acquire
accurate fault information by reconstructing the magnitude of
faults [8–10]. However, there is a strict equality constraint in
the adaptive observer design, which makes it more difficult to
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calculate design parameters. To overcome the restriction of the
observer matching condition, an intermediate estimator strat-
egy is developed by introducing one or more intermediate vari-
ables in [11], which does not require the strict equality con-
straint and is proved that estimation errors of system state
and fault are ultimately uniformly bounded. Furthermore, there
are model uncertainties in the actual satellite attitude system
inevitably, including modelling errors, parameter perturbations
and external disturbances [12–14]. Specifically, a small variation
of parameter may have a great effect on the fault estimation
results after an amplification of a large adaptive gain or learn-
ing rate [15]. Therefore, compared with constant system param-
eters, the influence of parameter perturbation on fault estima-
tion deserves more attention. Under the circumstances, some
researches introduce augmentation idea to strengthen the appli-
cation field of adaptive observer [16–18]. In [1], with the con-
sideration of Lipschitz nonlinearity and external disturbance, a
sensor fault estimation method of rigid satellite is discussed,
where the sensor fault is regarded as an augmented state. In
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742 LI ET AL.

[19, 20], based on H∞ performance index, adaptive observers
with adjustable parameters are designed for continuous/discrete
dynamic systems and a class of nonlinear interconnected sys-
tems, which can obtain more design freedoms and a lower fault
estimation performance index in comparison with the conven-
tional augmented observer design. The design of suppressing
synthetic disturbances mentioned above can be similarly found
in [21, 22]. Ref. [23] investigates two unknown input observers
to deal with the fault diagnosis problem for nonlinear systems
with Lipschitz nonlinearities, where the disturbances effects
are attenuated by dissipativity theory. In [24], actuator faults,
external disturbances, and uncertain inertia parameter of a rigid
spacecraft are regard as a lumped disturbance together, which
is estimated via a finite-time disturbance observer. Considering
the coupling effect between the observer error dynamics and
the control system, an H∞ based adaptive observer is devel-
oped for nonlinear Lipschitz systems in the presence of exter-
nal disturbances and actuator faults [25]. More results on the
fault diagnosis including the quantitative and qualitative meth-
ods for continuous-time systems and discrete-time systems can
be found in [26].

One of the key challenges of fault estimation observer in the
rigid satellite comes from their strong non-linearity and high
uncertainty. In [5], with new state variables corresponding to
the integrated output variables, the augmented satellite attitude
system model uses adaptive observers to obtain fault estimation
of actuator and sensor faults. A nonlinear geometric approach
is utilized to avoid the unwanted influence on the fault esti-
mates caused by aerodynamic disturbance torques. Similarly,
an adaptive observer is designed for the actuator and sensor
faults estimation based on augmented model with unmeasur-
able premise variables [27]. Where a new state is applied that
is a filtered version of output variables. Meanwhile, learning
observer strategy has been considered in some researches,
and considerable discussions have been conducted on the
fault estimation of satellite attitude system [28, 29]. Compared
with [29], the iterative learning observer in [28] has stronger
robustness with respect to external disturbances by introducing
a switch term. All the results mentioned above are based on the
premise that the satellite inertia matrix is known and constant.
In [30], the rigid satellite attitude system with sensor faults and
uncertainties is transformed into two subsystems: the sensor
faults exist in subsystems-2 and uncertainties are in subsystems-
1, where the satellite is assumed to work in small attitude angles.
The sensor faults are estimated by an adaptive observer, and
the design parameters of the observer are resolved by using
linear matrix inequality (LMI) techniques. In [31], an adaptive
sliding mode fault estimation observer is designed to acquire
the estimated value of unknown time-varying faults, where
the attitude angles of rigid satellite are assumed to vary in a
small range. The same assumption constraint for rigid satellites
can also be found in [1]. However, the large attitude angle
working scope is inevitable, especially for advanced satellites
with the requirement of rapid mobility, such as Worldwiew-2
[32], JL-1 smart verification satellite [33], and optical conical
scanning imaging small satellites [34]. How to further carry
out fault estimation of satellite attitude system under large

angle manoeuvre is an interesting issue and motivates our
study.

Over the past three decades, Takagi-Sugeno (T-S) fuzzy
model and control strategy have verified to be a very powerful
and flexible tool to cope with non-linear systems. By using a set
of locally linearized dynamics connected by fuzzy membership
functions, T-S fuzzy models have the ability to approximate the
complicated non-linear behaviours of dynamics with any spec-
ified accuracy [35]. The design of controller and observer for
T-S fuzzy models can be represented in terms of LMI [36–38].
Based on linear switching function and integral-type switching
function, [39] provides two design methods for the T-S fuzzy
descriptor sliding mode observer. Ref. [40] deals with a memory
integral sliding-mode control problem for the permanent mag-
net synchronous motor model with mismatched disturbance
based on disturbance observer and T-S fuzzy approach. In [41],
a T-S fuzzy functional observer is investigated to detect the
fault for fuzzy systems with time-delay and exogenous distur-
bance. Actually, considering the large attitude angle motion pro-
cess of satellite with multiple disturbances, T-S fuzzy approach
provides a new opportunity for achieving the fault estimation
observer design.

Motivated by the discussions earlier, in this paper, the satel-
lite attitude system with model uncertainties is approximated by
the T-S fuzzy models, which can be applied to manoeuvring
at any angle. Then, a fuzzy adaptive fault estimation observer
(FAFEO) with adjustable parameter (AP) is designed for the
non-linear satellite system, which combines multivariable opti-
mization design with fuzzy adaptive observer to address the
problem of actuator fault estimation, under model uncertain-
ties above mentioned. It should be pointed out that, review-
ing the existing fault estimation methods, the fault estimation
method applied to general satellite attitude system (consider-
ing the model uncertainties, no manoeuvre angle constraints) is
less considered. Based on Lyapunov methodology and H∞ the-
ory, the proposed method is able to guarantee that the dynamic
error system is asymptotically stable and estimation errors are
ultimately uniformly bounded. The proposed scheme is analyti-
cally verified and illustrated via numerical simulation results. The
main contributions of this work are summarized as follows:

1. Presented fault estimator with adjustable parameter is
designed as a proportional-integral (PI) function of angu-
lar velocity estimation error. The proposed method can not
only provide additional design freedom to the fuzzy adaptive
observer but also enhance transient and steady-state perfor-
mance of fault estimation. Particularly, the proposed method
could find lower fault estimation performance index than
existing methods [10, 15], while the computing complexity
is not too much increased.

2. The proposed scheme is given in the form of LMI, with less
conservatism as well as retaining the performance of the pro-
posed algorithm. By introducing an auxiliary index on H∞

optimization, the stability condition of observer system can
be relaxed. Moreover, the strong assumption of common
Lyapunov matrix considered in [19, 20] is relaxed. Based on
the elimination method, the strict implicit constraint in the
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LI ET AL. 743

sufficient existence condition of observer design with pole
placement is eliminated, which leads to a larger feasible area
of stabilization than Theorem 3 given in [19].

This paper is organized as follows. The dynamic model for
satellite attitude system with actuator faults is established in Sec-
tion 2. Section 3 shows a novel FAFEO with AP to achieve
online fault estimation, where some relaxation strategies are pre-
sented. Section 4 gives the simulation results, which verify the
effectiveness of the proposed strategy. In Section 5, conclusions
of this paper is drawn.

2 PROBLEM FORMULATION

The following notations are used. AT represents the trans-
pose form of the matrix A; ⟨A⟩S represents the form A + AT ;
* is used for blocks induced by symmetry; diag(⋅) denotes
the block diagonal matrix; I denotes the identity matrix with
appropriate dimensions; ‖ ⋅ ‖p denotes the p-norm in the
Euclidean space; �̄�(⋅) denotes the maximum singular value of a
matrix.

In this study, the attitude motion model of a rigid satellite
with external disturbances can be given by [4, 28]

J �̇� + 𝜔×J𝜔 = u + ud (1)

q̇0 = −
1
2

qT
v 𝜔

q̇v =
1
2

(q0I3 + q×v )𝜔

(2)

where Equations (1) and (2) represent the dynamics subsys-
tem and the kinematics subsystem, respectively. J ∈ ℝ3×3 is
the satellite inertia matrix. 𝜔T = [𝜔x 𝜔y 𝜔z ] ∈ ℝ1×3 denotes
the space rotation angular velocity of satellite, expressed in
the body frame OB relative to the inertial frame OI . uT =
[ u1 u2 u3 ] ∈ ℝ1×3 is the expected control input and is con-
strained in a compact set, that is, |u| < umax, where umax is a
positive constant. ud ∈ ℝ3×1 is the external environmental dis-
turbance torque, including the air drag, solar radiation pres-
sure and gravity gradient moment [4, 5]. q = [ q0 qT

v ] ∈ ℝ4×1,
satisfying the constraint ‖q‖2 = 1, is the unit quaternion rep-
resenting the attitude orientation of the satellite in OB with
respect to OI . w×(w = qv , 𝜔) is the cross product operator for
wT = [ w1 w2 w3 ] ∈ ℝ1×3 described by

w× =

⎡⎢⎢⎢⎣
0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤⎥⎥⎥⎦
Considering control issues of attitude tracking and holding,

the attitude tracking error qe = (qe0, q
T
ev ) ∈ ℝ4×1 is defined to

characterize the relative orientation between OB and the desired
frame OD . Giving the desired satellite attitude qd = (qd 0, q

T
dv

) ∈

ℝ4×1, (qe0, q
T
ev ) is computed by[

qe0

qev

]
=

[
qT

dv
qv + qd 0q0

qd 0qv − q×
dv

qv − qdvq0

]
(3)

where ‖qe‖2 = 1 and ‖qd‖2 = 1.
Similarly, we define the angular velocity tracking error 𝜔e ∈

ℝ3×1 as

𝜔e = 𝜔 − Θq𝜔d

Θq =
(
q2

e0 − qT
ev qev

)
I3 + 2qevq

T
ev − 2qe0q×ev

(4)

where 𝜔d is desired attitude angular velocity, Θq is the rotation
matrix.

On the basis of above tracking errors, we define the controller
input variable se ∈ ℝ3×1 as

se = qe + 𝛽𝜔e (5)

where 𝛽 > 0 is a given constant.
The following classical proportional-integral-derivative (PID)

control scheme is implemented:

u = kpse + ki ∫ sedt + kd

d se

dt
(6)

where kp, ki , kd are the proportional term, integral term, and
derivative term, respectively.

Apart from the above, two important problems deserving
more attention are satellite inertia uncertainties ΔJ and actua-
tor faults f (t ) ∈ ℝ3×1. Replacing J with J0 + ΔJ , the dynamics
subsystem can be rewritten as

�̇� = −(J0 + ΔJ )−1
𝜔× (J0 + ΔJ )𝜔 + (J0 + ΔJ )−1 (

u + f + ud

)
(7)

where J0 is the normal part of inertia matrix, known and non-
singular. ΔJ is an unknown matrix related to the mass displace-
ment owing to the fuel consumption and drastic vibration dur-
ing launch, or mounting misalignment [12]. In practice, J0 + ΔJ

can remain bounded and non-singular as device physical limita-
tions and mature engineering design.

Remark 1. The normal part of inertia matrix can be represented
as:

J0 =

⎡⎢⎢⎢⎣
J11 0 0

∗ J22 0

∗ ∗ J33

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

0 J12 J13

∗ 0 J23

∗ ∗ 0

⎤⎥⎥⎥⎦
where J0 is non-singular; J11, J22, and J33 are the triaxial moment
of inertia; J12, J13, and J23 are products of inertia. Generally,
from the perspective of engineering application, Jii (i = 1, 2, 3)
are much larger than Ji j (i < j ; i = 1, 2; j = 2, 3), and Jii are in
the same order of magnitude. (1) As the inertia axis through
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744 LI ET AL.

the centre of mass approaching the satellite body frame OB ,
the inertia products Ji j become smaller, which will contribute
to reduce the control coupling among axes. Ideally, the two
frames coincide, that is, Ji j = 0. (2) Considering the gravity gra-
dient torque dG , satellites have the symmetrical mass distribu-
tion. When dG is considered as the disturbance torque, as in this
paper, it is necessary to make Jii as equal as possible in the design
of satellite. On the contrary, it is a good choice to appropriately
increase the difference among Jii when dG is used as the atti-
tude stability torque. (3) Under the current mature engineering
design, the inertia uncertainties ΔJ is a relatively small quantity
compared with J0. Thus, J0 + ΔJ is still non-singular.

Remark 2. The actuator fault model could be summarized into
the following form [28, 31].

u′(t ) = Πuu(t ) + Σu

where u′(t ) denotes the actual driving torque. Πu =
diag(𝜒1, 𝜒2, 𝜒3) denotes the fault condition of actuators in
a multiplicative way with 0 ≤ 𝜒i ≤ 1, i = 1, 2, 3. The partial
fault shows that the actual driving torque applied by the actu-
ator to the satellite attitude system is less than the expected
control input generated by the controller. Σu represents the
fault condition in an additive way, such as, a time-varying
torque independent of the expected control input continuously
generated by the actuator, and a fixed actual driving torque due
to the actuator is stuck in a fixed position. Πu = I3 and Σu = 0
only if no faults occur for all actuators, which indicates the
actual driving torque is equivalent to the expected control input.
Furthermore, here is the equivalent form u′(t ) = u(t ) + Σ′u
with Σ′u = (Πu − 1)u(t ) + Σu , which is to facilitate the design
of following proposed observer.

According to matrix inversion formula [42], we have

(J0 + ΔJ )−1
= J−1

0 − J−1
0 ΔJ

(
I + J−1

0 ΔJ
)−1

J−1
0 (8)

By substituting (8) into (7), system (7) becomes

�̇� =
{
−J−1

0 𝜔×J0 + J−1
0

[
ΔJ
(
I + J−1

0 ΔJ
)−1

J−1
0 𝜔× (J0 + ΔJ ) − 𝜔×ΔJ

]}
𝜔

+
{

J−1
0 − J−1

0 ΔJ
(
I + J−1

0 ΔJ
)−1

J−1
0

}(
u + f + ud

)
(9)

Based on T-S fuzzy modelling approach, the dynamics sub-
system (9) can be approximated by the following IF-THEN
rules [35, 42].

Model rule i: IF z1(t ) is M i
1 and … and zp(t ) is M i

p, THEN

{
ẋ(t ) = (Ai + ΔAi ) x(t ) + (Bi + ΔBi )

(
u(t ) + f (t ) + ud (t )

)
y(t ) = Cix(t )

,

i = 1, 2, … , r (10)

Ai = −J−1
0 𝜔×J0, Bi = J−1

0 , Ci = I

ΔAi = J−1
0

{
ΔJ
(
I + J−1

0 ΔJ
)−1

J−1
0 𝜔× (J0 + ΔJ ) − 𝜔×ΔJ

}
ΔBi = −J−1

0 ΔJ
(
I + J−1

0 ΔJ
)−1

J−1
0

where z j (t )( j = 1, 2, … , p) are measurable premise variables;
M i

j is the fuzzy set and r is the number of model rules;
x(t ) = [ x1(t ) x2(t ) x3(t ) ]T is the system state with x1(t ) = 𝜔x (t ),
x2(t ) = 𝜔y (t ), and x3(t ) = 𝜔z (t ); y(t ) is the measurement out-
put. In this study, we choose the state vector x(t ) as the
premise variable z (t ), that is, z1(t ) = 𝜔x (t ), z2(t ) = 𝜔y (t ), and
z3(t ) = 𝜔z (t ). Then, there are common matrices Bi = B = J−1

0 ,
ΔBi = ΔB = −J−1

0 ΔJ (I + J−1
0 ΔJ )−1J−1

0 , and Ci = C = I . For the
unmeasurable factor (B + ΔB)ud (t ), we consider that Bd d (t ) =
(B + ΔB)ud (t ) with distribution matrix Bd = J−1

0 . ΔAi and ΔB

represent the perturbation matrices caused by satellite inertia
uncertainties. These matrices can be decomposed into the given
form [ΔAi ΔB ] = [ DaΔaiEa DbΔbEb ], where Da = 𝛼aJ−1

0 , Ea =

𝛼−1
a I3, Db = −𝛼bJ−1

0 , and Eb = 𝛼−1
b

J−1
0 represent the known con-

stant matrices reflecting the structural information of parame-
ter perturbation, the positive scalars 𝛼a and 𝛼b are chosen by
the designer.Δai = ΔJ (I + J−1

0 ΔJ )−1J−1
0 𝜔×(J0 + ΔJ ) − 𝜔×ΔJ and

Δb = ΔJ (I + J−1
0 ΔJ )−1 represent the unknown matrix of param-

eter perturbation. Clearly, there exist positive scalars 𝛿ai and 𝛿b

such that ‖Δai‖ ≤ 𝛿ai and ‖Δb‖ ≤ 𝛿b.

Remark 3. Here, the measurement matrix Ci is identity, which
indicates that the measurement frame coincides with the satel-
lite body frame OB . However, Ci is not necessarily identity, that
is, the measurement frame does not coincide with OB . When
the pairs (Ai ,Ci ) are observable, the following fuzzy adaptive
observer can be applied. It should be pointed out that Ci is obvi-
ously a non-singular matrix, and the value of Ci does not affect
the subsequent derivation of Theorem 1 and 2. The measure-
ment matrix Ci is used to solve the premise variable z (t ) from
the measurement output y(t ) when Ci is not an identity matrix.
In this paper, for brevity, Ci is selected as an identity matrix,
which is a common choice and also adopted by literature [1,
42, 43]. Thus, we retain Ci so that the method proposed can be
applied to general systems.

Remark 4. The actuator faults existing in the dynamic equa-
tion can be propagated to the kinematic equation through the
closed-loop satellite attitude control system. However, based
on observer design theory, we here only need to use the
dynamic equation to diagnose and estimate the actuator fault.
Thus, the premise variables of T-S fuzzy model are only vari-
ables attitude angular velocity 𝜔(t ), which greatly reduces the
number of model rules and the complexity of the T-S fuzzy
system.

The defuzzification process of the model (10) can be repre-
sented as

ẋ(t ) =
r∑

i=1

hi (z (t ))
{

(Ai + ΔAi ) x(t ) + (B + ΔB)
(
u(t ) + f (t )

)
+ Bd d (t )

}
y(t ) = Cx(t ) (11)
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LI ET AL. 745

where z (t ) = [ z1(t ) z2(t ) z3(t ) ], hi (z (t )) =
∏p

j=1 M i
j (z j (t ))∑r

i=1

∏p

j=1 M i
j (z j (t ))

with

the properties that 0 ≤ M i
j (z j (t )) ≤ 1 and

∑r

i=1 hi (z (t )) = 1.
Based on the above model, some reasonable assumptions are

introduced to support the main results.

Assumption 1. The external disturbance d (t ) is bounded
with ‖d (t )‖ ≤ 𝜅d , where the upper bound 𝜅d ≥ 0 exists but is
unknown.

Assumption 2. The actuator fault f (t ) is bounded with‖ f (t )‖ ≤ 𝜅 f , where 𝜅 f ≥ 0 is unknown.

Assumption 3. The angular velocity 𝜔(t ) own bounded first-
order derivative.

Assumptions 1 and 2 are some general constraints and have
been widely used in literature [4, 13, 28, 44], which are rea-
sonable in practical applications owing to physical limitations.
Assumption 3 is natural and reasonable because signals 𝜔(t )
and �̇�(t ) are energy-bounded in practical systems, which is often
considered in studies [3, 13, 14, 28, 29, 45].

Before the main results of this study, some necessary lemmas
are introduced as follows.

Lemma 1. [46]: Given symmetric positive definite matrix P, then

[
𝜉

𝜋

]T [⟨PA⟩S PB

∗ 0

][
𝜉

𝜋

]
< 0 (12)

holds for any 𝜉 ≠ 0 and 𝜋 satisfying 𝜋T 𝜋 ≤ 𝜉T C T C𝜉 if and
only if there exists a scalar 𝜎 ≥ 0, such that[⟨PA⟩S + 𝜎C T C PB

∗ −𝜎I

]
< 0 (13)

Lemma 2. [19]: The eigenvalues of a given matrix A belong to the

circular region O(𝜙, 𝜀) with centre 𝜙 + j0 and radius 𝜀 if and only if

there exists a symmetric positive definite matrix Q such that the following

condition holds [
−Q Q(A − 𝜙I )

∗ −𝜀2Q

]
< 0 (14)

Lemma 3. [46]: Let P, Q and H = H T be given matrices of appro-

priate dimensions, NP and NQ be the right orthogonal complements of P

and Q, respectively. Then there exists a matrix X such that

H + PT X T Q + QT XP < 0 (15)

if and only if

N T
P

H NP < 0,N T
Q

H NQ < 0 (16)

3 MAIN RESULTS

This section mainly introduces the design of the proposed
FAFEO for satellite attitude system, including the sufficient
existence condition, feasibility proof and LMI algorithm. An
H∞ method is utilized to attenuate the influence of model
uncertainties on actuator fault estimation. Moreover, a fur-
ther relaxed stability condition is represented in terms of
LMI.

3.1 Fuzzy adaptive observer design with AP

The following error vectors are defined as

e(t ) = x(t ) − x̂(t )

r (t ) = y(t ) − ŷ(t )

e f (t ) = f (t ) − f̂ (t )

(17)

where x̂(t ) and ŷ(t ) are the estimated state and output vectors,
respectively. f̂ (t ) is the online estimation of fault f (t ). e(t ), r (t )
and e f (t ) denote the state error, residual error and fault estimate
error, respectively.

For the studied system (11), the FAFEO with AP is con-
structed as

̇̂x(t ) =
r∑

i=1

hi (z (t ))
{

Aix̂(t ) + Bu(t ) + B f̂ (t ) + Ki (y(t ) − ŷ(t ))
}

ŷ(t ) = C x̂(t )

̇̂f (t ) =
r∑

i=1

hi (z (t ))
{

F1i (y(t ) − ŷ(t )) + 𝜗F2(ẏ(t ) − ̇̂y(t ))
}

(18)

where Ki and F1i are the unknown gain matrices with appro-
priate dimensions to be designed. The gain matrix F2 and
adjustable scalar 𝜗 are chosen by the designer.

Subtracting system (18) from (11), the dynamic error equa-
tion is obtained by

ė(t ) =
r∑

i=1

hi (z (t ))
{

(Ai − KiC ) e(t ) + Be f (t ) + ΔAi x(t ) + ΔBu(t ) + ΔB f (t )
}

r (t ) = Ce(t )

ė f (t ) =
r∑

i=1

hi (z (t ))
{

ḟ (t ) − F1iCe(t ) − 𝜗F2C ė(t )
}

(19)

By defining a new variable ēT (t ) = [ eT (t ) eT
f

(t ) ], the fuzzy
system (19) can be rewritten as

M̄ ̇̄e(t ) =
r∑

i=1

hi (z (t ))
{(

Āi − K̄iC
)

ē(t ) + B̄d d̄ (t )
}

e f (t ) = Īe f ē(t )

(20)
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746 LI ET AL.

where M̄ = [
I 0

𝜗F2C I
], Āi = [

Ai B

0 0
], K̄i = [

Ki

F1i

], C̄ =

[C 0 ], Īe f = [ 03 I3 ], B̄d = [
ΔAi ΔB ΔB Bd 0

0 0 0 0 I
], d̄ T (t ) =

[ xT (t ) uT (t ) f T (t ) d T (t ) ḟ T (t ) ]
It is obvious that M̄ is non-singular irrespective of the term

𝜗F2C . Thus, the augmented dynamic error equation can be
derived that

̇̄e(t ) =
r∑

i=1

hi (z (t ))
{

M̄−1
(
Āi − K̄iC

)
ē(t ) + M̄−1B̄d d̄ (t )

}
e f (t ) = Īe f ē(t )

(21)

Performing Laplace transformation on (21), the fault estima-
tion error can be derived from

e f (s) = Ge f d̄ (s)d̄ (s)

Ge f d̄ (s) =
r∑

i=1

hi (z (t ))
{

Īe f

[
sI − M̄−1(Āi − K̄iC̄ )

]−1
M̄−1B̄d

}
(22)

where Ge f d̄ (s), a multivariable function of {Ki ,F1i ,F2, 𝜗}, is
the transfer function from d̄ (t ) to e f (t ). Obviously, e f (t )
is not only related to ḟ (t ) and d (t ), but also related to
x(t ), u(t ) and f (t ) caused by parameter perturbation. In
order to attenuate the effect of above model uncertainties,
an H∞ method is introduced into the design of FAFEO
with AP.

Remark 5. From (19), the online fault estimator can be derived
as

f̂ (t ) =
r∑

i=1

hi (z (t ))

{
F1i∫

t

t0

Ce(𝜏)d𝜏 + 𝜗F2Ce(t ) − 𝜗F2Ce(t0)

}

where t0 denotes a certain moment before the fault occurrence.
It is obvious that the presented fault estimator f̂ (t ) is a PI func-
tion of e(t ), where only the current measurement output are
required. Compared with some observer methods [8, 10], the
added adjustable proportional term provide additional design
freedom to the fault estimator, and can clearly enhance the
rapidity and accuracy of actuator fault estimation, which is veri-
fied in Section 4.

3.2 Observer-based fault estimation design

Theorem 1. For systems (11) and (18), let an H∞ performance

index 𝛾1 > 0, an auxiliary index 𝛾2 > 0, and a circular pole con-

straint region O(𝜙, 𝜀) for M̄−1(Āi − K̄iC ) be given. For prescribed

scalars 𝜗, 𝛿, and matrix F2, if there exist matrices Ȳi , P > 0

satisfying

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⟨
M̄ T PĀi − M̄ T ȲiC

⟩
S

0 M̄ T PB̂d M̄ T PĤ I T
e f

∗ 𝛿N̂ T N̂ − 𝛾2
1I 0 0 0

∗ ∗ −𝛾2
2I 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(23)

[
−P −𝜙PM̄ T + PĀi − ȲiC

∗ −𝜀2M̄ T PM̄

]
< 0 (24)

where 𝛿 ≥ max
i
‖R̂T

i R̂i‖, B̂d = [
Bd 0

0 I
], Ĥ = [

Da Db

0 0
],

R̂i = [
Δai 0

0 Δb

], N̂ = [
Ea 0 0

0 Eb Eb

], 𝛾2 ≤ 𝛾1 then the

augmented system (21) is asymptotically stable and satisfies‖Ge f d̄ (s)‖∞ < 𝛾1. The gain matrices of the fuzzy adaptive
observer are computed by K̄i = P−1Ȳi .

Proof. Since M̄ is non-singular, for an symmetric positive defi-
nite matrix P , the matrix M̄ T PM̄ is also symmetric positive def-
inite. Define the Lyapunov candidate as

V (t ) = ēT (t )M̄ T PM̄ ē(t ) (25)

Obviously, V (t ) is positive definite.
Firstly, the stability of the augmented system (21) with d̄ (t ) =

0 is proved. Substituting Equation (21), the time derivative of
(25) is

V̇ (t ) = ̇̄e
T

(t )M̄ T PM̄ ē(t ) + ēT (t )M̄ T PM̄ ̇̄e(t )

=

r∑
i=1

hi (z (t ))ēT (t )
(
Āi − K̄iC

)T
M̄−T M̄ T PM̄ ē(t )

+

r∑
i=1

hi (z (t ))ēT (t )M̄ T PM̄M̄−1
(
Āi − K̄iC

)
ē(t )

=

r∑
i=1

hi (z (t ))
{

ēT (t )
⟨

M̄ T P
(
Āi − K̄iC

)⟩
S
ē(t )

}
(26)

From (26), it can be readily found that V̇ (t ) < 0 is equivalent
to ⟨

M̄ T P
(
Āi − K̄iC

)⟩
S
< 0 (27)

Therefore, based on Lyapunov stability theorem, the aug-
mented system (21) is asymptotically stable when the inequality
(27) is satisfied.
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LI ET AL. 747

Then, when d̄ (t ) ≠ 0, it is proved that (21) has H∞ perfor-
mance index [19, 44]

‖‖‖Ge f d̄ (s)‖‖‖∞ = sup
𝜔

�̄�(Ge f d̄ ( j𝜔)) < 𝛾1 (28)

Defining new matrices B̂d , Ĥ , R̂i , N̂ , and new variables
ûT (t ) = [ xT (t ) uT (t ) f T (t ) ] and d̂ T (t ) = [ d T (t ) ḟ T (t ) ],
we could obtain d̄ T (t ) = [ ûT (t ) d̂ T (t ) ] and B̄d =

[ Ĥ R̂iN̂ B̂d ]. Then, the time derivative of (25) with
d̄ (t ) ≠ 0 is

V̇ (t ) = ̇̄e
T

(t )M̄ T PM̄ ē(t ) + ēT (t )M̄ T PM̄ ̇̄e(t )

=

r∑
i=1

hi (z (t ))
{

ēT (t )
⟨

M̄ T P
(
Āi − K̄iC

)⟩
S
ē(t ) + 2ēT (t )M̄ T PB̄d d̄ (t )

}

=

r∑
i=1

hi (z (t ))ēT (t )
⟨

M̄ T P
(
Āi − K̄iC

)⟩
S
ē(t )

+

r∑
i=1

hi (z (t ))2ēT (t )M̄ T PĤ R̂i N̂ û(t ) +
r∑

i=1

hi (z (t ))2ēT (t )M̄ T PB̂d d̂ (t )

=

r∑
i=1

hi (z (t ))
{

ēT (t )
⟨

M T P
(
Āi − K̄iC

)⟩
S
ē(t ) + 2ēT (t )M̄ T PB̂d d̂ (t )

}

+

r∑
i=1

hi (z (t ))
{

ēT (t )M̄ T PĤ Ĥ PM̄ ē(t ) + ûT (t )N̂ T R̂T
i R̂i N̂ û(t )

}

−

r∑
i=1

hi (z (t ))
(
ēT (t )M̄ T PĤ − ûT (t )N̂ T R̂T

i

)
×
(
ēT (t )M̄ T PĤ − ûT (t )N̂ T R̂T

i

)T
(29)

Furthermore, due to the bounded parameter uncer-
tainties ΔAi and ΔB, the positive scalar 𝛿 exists and
satisfies

𝛿 ≥ max
i

‖‖‖R̂T
i

R̂i
‖‖‖ (30)

Then,

V̇ (t ) ≤
r∑

i=1

hi (z (t ))
{

ēT (t )
⟨

M T P
(
Āi − K̄iC

)⟩
S
ē(t ) + 2ēT (t )M̄ T PB̂d d̂ (t )

}

+

r∑
i=1

hi (z (t ))
{

ēT (t )M̄ T PĤ Ĥ PM̄ ē(t ) + ûT (t )𝛿N̂ T N̂ û(t )
}

−

r∑
i=1

hi (z (t ))
(
ēT (t )M̄ T PĤ − ûT (t )N̂ T R̂T

i

) (
ēT (t )M̄ T PĤ − ûT (t )N̂ T R̂T

i

)T

(31)

For any t > 0, let us define

J = ∫
t

t0

(
eT

f
(𝜏)e f (𝜏) − 𝛾2

1 d̄ T (𝜏)d̄ (𝜏)
)

d𝜏 (32)

By introducing a new index 𝛾2 with the constraint 𝛾2 ≤ 𝛾1,
we have

J = ∫
t

t0

(
eT

f
(𝜏)e f (𝜏) − 𝛾2

1 d̄ T (𝜏)d̄ (𝜏)
)

d𝜏

= ∫
t

t0

(
eT

f
(𝜏)e f (𝜏) − 𝛾2

1 ûT (𝜏)û(𝜏) − 𝛾2
2 d̂ T (𝜏)d̂ (𝜏) − (𝛾2

1 − 𝛾2
2 )d̂ T (𝜏)d̂ (𝜏)

)
d𝜏

≤ ∫
t

t0

(
eT

f
(𝜏)e f (𝜏) − 𝛾2

1 ûT (𝜏)û(𝜏) − 𝛾2
2 d̂ T (𝜏)d̂ (𝜏)

)
d𝜏

(33)

Under zero initial condition V (t0) = 0 [43, 47], we get

J ≤ ∫
t

t0

(
eT

f
(𝜏)e f (𝜏) − 𝛾2

1 ûT (𝜏)û(𝜏) − 𝛾2
2 d̂ T (𝜏)d̂ (𝜏) + V̇ (𝜏) − V̇ (𝜏)

)
d𝜏

=

r∑
i=1

hi (z (t ))∫
t

t0

{
ēT (𝜏)Ī T

e f
Īe f ē(𝜏) − 𝛾2

1 ûT (𝜏)û(𝜏) − 𝛾2
2 d̂ T (t )d̂ (t )

+ ēT (𝜏)
⟨

M T P
(
Āi − K̄iC

)⟩
S
ē(𝜏) + 2ēT (𝜏)M̄ T PB̂d d̂ (𝜏)

+ ēT (𝜏)M̄ T PĤ Ĥ PM̄ ē(𝜏) + ûT (𝜏)𝛿N̂ T N̂ û(𝜏)

−
(
ēT (𝜏)M̄ T PĤ − ûT (𝜏)N̂ T R̂T

i

) (
ēT (𝜏)M̄ T PĤ − ûT (𝜏)N̂ T R̂T

i

)T
}

d𝜏

+V (t0 ) −V (t )

Then

J ≤
r∑

i=1

hi (z (t ))∫
t

t0

{
𝜉T (𝜏)Ξ𝜉(𝜏) − Ξ0

}
d𝜏 −V (t ) (34)

where

𝜉(𝜏) =

⎡⎢⎢⎢⎣
ē(𝜏)
û(𝜏)

d̂ (𝜏)

⎤⎥⎥⎥⎦,

Ξ =

⎡⎢⎢⎢⎣
⟨M̄ T P (Āi − K̄iC )⟩

S
+ Ī T

e f
Īe f + M̄ T PĤ Ĥ PM̄ 0 M̄ T PB̂d

∗ 𝛿N̂ T N̂ − 𝛾2
1I 0

∗ ∗ −𝛾2
2I

⎤⎥⎥⎥⎦,

Ξ0 = (ēT (𝜏)M̄ T PĤ − ûT (𝜏)N̂ T R̂T
i )(ēT (𝜏)M̄ T PĤ − ûT (𝜏)N̂ T R̂T

i )T

Hence, the index J < 0, which is equivalent to ‖Ge f d̄ (s)‖∞ <
𝛾1, can be satisfied by

Ξ < 0 (35)

According to Schur complement [10], (35) is converted to

⎡⎢⎢⎢⎢⎢⎢⎣

⟨
M̄ T P

(
Āi − K̄iC

)⟩
S
+ Ī T

e f
Īe f 0 M̄ T PB̂d M̄ T PĤ

∗ 𝛿N̂ T N̂ − 𝛾2
1I 0 0

∗ ∗ −𝛾2
2I 0

∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎦
< 0

(36)
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748 LI ET AL.

Obviously (36) holds while implying that inequality (27) also
holds. Finally, we have the condition (23) results from (36) by
defining Ȳi = PK̄i and Schur complement.

Now, the convergence of e f (t ) is proved.
According to Lemma 1 and assuming that 𝜎 = 1, for (35),

when

eT
f

(t )e f (t ) = ēT (t )Ī T
e f

Īe f ē(t ) ≥ 𝛾2
1 ûT (t )û(t ) + 𝛾2

2 d̂ T (t )d̂ (t )

(37)

it can guarantee that

V̇ (t ) =
r∑

i=1

hi (z )

⎡⎢⎢⎢⎣
ē(t )

û(t )

d̂ (t )

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

⟨
M̄ T P

(
Āi − K̄iC

)⟩
S
+ M̄ T PĤ Ĥ PM̄ 0 M̄ T PB̂d

∗ 𝛿N̂ T N̂ 0

∗ ∗ 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ē(t )

û(t )

d̂ (t )

⎤⎥⎥⎥⎦ < 0 (38)

and there is T > 0, for any t > t0 + T such that

‖‖‖e f (t )‖‖‖2
≤ 𝛾1

‖‖û(t )‖‖2 + 𝛾2
‖‖d̂ (t )‖‖2 (39)

which means the dynamic error system (21) is asymptotically
stable and fault estimate error e f (t ) is ultimately uniformly
bounded.

By Lemma 2, there is a symmetric positive definite matrix
M̄ T PM̄ such that

E=

[
−M̄ T PM̄ −𝜙M̄ T PM̄ + M̄ T P (Āi − K̄iC̄ )

∗ −𝜀2M̄ T PM̄

]
< 0 (40)

from which it follows that the eigenvalues of M̄−1(Āi − K̄iC )
belong to the given circular region O(𝜙, 𝜀). Then we can get
(24) by Ȳi = PK̄i and the transformation of MEMT with M =
diag(M̄−1, I ). This completes the proof. □

Remark 6. Without the auxiliary index 𝛾2, the (35) becomes

Ξ =

⎡⎢⎢⎢⎣
⟨

M̄ T P
(
Āi − K̄iC

)⟩
S
+ Ī T

e f
Īe f + M̄ T PĤ Ĥ PM̄ 0 M̄ T PB̂d

∗ 𝛿N̂ T N̂ − 𝛾2
1I 0

∗ ∗ −𝛾2
1I

⎤⎥⎥⎥⎦ < 0 (41)

For (41), when eT
f

(t )e f (t ) = ēT (t )Ī T
e f

Īe f ē(t ) ≥ 𝛾2
1 d̄ T (t )d̄ (t ),

it could guarantee that constraint (38) holds. Therefore,

there is T > 0, for any t > t0 + T such that ‖e f (t )‖2 ≤
𝛾1‖û(t )‖2 + 𝛾1‖d̂ (t )‖2. With the comparison, the condition
(37) and (39) are able to guarantee Theorem 1 could be
relaxed.

Remark 7. In Theorem 1, the pole assignment con-
dition with a circular constraint region is considered.
The transient performance of the dynamic error sys-
tem (21) can be adjusted by selecting different regions
O(𝜙, 𝜀), where the centre 𝜙 + j0 is related to the con-
vergence rate of the system and the appropriate radius 𝜀

could ensure that the system (21) will not have a large
overshoot.

Remark 8. In Theorem 1, adjustable parameter 𝜗 is added to
improve the fault estimation performance by increasing the
design flexible of the proposed method. For the proposed
proportional-integral fuzzy fault estimator (19), it is difficult
to solve design parameters owing to the nonlinear term M̄ T P

existing in LMIs. We could select an appropriate full row rank
matrix F2 and a suitable parameter 𝜗 by testing more to enhance
the fault estimation performance, which also avoid the nonlin-
ear term M̄ T P existing in LMIs while the computing burden
and algorithmic complexity are not too much increased. Mean-
while, reviewing the existing approaches [48, 49], H∞ design
and regional pole placement are effective methods in dealing
with disturbance and tuning the transient response, respectively.
We combine H∞ design with regional pole placement to assist
the fuzzy adaptive observer and improve the fault estimation
performance. However, there is more conservatism due to a
common Lyapunov matrix P involved in multiple LMIs. The

following Theorem 2 will give design parameters with less con-
servatism, see Remarks 9 and 10.

 17518652, 2022, 8, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12267 by C

as-C
hangchun Institute O

f O
ptics, Fine M

echanics A
nd Physics, W

iley O
nline L

ibrary on [06/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LI ET AL. 749

3.3 Fault estimation design with less
conservatism

In Theorem 1, a multi-objective design method is given
to calculate above design parameters. However, a common
Lyapunov matrix P (Q = P ) is involved for two constraints
(23) and (24), which has been considered in [19, 20]. In
this subsection, based on the elimination method, differ-
ent Lyapunov matrices P and Q can exist independently
of each other in the two constraints, which results in less
conservatism.

Theorem 2. For systems (11) and (18), let an H∞ performance index

𝛾1 > 0, an auxiliary index 𝛾2 > 0, and a circular pole constraint region

O(𝜙, 𝜀) for M̄−1(Āi − K̄iC ) be given. For prescribed scalars 𝜗, 𝛿,

and matrix F2, if there exist symmetric positive definite matrices P, Q

satisfying

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Θ11i 0 Θ13 Θ14 Θ15

∗ Θ22 0 0 0

∗ ∗ −𝛾2
2I 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (42)

⎡⎢⎢⎣
−Q −𝜙QM̄NC̄ 2 + QĀiNC̄ 2

∗ −𝜀2N T
C̄ 2

M̄ T QM̄NC̄ 2

⎤⎥⎥⎦ < 0 (43)

where Θ11i = N T
C̄ 1

M̄ T PĀiNC̄ 1 + N T
C̄ 1

ĀT
i PM̄NC̄ 1, Θ22 =

𝛿N̂ T N̂ − 𝛾2
1I Θ13 = N T

C̄ 1
M̄ T PB̂d , Θ14 = N T

C̄ 1
M̄ T PĤ ,

Θ15 = N T
C̄ 1

Ī T
e f

𝛿 ≥ max
i
‖R̂T

i R̂i‖, B̂d = [
Bd 0

0 I
], Ĥ = [

Da Db

0 0
],

R̂i = [
Δai 0

0 Δb

], N̂ = [
Ea 0 0

0 Eb Eb

], 𝛾2 ≤ 𝛾1 NC̄ 1 and NC̄ 2 are

the right orthogonal complements of C̄ . Note that NC̄ 1 and
NC̄ 2 could be different. Then, the augmented system (21) is
asymptotically stable and satisfies ‖Ge f d̄ (s)‖∞ < 𝛾1, and the
observer gain matrix K̄i is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⟨
M̄ T P

(
Āi − K̄iC

)⟩
S

0 M̄ T PB̂d M̄ T PĤ Ī T
e f

∗ 𝛿N̂ T N̂ − 𝛾2
1I 0 0 0

∗ ∗ −𝛾2
2I 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(44)

[
−Q −𝜙QM̄ T + Q

(
Āi − K̄iC

)
∗ −𝜀2M̄ T QM̄

]
< 0 (45)

Proof. Based on Theorem 1, here only requires to prove that
(44) and (45) are equivalent to (42) and (43), respectively. Note
that (23) and (24) is one special case of (44) and (45) with the
assumption P = Q.

Firstly, define

HPi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨
M̄ T PĀi

⟩
S

0 M̄ T PB̂d M̄ T PĤ Ī T
e f

∗ 𝛿N̂ T N̂ − 𝛾2
1I 0 0 0

∗ ∗ −𝛾2
2I 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
HQi =

[
−Q −𝜙QM̄ + QĀi

∗ −𝜀2M̄ T QM̄

]
(46)

Then, the formulas (23) and (24) are converted to

HPi +U T
P

K̄iW1 +W T
1 K̄ T

i UP < 0

HQi +U T
Q

K̄iW2 +W T
2 K̄ T

i UQ < 0
(47)

where UP = [−PM̄ 0 0 0 0 ], UQ = [−Q 0 ] W1 =

[ C̄ 0 0 0 0 ], W2 = [ 0 C̄ ]
By Lemma 3, formula (47) is feasible if and only if

N T
UP

HPiNUP
< 0, N T

UQ
HQiNUQ

< 0 (48)

N T
W 1HPiNW 1 < 0, N T

W 2HQiNW 2 < 0 (49)

where NUP
, NUQ

, NW 1 and NW 2 are the right orthogonal com-
plements of UP , UQ , W1 and W2, respectively. To convert (48)
to an LMI, the linearization is given as follows.

Define SP = diag( PM̄ I I I I ), SQ = diag( Q I ). Then

U1 = UP S−1
P

=
[
−I 0 0 0 0

]
, U2 = UQS−1

Q
=
[
−I 0

]
(50)

TPi = (S−1
P

)T HPi (S
−1
P

)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨
Āi M̄

−1P−1
⟩

S
0 B̂d Ĥ P−1M̄−T Ī T

e f

∗ 𝛿N̂ T N̂ − 𝛾2
1I 0 0 0

∗ ∗ −𝛾2
2I 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
TQi = (S−1

Q
)T HQi (S

−1
Q

)

=

[
−Q−1 −𝜙M̄ + Āi

∗ −𝜀2M̄ T QM̄

]
(51)
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750 LI ET AL.

Hence(48) is equivalent to

N T
U 1TPiNU 1 < 0, N T

U 2TQiNU 2 < 0 (52)

where NU 1 and NU 2 are the right orthogonal complements of
U1 and U2, respectively.

Finally, we can obtain

N T
U 1TPiNU 1 =

⎡⎢⎢⎢⎢⎢⎣

Θ22 0 0 0

∗ −𝛾2
2I 0 0

∗ ∗ −I 0

∗ ∗ ∗ −𝜀I

⎤⎥⎥⎥⎥⎥⎦
< 0 (53)

N T
U 2TQiNU 2 = −𝜀2M̄ T QM̄ < 0 (54)

N T
W 1HPiNW 1 =

[
Θ11i 0 Θ13 Θ14 Θ15

∗ N T
U 1TPiNU 1

]
< 0

(55)

N T
W 2HQiNW 2 =

[
−Q −𝜙QM̄NC̄ 2 + QĀiNC̄ 2

∗ −𝜀2N T
C̄ 2

M̄ T QM̄NC̄ 2

]
< 0

(56)

where NU 1 = [
0

diag(I , I , I , I )
], NU 2 = [

0

I
], NW 1 =

diag(NC̄ 1, I , I , I , I ), NW 2 = diag(I ,NC̄ 2)
Obviously, inequality (54) holds. Invoking Schur complement

on (55) leads to that (53)–(56) are equivalent to (42), (43).
Clearly, inequalities (44) and (45) become LMIs containing

only the matrix variables K̄i , when formulas (42) and (43) are
both established. Moreover, the existence of variables obtained
in (42) and (43) has ensured that (44) and (45) are feasible.

This completes the proof. □

Remark 9. In (44), (45), the terms of Ȳ1i = PK̄i and Ȳ2i = QK̄i

lead to the coupling between variables P and Q due to the com-
mon variable K̄i . Obviously, there is a strict implicit constraint
P−1Ȳ1i = Q−1Ȳ2i , which makes it more difficult to calculate
design parameters. In Theorem 1, we adopt a simple but strong
assumption Q = P , which reduces the difficulty of optimization
problem, but increases the conservatism. In Theorem 2, under
the elimination technique, we achieve the decoupling of P and
K̄i by separating these variables from the term PK̄i , and the same
is applied to QK̄i . Therefore, the linearization of constraints and
the independence of Lyapunov matrices P and Q can be realized
simultaneously.

Remark 10. For any set of possible solutions in inequalities (23)
and (24), gain matrices Ki and F1i are determined by parameters
{P ,Q, 𝛾1, 𝛾2}. Thus, the algorithm conservatism comparison
between Theorem 1 and 2 can be obtained by the parameter
analysis of {P ,Q, 𝛾1, 𝛾2} in constraints (23), (24) and (42),
(43). Firstly, the parameter analysis between (23) and (42) is
given. By Lemma 3, there is NUP

, for any feasible solutions

in (23), such that N T
UP

(HPi +U T
P

K̄iW1 +W T
1 K̄ T

i UP )NUP
=

N T
UP

HPiNUP
< 0, which shows that all feasible solutions of

(23) must also meet (42). Similarly, all feasible solutions of
(24) must also satisfy (43), thus is omitted here for brevity.
It can be seen that, Theorem 1 is a special case of Theorem
2 under the precondition Q = P . Compared with Theorem
1, in the same context, Theorem 2 can improve the flexibil-
ity of observer design and provide design conditions with
less conservatism. Moreover, the Theorem 3 in [19] gives
another method to solve this by using the slack-variable tech-
nique, which different Lyapunov matrices can be involved
for the two constraints. Comparison and analysis between
above four methods will be shown in the following section
clearly.

The procedure of obtaining the design parameters of the pro-
posed method is summarized as follows:

Step 1: Selecting an appropriate full row rank matrix F2.
Step 2: Selecting the parameter interval (𝜗min, 𝜗max) and

the step length 𝛼k to obtain a set of working points
(𝜗min, 𝜗min + 𝛼k, … , 𝜗min + (n − 1)𝛼k, 𝜗max), n =
(𝜗max − 𝜗min)∕𝛼k, while too large parameters may lead
to no feasible solution.

Step 3: Solving the Theorem 1 or Theorem 2 to attain the
design parameters.

Step 4: Based on numerical simulation, the quantitative per-
formance indexes of fault estimation are given, includ-

ing IAE = ∫ T

0
|e f (t )|dt (integrated absolute error) and

ITAE = ∫ T

0
t |e f (t )|dt (integrated time absolute error).

a. If the index distribution is not obvious or there is no
complete distribution trend, increase the parameter range
(𝜗min, 𝜗max), and return to Step 2.

b. If the index distribution possesses a complete and obvious
distribution trend, the calculation is end. The lowest work
point of the index distribution curve is the relatively optimal
parameter to be found.

4 NUMERICAL SIMULATION

In this section, simulation results on a rigid satellite are pro-
vided to show the effectiveness and advantage of the proposed
method. The numerical simulation including two parts: (a) Sim-
ulation results based on Theorem 1; (b) Simulation results based
on Theorem 2. And two observers proposed in [10, 19] are
considered as comparisons. To quantitatively characterize the
fault estimation performance and show the benefits of the pro-
posed method, two metrics are introduced to evaluate the tran-
sient performance and the steady state performance of the

fault tracking response, including IAE = ∫ T

0
|e f (t )|dt (inte-

grated absolute error) and ITAE = ∫ T

0
t |e f (t )|dt (integrated

time absolute error) [50].
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LI ET AL. 751

FIGURE 1 Membership functions of the rule premise

The nominal inertia matrix and the external disturbances of
satellite attitude system are given as follows [1, 43]:

J0 =

⎡⎢⎢⎢⎣
18 0.1 0.2

0.1 21 1

0.2 1 23

⎤⎥⎥⎥⎦ kg ⋅ m2

d (t ) =

⎡⎢⎢⎢⎣
1.5 × 10−5(3 cos(𝜔0t ) + 1)

1.5 × 10−5(3 cos(𝜔0t ) + 1.5 sin(𝜔0t ))

1.5 × 10−5(3 sin(𝜔0t ) + 1)

⎤⎥⎥⎥⎦N ⋅ m

with 𝜔0 = 0.0011rad∕s
The parameter perturbation of inertia matrix is selected as

ΔJ =

⎡⎢⎢⎢⎣
0.2 −0.02 0.04

−0.02 0.3 0.1

0.02 0.05 0.3

⎤⎥⎥⎥⎦ e−0.02t kg ⋅ m2

We consider three scenarios of actuator faults: fault-free
(healthy), intermittent fault, and fast time varying fault. Here are
three channels defined as

f1(t ) = 0N ⋅ m

f2(t ) =

{
0.1N ⋅ m 2 s ≤ t

0N ⋅ m others

f3(t ) =

{
0N ⋅ m 0 s ≤ t ≤ 1 s

0.1 sin(2t )N ⋅ m 1 s < t

The proposed method is assessed on a usual feedback
control loop, that is, PID control with the amplitude of
driving torque limited to 0.5N ⋅ m due to actuator physical
constraints. Besides, 𝛽 = 5, PID controller gains are designed
by kp = 0.8, ki = 0, kd = 4. The initial states are chosen by
qT

v (0) = [ 0.3 0.2 −0.4 ], 𝜔(0) = 03×1. Assume that the initial
states are the desired. The observer initial states are given by
�̂�(0) = 03×1.

The operating regions of premise variables are defined
as 𝜔 j (t ) ∈ [−0.7 0.7 ]rad∕s, j = 1, 2, 3. Choosing eight oper-
ating points, the membership functions of fuzzy sets

M i
j (i = 1, 2, … , 8, j = 1, 2, 3) are illustrated in Figure 1 [38].

The T-S fuzzy model of the rigid satellite is expressed as fol-
lows.

Model rule 1: IF 𝜔(t ) is [ 0.7 0.7 0.7 ], THEN

ẋ(t ) = (A1 + ΔA1) x(t ) + (B + ΔB)
(
u(t ) + f (t )

)
+ Bd d (t )

Model rule 2: IF 𝜔(t ) is [ 0.7 0.7 −0.7 ], THEN

ẋ(t ) = (A2 + ΔA2) x(t ) + (B + ΔB)
(
u(t ) + f (t )

)
+ Bd d (t )

Model rule 3: IF 𝜔(t ) is [ 0.7 −0.7 0.7 ], THEN

ẋ(t ) = (A3 + ΔA3) x(t ) + (B + ΔB)
(
u(t ) + f (t )

)
+ Bd d (t )

Model rule 4: IF 𝜔(t ) is [ 0.7 −0.7 −0.7 ], THEN

ẋ(t ) = (A4 + ΔA4) x(t ) + (B + ΔB)
(
u(t ) + f (t )

)
+ Bd d (t )

Model rule 5: IF 𝜔(t ) is [−0.7 0.7 0.7 ], THEN

ẋ(t ) = (A5 + ΔA5) x(t ) + (B + ΔB)
(
u(t ) + f (t )

)
+ Bd d (t )

Model rule 6: IF 𝜔(t ) is [−0.7 0.7 −0.7 ], THEN

ẋ(t ) = (A6 + ΔA6) x(t ) + (B + ΔB)
(
u(t ) + f (t )

)
+ Bd d (t )

Model rule 7: IF 𝜔(t ) is [−0.7 −0.7 0.7 ], THEN

ẋ(t ) = (A7 + ΔA7) x(t ) + (B + ΔB)
(
u(t ) + f (t )

)
+ Bd d (t )

Model rule 8: IF 𝜔(t ) is [−0.7 −0.7 −0.7 ], THEN

ẋ(t ) = (A8 + ΔA8) x(t ) + (B + ΔB)
(
u(t ) + f (t )

)
+ Bd d (t )

4.1 Simulation results based on Theorem 1

First, according to (30), 𝛿 = 10 ≥ max
i
‖R̂T

i
R̂i‖ = 7.4873,

where 𝛼a = 0.1, 𝛼b = 0.1. Invoking the Schur comple-
ment on (23) leads to the condition N̂ T R̂T R̂N̂ − 𝛾2

1I < 0,‖𝛿N̂ T N̂‖2 = 6.1792, we could select 𝛾2
1 = 6.18. The full row
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752 LI ET AL.

TABLE 1 Comparison of performance index under three different 𝜗

𝝑 𝜸2 e f 2(t ) e f 3(t )

0 (Ref. [10]) 0.2179 IAE2 = 1.2690 ITAE2 = 2.6250 IAE3 = 2.502 ITAE3 = 4.9110

−10 0.2176 IAE2 = 2.0280 ITAE2 = 4.1650 IAE3 = 3.3430 ITAE3 = 6.6380

20 0.2607 IAE2 = 0.2337 ITAE2 = 0.4887 IAE3 = 0.7564 ITAE3 = 0.9756

rank matrix F2 is selected as

F2=

⎡⎢⎢⎢⎣
100 0 0

∗ 100 0

∗ ∗ 100

⎤⎥⎥⎥⎦
A fault estimation method based on adaptive observer is con-

sidered to draw comparison. The adaptive fault estimator in Ref.
[10] can be designed as

̇̂f (t ) = F1
(
y(t ) − ŷ(t )

)
(57)

where F1 is gain matrix. Note that the proposed Theorem 1
will degenerate into the method in [10] when 𝜗 = 0, that is, the
adaptive fault estimator (57) is a special case of the proposed
(18).

We set regional pole constraints as O(−50, 50), the feasibility
radius of LMIs in Theorem 1 as 1 × 107, and 𝛾2

2 ≤ 0.1, which
are conducive to avoid the singularity of observer gain matrix K̄i

and improve the numerical stability. By Theorem 1 and trying
different parameter 𝜗, we can conveniently get the performance
index. With the selection of T = 6s, comparative results of per-
formance index are illustrated in Table 1 and Figure 2. Where
ITAE2 and IAE2 represent the fault estimation performance
index of the intermittent fault f2(t ). ITAE3 and IAE3 represent
the fault estimation performance index of the fast time vary-
ing fault f3(t ). Instead of H∞ performance index 𝛾2, under the
same simulation conditions, the index ITAE has higher preci-
sion and better sensitivity to parameter and can provide more
reliable decisions.

By Theorem 1 with 𝜗 = 0, we can obtain

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.2500 × 104 27.9400 55.2431 −60.1723 −0.0451 −0.0899

∗ 2.3370 × 104 260.1674 −0.0451 −61.5412 −0.4418

∗ ∗ 2.3891 × 104 −0.0899 −0.4418 −62.4249

∗ ∗ ∗ 0.3733 −0.0004 −0.0007

∗ ∗ ∗ ∗ 0.3613 −0.0031

∗ ∗ ∗ ∗ ∗ 0.3552

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIGURE 2 Change of performance index with different 𝜗

F11 =

⎡⎢⎢⎢⎣
1.1594 × 104 25.1371 51.7888

26.4627 1.2399 × 104 239.1533

50.3789 240.7114 1.2879 × 104

⎤⎥⎥⎥⎦

K1 =

⎡⎢⎢⎢⎣
75.5130 0.7804 −0.8511

−0.6151 75.5773 0.7878

0.5699 −0.6135 75.5243

⎤⎥⎥⎥⎦
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LI ET AL. 753

F12 =

⎡⎢⎢⎢⎣
1.1594 × 104 26.5739 51.8515

25.1522 1.2399 × 104 239.1412

50.3611 240.7150 1.2879 × 104

⎤⎥⎥⎥⎦
K2 =

⎡⎢⎢⎢⎣
75.4992 −0.8423 −0.9284

0.5785 75.5910 0.8014

0.5179 −0.5999 75.5244

⎤⎥⎥⎥⎦
F13 =

⎡⎢⎢⎢⎣
1.1594 × 104 25.0746 50.2268

26.4806 1.2399 × 104 239.1516

51.7250 240.7176 1.2879 × 104

⎤⎥⎥⎥⎦
K3 =

⎡⎢⎢⎢⎣
75.5404 0.8578 0.9263

−0.5630 75.5772 0.7806

−0.5195 −0.6202 75.4970

⎤⎥⎥⎥⎦
F14 =

⎡⎢⎢⎢⎣
1.1594 × 104 26.5114 50.2895

25.1701 1.2399 × 104 239.1393

51.7073 240.7210 1.2879 × 104

⎤⎥⎥⎥⎦
K4 =

⎡⎢⎢⎢⎣
75.5265 −0.7649 0.8490

0.6306 75.5910 0.7942

−0.5715 −0.6066 75.4971

⎤⎥⎥⎥⎦

F15 =

⎡⎢⎢⎢⎣
1.1594 × 104 25.1337 51.7907

26.4750 1.2399 × 104 240.7688

50.3729 239.1871 1.2879 × 104

⎤⎥⎥⎥⎦
K5 =

⎡⎢⎢⎢⎣
75.5130 0.7669 −0.8439

−0.6286 75.4501 −0.7404

0.5766 0.6604 75.6514

⎤⎥⎥⎥⎦
F16 =

⎡⎢⎢⎢⎣
1.1594 × 104 26.5705 51.8532

25.1645 1.2399 × 104 240.7566

50.3549 239.1907 1.2879 × 104

⎤⎥⎥⎥⎦

K6 =

⎡⎢⎢⎢⎣
75.4992 −0.8558 −0.9213

0.5650 75.4639 −0.7268

0.5245 0.6740 75.6515

⎤⎥⎥⎥⎦
F17 =

⎡⎢⎢⎢⎣
1.1594 × 104 25.0710 50.2286

26.4928 1.2399 × 104 240.7671

51.7190 239.1932 1.2879 × 104

⎤⎥⎥⎥⎦
K7 =

⎡⎢⎢⎢⎣
75.5404 0.8442 0.9334

−0.5766 75.4501 −0.7476

−0.5128 0.6537 75.6241

⎤⎥⎥⎥⎦
F18 =

⎡⎢⎢⎢⎣
1.1594 × 104 26.5079 50.2912

25.1823 1.2399 × 104 240.7547

51.7011 239.1966 1.2879 × 104

⎤⎥⎥⎥⎦
K8 =

⎡⎢⎢⎢⎣
75.5265 −0.7785 0.8561

0.6170 75.4638 −0.7340

−0.5649 0.6672 75.6242

⎤⎥⎥⎥⎦
By Theorem 1 with 𝜗 = 20, we can obtain

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.6952 × 105 6.5170 × 103 1.1938 × 104 −100.7491 −2.9259 −5.3127

∗ 4.1929 × 105 3.2665 × 104 −2.9259 −215.2222 −13.2652

∗ ∗ 4.8418 × 105 −5.3127 −13.2660 −241.5355

∗ ∗ ∗ 0.0689 0.0013 0.0023

∗ ∗ ∗ ∗ 0.1201 0.0054

∗ ∗ ∗ ∗ ∗ 0.1308

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F11 =

⎡⎢⎢⎢⎢⎣
7.1818 × 104 1.5878 × 103 696.2723

−330.1929 9.6923 × 104 9.5434 × 103

2.3525 × 103 7.0505 × 103 1.1149 × 105

⎤⎥⎥⎥⎥⎦

K1 =

⎡⎢⎢⎢⎢⎣
24.4294 1.6181 0.0975

−0.3982 46.7642 5.5889

1.9133 3.6659 54.7600

⎤⎥⎥⎥⎥⎦
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754 LI ET AL.

F12 =

⎡⎢⎢⎢⎣
7.1820 × 104 −123.4131 585.7826

1.5777 × 103 9.6952 × 104 9.5840 × 103

1.9422 × 103 7.0514 × 103 1.1147 × 105

⎤⎥⎥⎥⎦
K2 =

⎡⎢⎢⎢⎣
24.4151 −0.4500 −0.0106

1.3663 46.7926 5.6105

1.6018 3.6936 54.7501

⎤⎥⎥⎥⎦
F13 =

⎡⎢⎢⎢⎣
7.1876 × 104 1.7577 × 103 2.6158 × 103

102.6588 9.6927 × 104 9.5414 × 103

1.2279 × 103 7.0214 × 103 1.1144 × 105

⎤⎥⎥⎥⎦
K3 =

⎡⎢⎢⎢⎣
24.4856 1.7399 2.3680

−0.0801 46.7664 5.5739

0.7546 3.6517 54.7053

⎤⎥⎥⎥⎦
F14 =

⎡⎢⎢⎢⎣
7.1844 × 104 51.4975 2.5079 × 103

2.0143 × 103 9.6969 × 104 9.6208 × 103

817.7941 7.0509 × 103 1.1142 × 105

⎤⎥⎥⎥⎦
K4 =

⎡⎢⎢⎢⎣
24.4566 −0.3263 2.2611

1.6859 46.8003 5.6139

0.4432 3.6940 54.6972

⎤⎥⎥⎥⎦
F15 =

⎡⎢⎢⎢⎣
7.1816 × 104 1.5933 × 103 694.3891

−391.0359 9.5880 × 104 5.9687 × 103

2.3623 × 103 8.5254 × 103 1.1254 × 105

⎤⎥⎥⎥⎦
K5 =

⎡⎢⎢⎢⎣
24.4283 1.5859 0.1071

−0.4310 46.1036 3.0068

1.9190 4.9216 55.4224

⎤⎥⎥⎥⎦
F16 =

⎡⎢⎢⎢⎣
7.1821 × 104 −85.4250 551.8898

1.5494 × 103 9.5902 × 104 6.0043 × 103

1.9603 × 103 8.5365 × 103 1.1252 × 105

⎤⎥⎥⎥⎦
K6 =

⎡⎢⎢⎢⎣
24.4154 −0.4704 −0.0051

1.3461 46.1285 3.0251

1.6126 4.9537 55.4148

⎤⎥⎥⎥⎦
F17 =

⎡⎢⎢⎢⎣
7.1875 × 104 1.6657 × 103 2.6463 × 103

−14.6095 9.5884 × 104 5.9643 × 103

1.2711 × 103 8.5096 × 103 1.1248 × 105

⎤⎥⎥⎥⎦

K7 =

⎡⎢⎢⎢⎣
24.4853 1.6797 2.3896

−0.1332 46.1054 2.9898

0.7735 4.9129 55.3682

⎤⎥⎥⎥⎦
F18 =

⎡⎢⎢⎢⎣
7.1875 × 104 −9.0070 2.5053 × 103

1.9303 × 103 9.5921 × 104 6.0545 × 103

869.8663 8.5333 × 103 1.1247 × 105

⎤⎥⎥⎥⎦
K8 =

⎡⎢⎢⎢⎣
24.4570 −0.3753 2.2778

1.6459 46.1377 3.0349

0.4674 4.9521 55.3591

⎤⎥⎥⎥⎦
Figure 3 and 4 show the comparison of simulation results

under the intermittent fault and fast time varying fault respec-
tively, which is consistent with the performance index ITAE.
Obviously, the proposed observer can estimate both the sys-
tem states and two different types of actuator faults simulta-
neously, and all estimation errors asymptotically converge to a
small bounded interval. In particular, the system state estimation
errors e(t ) will show the fluctuation with fault characteristics as
the actuator fault occurs, such as the large initial error caused
by abrupt changing characteristics and the tracking lagging error
caused by time varying characteristics. It can be seen clearly that,
a better design is implemented by finding appreciate parameter
𝜗. Compared with the observer in [10], the proposed method
could have lower fault estimation errors and higher estimation
accuracy. The proposed method enhances the tracking response
speed of fault estimation under the premise of added adjustable
proportional terms, and effectively suppresses the tracking lead
or lag caused by fault changing, especially for fast time varying
faults. The results above verify the effectiveness of the proposed
AP-based method.

Moreover, the external disturbances and actuator faults with
different amplitude are used to analyse the performance of the
method proposed. Note that these conditions are only used
here.

Case 1. Small external disturbances [42].

d (t ) =

⎡⎢⎢⎢⎣
−1.5 + 2 × cos(0.06t ) − 0.5 cos(0.2t )

2 + 1.5 × sin(0.06t ) − 1 cos(0.2t )

−1.5 + 2 × sin(0.06t ) − 1.5 sin(0.2t )

⎤⎥⎥⎥⎦ 10−4N ⋅ m

Case 2. Large external disturbances.

d (t ) =

⎡⎢⎢⎢⎣
−1.5 + 2 × cos(0.06t ) − 0.5 cos(0.2t )

2 + 1.5 × sin(0.06t ) − 1 cos(0.2t )

−1.5 + 2 × sin(0.06t ) − 1.5 sin(0.2t )

⎤⎥⎥⎥⎦ 10−3N ⋅ m

The following time-varying faults are adopted.

f1(t ) = f2(t ) = 0N ⋅ m
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LI ET AL. 755

FIGURE 3 Comparison of fault estimation: (a) intermittent fault f2(b) fast time varying fault f3

FIGURE 4 Comparison of system state estimation errors: (a) e2(b) e3

f3(t ) =

{
0N ⋅ m0s ≤ t ≤ 1s

kam sin(2t )N ⋅ m1s < t

where kam ∈ {0.1, 0.2, 0.4} (input saturation umax = 0.5).
Figure 5 and 6 show the comparison of different amplitude

faults under small and large external disturbances, respectively.
Where the same scale means that e f 3(t )∕(10kam ). (1) Under
the same external disturbances, the fault estimation error will
increase with the increase of fault amplitude, where the increase
is generally proportional. (2) Under the same faults, the fault
estimation error will increase with the increase of external

disturbances amplitude, while the increase is not obvious for
heavy fault. It is worth mentioning that, under the large external
disturbances, it is more difficult to estimate weak faults (see
Figure 6b).

4.2 Simulation results based on Theorem 2

In this subsection, the benefit of the proposed method is
further demonstrated by the meticulous comparison with dif-
ferent methods and more general satellite operating conditions.
The gain matrix F2, regional pole constraints, and simulation
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756 LI ET AL.

FIGURE 5 Comparison of fault estimation error (small external disturbances): (a) e f 3(b) e f 3 on the same scale

FIGURE 6 Comparison of fault estimation error (large external disturbances): (a) e f 3(b) e f 3 on the same scale

conditions are the same to those in Theorem 1. Similarly,
we can get the performance indexes, which are illustrated in
Figure 7. Figure 8 shows the feasible areas in the varying regions
(−40 ≤ 𝜗 ≤ 40) according to Theorem 3 in Ref. [19], Theorem
1 without the auxiliary index 𝛾2, Theorem 1, and Theorem 2,
respectively. It is shown that, from the perspective of feasible
area, Theorem 3 in Ref. [19] has the most conservative results
and Theorem 2 gives the most relaxed results.

A more general case is considered. The system ini-
tial states are chosen by qT

v (0) = [ 0.3 0.2 −0.4 ], 𝜔T (0) =
[ 0.1 0.2 −0.1 ]rad∕s. The desired attitude and angle velocity are
given by qT

dv
(0) = [−0.1 0.3 0.1 ] and 𝜔d (0) = 03×1. Consider-

ing unpredictable deviations caused by time delays, observer ini-
tial states are given by �̂�(0) = 0.8𝜔(0).

We consider the new three scenarios of actuator faults: fault-
free (healthy), intermittent fault, and fast time varying fault.
Here are three channels defined as

f1(t ) = 0N ⋅ m

f2(t ) =

⎧⎪⎨⎪⎩
0.1N ⋅ m10 s ≤ t ≤ 20 s

(0.14 − 0.002t ) N ⋅ m20 s < t

0N ⋅ mothers

f3(t ) =

{
0N ⋅ m0s ≤ t ≤ 8s

0.1 sin(2t )N ⋅ m8s < t
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LI ET AL. 757

FIGURE 7 Change of performance index with different 𝜗

By Theorem 2 with 𝜗 = 20, we can obtain, 𝛾2 = 0.2487

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.9709 × 105 116.7380 236.0223 −86.6855 −0.4730 −0.9454

∗ 2.9968 × 105 1.2427 × 103 −0.4730 −100.9009 −4.7130

∗ ∗ 3.0159 × 105 −0.9454 −4.7130 −110.3254

∗ ∗ ∗ 0.5025 1.3898 × 10−4 2.8085 × 10−4

∗ ∗ ∗ ∗ 0.5066 0.0015

∗ ∗ ∗ ∗ ∗ 0.5059

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.5998 × 105 2.6645 × 103 5.2460 × 103 −276.1707 −0.6391 −1.2176

∗ 4.3648 × 105 2.4931 × 104 −0.6551 −294.3821 −5.1255

∗ ∗ 4.8208 × 105 −1.2688 −5.2229 −302.5944

∗ ∗ ∗ 0.3434 −3.8219 × 10−4 −7.6594 × 10−4

∗ ∗ ∗ ∗ 0.3303 −0.0038

∗ ∗ ∗ ∗ ∗ 0.3217

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F11 =

⎡⎢⎢⎢⎣
1.7048 × 104 −1.4395 2.5521

−2.7684 1.6717 × 104 125.5132

−1.4906 119.8547 1.6940 × 104

⎤⎥⎥⎥⎦

K1 =

⎡⎢⎢⎢⎣
−10.8260 1.0359 −0.3516

−0.3768 −3.4961 3.2899

1.0568 1.8484 1.3489

⎤⎥⎥⎥⎦

FIGURE 8 Feasible area for the stabilization of four methods

F12 =

⎡⎢⎢⎢⎣
1.7048 × 104 −1.4395 2.5521

−2.7684 1.6717 × 104 125.5132

−1.4906 119.8547 1.6940 × 104

⎤⎥⎥⎥⎦
K2 =

⎡⎢⎢⎢⎣
−10.8399 −0.5977 −0.4295

0.8258 −3.4823 3.3036

1.0047 1.8620 1.3490

⎤⎥⎥⎥⎦
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758 LI ET AL.

F13 =

⎡⎢⎢⎢⎣
1.7048 × 104 −1.4395 2.5521

−2.7684 1.6717 × 104 125.5132

−1.4906 119.8547 1.6940 × 104

⎤⎥⎥⎥⎦
K3 =

⎡⎢⎢⎢⎣
−10.7985 1.1138 1.4376

−0.3246 −3.4961 3.2826

−0.0413 1.8416 1.3215

⎤⎥⎥⎥⎦
F14 =

⎡⎢⎢⎢⎣
1.7048 × 104 −1.4395 2.5521

−2.7684 1.6717 × 104 125.5132

−1.4906 119.8547 1.6940 × 104

⎤⎥⎥⎥⎦
K4 =

⎡⎢⎢⎢⎣
−10.8124 −0.5198 1.3597

0.8780 −3.4823 3.2963

−0.0935 1.8552 1.3216

⎤⎥⎥⎥⎦
F15 =

⎡⎢⎢⎢⎣
1.7048 × 104 −1.4395 2.5521

−2.7684 1.6717 × 104 125.5132

−1.4906 119.8547 1.6940 × 104

⎤⎥⎥⎥⎦
K5 =

⎡⎢⎢⎢⎣
−10.8260 1.0223 −0.3445

−0.3904 −3.6238 1.7504

1.0635 3.1323 1.4767

⎤⎥⎥⎥⎦
F16 =

⎡⎢⎢⎢⎣
1.7048 × 104 −1.4395 2.5521

−2.7684 1.6717 × 104 125.5132

−1.4906 119.8547 1.6940 × 104

⎤⎥⎥⎥⎦
K6 =

⎡⎢⎢⎢⎣
−10.8399 −0.6112 −0.4224

0.8121 −3.6100 1.7641

1.0114 3.1459 1.4768

⎤⎥⎥⎥⎦
F17 =

⎡⎢⎢⎢⎣
1.7048 × 104 −1.4395 2.5521

−2.7684 1.6717 × 104 125.5132

−1.4906 119.8547 1.6940 × 104

⎤⎥⎥⎥⎦
K7 =

⎡⎢⎢⎢⎣
−10.7985 1.1002 1.4447

−0.3382 −3.6239 1.7432

−0.0346 3.1255 1.4493

⎤⎥⎥⎥⎦
F18 =

⎡⎢⎢⎢⎣
1.7048 × 104 −1.4395 2.5521

−2.7684 1.6717 × 104 125.5132

−1.4906 119.8547 1.6940 × 104

⎤⎥⎥⎥⎦

K8 =

⎡⎢⎢⎢⎣
−10.8124 −0.5334 1.3669

0.8643 −3.6101 1.7569

−0.0868 3.1391 1.4493

⎤⎥⎥⎥⎦
For a fair comparison, the same simulation conditions are

taken. Time response of the attitude and angle velocity in the
absence of actual faults are depicted in Figure 9. Figure 10 shows
the faults estimation errors and attitude angle velocity estima-
tion errors. It can be seen that, all methods could reconstruct
the actuator fault values, whether the intermittent fault or fast
time varying fault. The estimation errors obtained by all meth-
ods asymptotically converge to a small bounded interval. Differ-
ently, the proposed observer obtains better performance in the
aspect of convergence rate and amplitude of estimation errors.
Both the fault estimation errors and angle velocity estimation
errors of Theorem 1 are one order of magnitude smaller than
that of observers in [10] and [19]. The fault estimation errors of
Theorem 2 is smaller than that of observers in Theorem1, Refs.
[10] and [19].

Analysis results of the above two parts have verified the fea-
sibility and effectiveness of the proposed Theorem 1 and 2.

5 CONCLUSION

In this paper, based on T-S fuzzy models, we presented a
novel FAFEO with AP to solve the fault estimation problem
of satellite actuator subject to unknown model uncertainties
and unpredictable actuator faults. The added AP not only
provides additional design freedom to the FAFEO, but also
enhances the fault estimation performance. The design was
given in the terms of LMI, which could be easily calculated and
has high numerical stability. Fault estimation results with less
conservatism were obtained via the strict implicit constraint
elimination and an auxiliary H∞ index, while retaining the
performance of present algorithm. The results show that the
introduced quantitative descriptions are conducive to character-
ize and distinguish differences in fault estimation performance.
Furthermore, the effect of model uncertainties was suppressed
by the H∞ method in our work. As future investigation, the
developed fault estimation strategy can be extended to address
the issue of anti-disturbance fault estimation of flexible satellite.
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LI ET AL. 759

FIGURE 9 Time response of the system states: (a) the attitude(b) the angular velocity

FIGURE 10 Comparison of estimation errors: (a) norm of the fault estimation error e f (t )(b) norm of the angular velocity estimation error e(t )
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