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Aiming at the on-orbit safety problem of the two-dimensional tracking servo system for space, based on ant colony
optimization (ACO) and expert systems, this paper proposes a fault diagnosis and handling strategy of the two-dimensional
(2D) tracking servo system for space. Speci�cally, a fault library was established for the tracking servo system according to
�eld observations. e ACO was called to optimize the classi�cation of fault features. In addition, sensitivity and speci�city
were de�ned to evaluate the classi�cation performance of the diagnosis rules found by the ant colony, aiming to suppress the
redundant information in fault diagnosis, reduce the rows of the in-orbit codes, and improve the accuracy of in-orbit fault
diagnosis. Meanwhile, the diagnosis information will be processed by the expert system, such that the servo system can work
safely and stably in orbit, and less number of in-orbit computing resources were used. Simulation results show that the
proposed strategy achieves highly precise and reliable diagnosis.

1. Introduction

e existing fault diagnosis techniques can be divided into
three categories: those based on analytical models, those based
on signal processing, and those based on knowledge. In recent
years, arti�cial intelligence (AI)-based data mining techniques
have been widely applied in the fault detection and diagnosis of
complex systems, including neural networks, support vector
machine (SVM), rough set, and intelligent optimization al-
gorithms. ese techniques are often combined to achieve
better results [1–9].

Ant colony optimization (ACO) was proposed by
Dorigo et al. [10, 11] by mimicking the foraging behavior
of ants in nature, the group search for the shortest path to
food. Parpinelli et al. introduced the ACO to medical
diagnosis and proved that the algorithm can achieve
higher classi�cation accuracy with simpler rules than
decision tree classi�er Chance Node 2 (CN2).

Fuzzy reasoning, which imitates the way of human
thinking in handling fuzzy information, is very suitable
for processing nonlinear time-varying problems. e
fuzziness of a system is proportional to the complexity of

the system structure. Fuzzy reasoning can e�ectively deal
with highly fuzzy systems.

With the boom of space tracking and control, the
tracking servo system has been introduced to the �eld of
aerospace, aiming to meet the growing requirement on the
accuracy of in-orbit target tracking. Typically, the tracking
servo system consists of a tacking turntable and an optical
pointing system. is optical, mechanical, and electrical
integrated control system can realize various functions,
such as scanning, pointing, tracking, and measurement. It
has been widely applied in earth observation, astro-
nomical observation, space laser communication, target
tracking, and deep space detection. However, these fault
diagnosis and processing methods have not been applied
to aerospace systems at present.

Although tracking servo system is widely used in ground
and aerospace sectors, the two-dimensional (2D) tracking
servo system for space has many unique features. e state of
groundor aerospace servo control system is visible in real time.
When it comes to the space, however, the ground control
centers cannot receive satellite data in real time or in small
intervals, owing to the narrow communication bandwidth of
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the star link and the limited communication time. Two
problems would therefore arise:

(1) If the tracking servo system fails, the failure cannot
be solved timely through manual intervention, be-
cause it is impossible to download satellite data in
real time.

(2) Due to the long intervals between the data, the useful
fault information is often not downloaded, making it
difficult to correctly diagnose the failure. Any failure
of the tracking servo system, as a movable part of the
satellite, may threaten the operation of the entire
satellite and even put the life of astronauts to
jeopardy.

*erefore, the 2D tacking servo system for space needs an
in-orbit autonomous strategy for fault diagnosis and handling.
*e strategy should be able to monitor, save, and download the
real-time working state of the servo system. Once any failure
occurs, the strategy must quickly pinpoint the fault source via
fault diagnosis and take propermeasures to restore the safety of
the servo system.

Targeting a servo system for space, this paper firstly es-
tablishes a fault library and then calls ant colony optimization
(ACO) to find high-precision fault diagnosis rules, which
contain relatively few conditions. When the servo system fails,
the current fault phenomenon is diagnosed to find the fault
source according to the fault diagnosis rules. According to the
information of the fault source, the fault was handled through
fuzzy reasoning to ensure the working safety of the servo
system.

2. Background

2.1. 2DTracking ServoSystem for Space. As shown in Figure 1,
the 2D tracking servo system for space mainly consists of a
turntable frame, guide telescopes, an encoder, a brushless
torque motor, and an electronic control system. Among them,
the guide telescopes, encoder, brushless torque motor, and
effective payload are integrated onto the turntable frame. *e
electronic control system is connected to that frame via cables.

As shown in Figure 2, the electronic control system receives
commands from the satellite platform and provides electricity
and communication supports to the guide telescopes and
encoder, both of which are position sensors. *e encoder feeds
back the positions of the two axes of the turntable to the
electronic control system via serial communication, while the
guide telescopes feed back the miss distance of the target.
*rough calculation, the electronic control system controls the
brushless torque motor to drive the turntable. To improve
reliability, cold standby is adopted for the electronic control
system, encoder, and brushless torque motor.

In summary, the 2D tracking servo system for space is a
highly compact and complex integrated system. *e system
failures are often homologous, involving many attributes. If a
diagnosis program is prepared for every fault, the system will
contain too many complex software codes. *us, this paper
proposes an intelligent classification algorithm based on the
ACO and relies on the algorithm to find high-precision fault
diagnosis rules, which contain relatively few conditions. *en,

software codes were compiled following the found rules. When
the system is in orbit, any fault detected would be handled
immediately in orbit by the expert system, and then the fault
information would be downloaded, waiting to be further
processed on the ground.

2.2. Fault Library. *e in-orbit working features of the 2D
tracking servo system were defined as a vector of fault features
E�(e1, e2, e3,. . .,e11), where e1–e11 refer to position state, velocity
state, current state, torque state, motor temperature state,
tracking precision state, communication state, analog/digital
(AD) signal collection state, encoder state, guide telescope state,
and single-event upset (SEU) states, respectively. *e first ten
states are fault phenomena that can be detected in real time in
orbit. To prevent the SEU, all telemetered values were not
encoded by single-byte encoding. Table 1 lists the relationship
between telemetered values and fault phenomena.

According to ground debugging and testing experience,
this paper establishes a library for the correspondence between
the fault phenomena and fault sources of the 2D tracking servo
system for space, based on the telemetered values. However, the
same fault source may correspond to multiple fault phe-
nomena, and each fault may involve various features.*us, it is
no easy task to diagnose system failures. To solve the problem,
this paper proposes an intelligent classification algorithm based
on the ACO, and establishes high-precision diagnosis rules for
fault source positioning, which contains relatively few condi-
tions. *ese rules reduce the complexity of in-orbit software
codes and enhance the autonomous fault diagnosis ability of
the servo system. In addition, the expert system was employed
to autonomously handle the diagnosed faults in orbit in real
time, making the in-orbit operation of the servo system more
secure and stable.

2.3. ACO-BasedDesign of FaultDiagnosis Plan. *eACO is a
heuristic intelligent bionic optimization algorithm. *e ad-
vantages of the algorithm include positive feedback and parallel
distributed computing. In nature, the ant colony looks for food
by the following principle: all ants leave from the nest and
release pheromones along the way. *e amount of pheromone
on a path increases with the number of ants passing through
that path. An ant prefers the path with a relatively high
pheromone level. As a result, the pheromone level of high-
quality paths will gradually rise, while that of poor-quality paths
will gradually drop, due to pheromone volatilization. Even-
tually, the whole colony will find the best path to the food
source.

*e state transition probability for the k-th ant to move
from node i to the next node j can be expressed as

P
k
ij(t) �

τij(t) 
α
ηij(t) 

β

l�allowed τil(t) 
α ηil(t) 

β, (1)

where τij(t) is the pheromone level on a path, ηij(t) is the
expectation (visibility) for an ant to move from node i to the
next node j, αandβ are the heuristic factors representing
pheromone level and visibility, respectively, and t is the
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batch of ant colony, i.e., the number of iterations of the
algorithm.

When the colony completes a search task, the pheromone
level on each path can be adjusted by the following rules:

τij(t + 1) � (1 − ρ)τij(t) +△τij(t), (2)

△τij(t) � 
N

k�1
△τk

ij(t), (3)

where, if the k-th ant passes by a path, then△τk
ij(t) � Q/Lk(t);

otherwise,△τk
ij(t) � 0, Q is the pheromone intensity, Lk(t) is

the total length of the paths traversed by the ants in the current
search, ρ ∈ [0, 1) is the pheromone volatilization coefficient,
and N is the total number of ants moving out of the nest in the
current batch.

*e following key problems were solved to design a fault
diagnosis plan based on the ant colony classification algorithm.

2.3.1. Generation of Paths and Nodes. Based on the principle
of the ACO, the first node was defined as the fault source and
the other nodes as attributes. Each path represents the ei-
genvalue of an attribute. If the eigenvalue is zero, then the
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Figure 1: Sketch map of the 2D tracking servo system for space.
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Figure 2: Sketch map of the communication of the 2D tracking servo system for space.
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attribute is not considered. *e other values have the same
meaning as the element values of fault eigenvector E. When an
ant reaches the last node, it means the food source has been
discovered. *e vector composed of the paths stands for a
diagnosis rule. In this way, the fault diagnosis can be described
as the path search by the ant colony (Figure 3).

2.3.2. Establishment of Evaluation Function for Classification
Performance. *e performance of each diagnosis rule
generated by the paths traversed by the ants can be quan-
tified by classification precision:

f(t) �
nTP(t)

nTP(t) + nFN(t)
·

nTN(t)

nFP(t) + nTN(t)
, (4)

where t is the number of iterations of the algorithm, nTP(t) is
the number of samples, which should belong to a class,
allocated to that class, nFP(t) is the number of samples,
which should belong to a class, allocated to another class,
and nFN(t) is the number of samples, which should not
belong to a class, allocated to that class. *en,
nTN(t)/nFP(t) + nTN(t) was defined as the specificity, i.e.,
the proportion of the samples, which should not belong to a
class, allocated to another class. Obviously, f ∈ [0, 1], and
the closer the f is to 1, the more accurate the class judged by
the diagnosis rule.

2.3.3. Determination of Path Visibility. *e visibility of the
path represented by the j-th eigenvalue Vij of the i-th at-
tribute Ai can be expressed as the information entropy of the
attribute eigenvalue:

ηij �
log2 K − H W|Ai � Vij 


a
i�1 

bi

j�1 log2 K − H W|Ai � Vij 
, (5)

where H(.) is the entropy of the attribute eigenvalue, K is the
number of classes, W is the class attribute, a is the number of
fault attributes, and bi is the number of eigenvalues of the i-th
attribute. *en, the information entropy can be expressed as

H W|Ai �Vij �− 
K

ω�1
P ω|Ai �Vij log2 P ω|Ai �Vij  , (6)

where P(ω|Ai � Vij) is the empirical probability that Ai �

Vij belongs to class ω; i � 1 ∼ a; and j � 1 ∼ bi.
As shown in formulas (5) and (6), the greater the entropy

of the eigenvalue on a path, the more uniform the distri-
bution of the attribute eigenvalue across different classes, the
more difficult it is to judge fault class by the attribute ei-
genvalue, and the lower the visibility of the node. Under the
same classification performance, the fewer the attributes or
conditions in a diagnosis rule, the stronger the generaliza-
tion of the rule. *e search for the optimal diagnosis rule
aims to find the most generalizable rule. *erefore, the path
with an eigenvalue of zero is the most visible one.

2.3.4. Initialization and Updation of the Path Pheromone.
*e pheromone is evenly distributed on each path:

τij(t � 0) �
1


a
i�1 bi

, (7)

where i � 1 ∼ a and j � 1 ∼ bi.

Table 1: Relationship between telemetered values and fault phenomena.

Fault phenomena Telemetered
value 0× 00

Telemetered value
0× 03

Telemetered value
0× 0C

Telemetered value
0× 30

Telemetered value
0×C0

e1 position state Normal Reverse limit of
azimuth axis

Forward limit of
azimuth axis

Reverse limit of pitch
axis

Forward limit of pitch
axis

e2 velocity state Normal Reverse limit of
azimuth axis

Forward limit of
azimuth axis

Reverse limit of pitch
axis

Forward limit of pitch
axis

e3 current state Normal Reverse limit of
azimuth axis

Forward limit of
azimuth axis

Reverse limit of pitch
axis

Forward limit of pitch
axis

e4 torque state Normal Reverse limit of
azimuth axis

Forward limit of
azimuth axis

Reverse limit of pitch
axis

Forward limit of pitch
axis

e5 motor
temperature state Normal Abnormal temperature

of pitch axis

Abnormal
temperature of pitch

axis

Abnormal temperature
of pitch axis

Abnormal
temperature of pitch

axis
e6 tracking
precision state Normal Reverse limit of

azimuth axis
Forward limit of
azimuth axis

Reverse limit of pitch
axis

Forward limit of pitch
axis

e7 communication
state Normal Abnormal

communication
Abnormal

communication
Abnormal

communication
Abnormal

communication
e8 AD signal
collection state Normal Abnormal phase A of

azimuth axis
Abnormal phase B of

azimuth axis
Abnormal phase A of

pitch axis
Abnormal phase B of

pitch axis

e9 encoder state Normal
Abnormal encoder
precision of azimuth

axis

Encoder calculation
fault of azimuth axis

Abnormal encoder
precision of pitch axis

Encoder calculation
fault of pitch axis

e10 guide telescope
state Normal Abnormal data Abnormal gray value Abnormal AD signal

collection
Abnormal

communication

e11 SEU state Normal Abnormal calculation
data of azimuth axis

Abnormal mode sign
of azimuth axis

Abnormal calculation
data of pitch axis

Abnormal mode sign
of pitch axis
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Once the ants have passed through a path, the phero-
mone on that path can be updated by

τij(t + 1) � τij(t) + τij(t)f(t), (8)

where f is the classification performance score of samples by
the diagnosis rule. *e higher the f, the more the phero-
mones released by the ants on the path.

2.3.5. Calculation of State Transition Probability. *e state
transition probability of the ants passing by the path rep-
resented by the j-th eigenvalue of the i-th attribute can be
calculated by

pij(t) �
ηijτij(t)


a
l�1 ηilτil(t)

, (9)

where i � 1 ∼ a and j � 1 ∼ bi. *e greater the τij, the more
the ants have passed through the path and the better the
classification performance for the diagnosis rule containing
that condition. Since the product between τij and ηij is the
numerator, the greater the pij and the more likely it is for the
ants to pass by that path.

2.4. Expert System for In-Orbit Handling. When profes-
sionals are absent, the fault cannot be diagnosed timely in
the field. *en, the known fault phenomenon would be
imported to the expert system to diagnose the position of the
faulty device. During in-orbit operations, the servo system is,
for the most of time, unattended. *us, the traditional
human-computer system was discarded, and the expert
system was designed as shown in Figure 4. *e proposed
expert system mainly encompasses the following: a buffer
zone recording the fault phenomenon; a knowledge base
containing facts, heuristic rules, and problem-solving rules;
an interpretation module for application rules; a reasoning
module controlling the sequence of rules.

3. Implementation Steps

3.1. Fault Diagnosis and Classification Approach. By the ant
colony classification algorithm, only one ant is dispatched at
a time. Once the ant passes by a path, a condition is added to
the corresponding diagnosis rule. If the rule can enhance the

classification performance, it will be selected; otherwise, it
will be discarded.*e latter case is equivalent to the situation
that the eigenvalue of the path is set to zero. *e main steps
of fault diagnosis and classification are as follows:

Step 1 . Initialize the parameters: solve the visibility of
each path by formulas (5) and (6), initialize the
pheromone distribution on each path by for-
mula (7), send the first ant from the fault source,
and randomly generate an initial path.

Step 2 . Set the number of iterations as t� 1.
Step 3 . Once the ant passes by the i-th path, add a

condition to the corresponding diagnosis rule
and apply the rule to classify the samples. *en,
compute the current classification precision
fi(t). If fi(t)≤fi−1(t), remove the condition
from the rule, i.e., the ant chooses to move along
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the path with an eigenvalue of zero; otherwise,
update the classification precision. After the ant
has passed through a path, obtain the final
classification precision fa(t), which is the given
initial evaluation score.

Step 4 . According to fa(t), modify the pheromone of
the passed path by formula (8). Combined with
visibility, compute the state transition proba-
bility pij(t) of all paths and generate the path for
the next ant in the light of pij(t).

Step 5 . If fa(t) is equal to or greater than the given
classification precision ε0, go to Step 6; other-
wise, jump to Step 7.

Step 6 . Record the diagnosis rule found by the ant,
classify the remaining samples in the fault li-
brary, and remove the samples, which should
belong to a class, allocated to that class by that
rule. Besides, reinitialize the pheromone and
visibility of each path, and then generate the
path for the next ant.

Step 7 . If the number of samples, which should belong
to a class, allocated to that class reaches the
preset requirement, or the algorithm reaches the
maximum number of iterations tmax, then ter-
minate the algorithm and record the final data;
otherwise, set t � t + 1, return to Step 3, and
send a new ant to search for the next diagnosis
rule.

3.2. In-Orbit Fault Handling by the Expert System. Since the
in-orbit operations of the servo system is remotely con-
trolled, it is impossible for the ground to monitor and
control the working condition and mode of the system in
real time. To ensure that ground control overrides the au-
tonomous software handling, the in-orbit fault handling of
the expert system was controlled by two working modes
(entering fault handling mode and exiting fault handling
mode) and one working sign (in-orbit autonomous handling
sign). In addition, three working states were employed to
indicate the current fault handling by the servo system,

Entering fault handling
Exiting

fault
handling

Slight fault Serious fault General fault

Reversely rotating the
turntable by 1°, and

returning fault handling
underway

Rotating the turntable
to optical null point,
and returning fault
handling underway

Reaching the target position
within the specified period

Reaching the target position
within the specified period

Remaining at the
position, and returning

fault handling completed

Remaining at the
position, and returning

fault handling completed

Powering off the
motor, and returning
fault handling failed

Detecting a fault

Updating fault
sign

Receiving the order of
exiting fault handling

mode

Appearance of new
fault

Handling
controlled
by ground?

N

Y

Y Y

N N

Clearing fault signs

Figure 5: In-orbit fault handling flow of the expert system.
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including fault handling underway, fault handling com-
pleted, and fault handling failed.

As shown in Figure 5, the expert system is divided into
three parts: fault identification and classification, fault
handling, and fault exiting.

3.2.1. Fault Identification and Classification. Whether the
servo system is faulty and, if so, what is the type of system
fault were recognized by the fault diagnosis rules generated
by ant colony fault diagnosis and classification. After rec-
ognizing a fault, the servo system would firstly update the
fault sign and check if the working sign is in-orbit auton-
omous handling. If yes, the working mode of the servo
system would be switched to entering fault handling mode.

3.2.2. Fault Handling. *e servo system could handle the
recognized fault in four different ways:

(1) Slight Fault. *e servo system switches the working
mode into entering fault handling mode and updates
the working state to fault handling underway. *e
faulty position would be rotated by 1° opposite to the
moving direction of the system. After the rotation is
complete, the system would return faulty handling
completed and continue to execute its task after two
more minutes.

(2) General Fault. *e servo system switches the
working mode into entering fault handling mode

and updates the working state to fault handling
underway. *en, the system would rotate to the
optical null point. After reaching that position, the
system would remain there, return fault handling
completed, and wait for orders from the ground.

(3) Serious Fault. *e servo system switches the working
mode into entering fault handling mode and updates
the working state to fault handling failed. *en, the
system would power off the motor and wait for
orders from the ground.

(4) Fault Handling Failed. If the servo system fails to
rotate to the specific position within a specified
period after encountering a slight or general fault, it
would update the working state to fault handling
failed. *en, the system would power off the motor
and wait for orders from the ground.

3.2.3. Fault Exiting. Upon receiving the order of exiting
fault handling mode, the servo system would enter that
mode and clear all fault signs, regardless of the current stage
of fault handling.

4. Simulation

Taking the fault diagnosis of velocity state, torque state, and
SEU state of the servo system for example, this paper calls
the ACO to search for the optimization rules capable of

Table 2: Fault diagnosis and handling results.

Fault type Number of
rules

Number of iterations under the
rule

Classification precision under the rule
fa(t)

Handling result

Velocity
state 5 23

0.9341 Handled as a serious
fault

0.8213 Handled as a serious
fault

0.8559 Handled as a serious
fault

0.9411 Handled as a serious
fault

0.8729 Handled as a serious
fault

Torque state 5 45

0.8579 Handled as a general
fault

0.9590 Handled as a general
fault

0.8761 Handled as a general
fault

0.9322 Handled as a general
fault

0.9121 Handled as a serious
fault

SEU state 4 16

0.8242 Handled as a slight fault
0.8521 Handled as a slight fault

0.8821 Handled as a serious
fault

0.9415 Handled as a serious
fault
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accurately predicting these faults and simulates the in-orbit
fault handling by the expert system.

*e simulation parameters of the ACO were set as
follows: the initial evaluation value f0(t) � 0, preset clas-
sification precision ε0 � 0, and preset maximum number of
iterations tmax � 200, which represents the maximum batch
of ants being dispatched. Table 2 reports the simulation
results.

*e simulation results show that the ACO can find
diagnosis rules with a few conditions and a high classifi-
cation precision within a limited number of iterations and
predict the fault samples belonging to these classes correctly.
Meanwhile, the expert system can correctly handle the
predicted faults.

5. Conclusions

After building a fault library of the 2D tracking servo system
for space, this paper calls the ACO to optimize the fault
diagnosis rules of the servo system and it eliminates the
inherent redundant attributes of fault attribute represen-
tation, so as to achieve the purpose of using fewer condition
items to more accurately determine the fault category.
During the in-orbit operations of the servo system, the in-
orbit expert system can precisely judge the fault type and
handle the detected faults, using a limited number of soft-
ware and hardware resources. Experiments show that the
ACO algorithm combined with the in-orbit processing
expert system has the ability to quickly search and the fault
diagnosis rules after ant colony optimization have the ad-
vantages of fewer rules and condition items, high diagnostic
accuracy, high prediction success rate, less resource occu-
pation, and fast processing. *erefore, the fault diagnosis
and processing method based on the combination of ACO
algorithm and in-orbit processing expert system has broad
application prospects in the field of aerospace fault
diagnosis.
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