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a b s t r a c t

This study revolves about the speed control of a permanent magnet synchronous motor (PMSM) with
torque ripple and external disturbance. To enhance the performance of the PMSM speed control
in response, robustness and torque ripple suppression, a hybrid control technique is presented
by combining a novel disturbance observer based on iterative learning strategy (ILC-DOB) and a
fast integral terminal sliding mode control (FITSMC) method. Firstly, an iterative learning law is
used to enhance the conventional high-gain disturbance observer (DOB) to improve the estimation
performance for periodic disturbance. Then, a new fast integral terminal sliding mode surface is
proposed to increase the tracking error convergent speed of the traditional integral terminal sliding
mode control (ITSMC) when the speed error is distant from the equilibrium point. Finally, the estimated
total disturbance is incorporated as a feed-forward compensation to the enhanced FITSMC. According
to experimental results, the presented method can ensure better speed-tracking performance and
significant disturbance rejection capability of the PMSM drive system.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Permanent magnet motor has been employed in many trans-
ortation systems including electric vehicles and ship propulsion
ecause of its advantages like high energy density, high effi-
iency and easy maintenance [1]. However, nonlinearity of the
otor model, parameters mismatch, and the torque ripple reduce

he tracking precision and stability of the servo control system
2–4]. At the same time, the conventional control approach such
s proportional–integral (PI) is susceptible to external disturbance
nd internal parameter uncertainties, which drives the control
ystem away from its desired target.
Therefore, numerous studies devoted to developing appropri-

te control techniques in the field of PMSM have been carried out
5]. Several nonlinear control methods have been proposed and
mplemented, e.g., active disturbance rejection control [6], predic-
ive current control [7], internal model control [8], sliding mode
ontrol (SMC) [9], and adaptive dynamic programming method
10]. Among them, SMC has been successfully implemented in
any types of motors including PMSM due to its benefits like
uick response, smaller overshoot and strong disturbance rejec-
ion ability. The main drawback of SMC [11], which is mentioned
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by many researchers, is the chattering phenomenon. Besides, the
conventional SMC method cannot guarantee the robustness of
servo system in the approaching phase. Therefore, ITSMC method
has been developed [12–14]. Compared with the conventional
SMC, ITSMC has the following advantages:

(1) Via setting the initial value of the integral, the system can
be in the sliding phase at the beginning, which eliminates
the approaching phase and improves the robustness of the
system.

(2) Fractional power is applied to guarantee finite-time state
convergence during the sliding phase.

(3) Smaller maximum control gain can be selected and the
choice of gain only relies on the upper bound of unknown
disturbance.

However, all the tracking errors can only be assured to ap-
proach to zero in a finite time [15]. The tracking error converges
slowly when it is distant from the equilibrium point. Moreover,
the upper bound of the lumped disturbance is required to design
the control method, which is difficult to be realized in practical
application. Then it usually leads to a larger selection of switching
gain, which causes more severe chattering.

On the one hand, various methods have been proposed to ob-
tain good dynamic response. An adaptive ITSMC and an adaptive
e control with a novel disturbance observer based on iterative learning for speed

fast ITSMC method [16] are proposed and applied to trajectory
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racking control of underwater vehicles. These two control meth-
ds not only guarantee finite-time convergence of the speed
racking to expectation but avoid the demand for the upper
ound of lumped disturbance. But, the limitation of these two
ontrol strategies is that infinite will appear in the control law,
hich will lead to potential damage to the inverter and motor.
esides, reaching law approach [17,18] has a direct effect on the
pproach motion process and is easy to implement. However, the
pproach time increases when the state nears to the sliding mode
urface, and the robustness of the controller decreases. Therefore,
his article proposes a new fast integral terminal sliding mode
urface that improves the convergent speed when the tracking
rror is distant from the equilibrium point, and ensures that the
racking error converges to zero within a limited time.

On the other hand, attenuating the chattering phenomenon is
nother research hotspot to improve SMC quality. In [19], a novel
ontinuous full-order ITSMC strategy is proposed. The chattering
henomenon is attenuated by a full-order sliding-mode design.
owever, this method requires an acceleration signal, which is
ifficult to obtain in practice. Disturbance observer-based control
s an effective way to attenuate the chattering phenomenon by
dding the controller-based feed-forward compensation [20–22].
ts main advantage is improving the disturbance suppression
apability without sacrificing the control performance of the com-
ensated system. In [23], an adaptive integral terminal finite-time
MC strategy is proposed and verified on a piezoelectric-driven
anopositioning system. Adaptive laws are developed to estimate
he model uncertainty without obtaining the upper boundary
f the lumped disturbance. However, this adaptive law can be
quivalent to the sliding mode disturbance observer which yields
he disturbance estimation with chattering. Then it is brought
nto the closed-loop system. In [24,25], generalized proportional–
ntegral observer and extended state observer are combined with
he SMC, respectively. The performance of these composite con-
rollers depends more on the accuracy of the disturbance esti-
ation. Besides, these traditional disturbance observers are based
n that disturbances change slowly over time. However, in actual
MSM working conditions, there are torque ripples which can
e regarded as periodic AC disturbances in the speed loop of
MSM systems [26]. Then it will cause periodic fluctuation in
he rotational speed, and traditional disturbance observers have
imited ability to observe them.

Iterative learning controller (ILC) is a technique that utilizes
he control experience of the previous iterative cycles at every
urrent iteration cycle, which has the ability to overcome periodic
isturbance. It is widely used in PMSM systems to reject the
eriodic cogging torque disturbance and is easy to realize in
igital systems [27–29]. Therefore, a novel disturbance observer
ased on iterative learning strategy (ILC-DOB) is proposed in this
aper. Iterative learning law is introduced into the conventional
isturbance observer to improve estimation performance for the
armonics disturbance. Then, the ILC-DOB is combined with the
orresponding FITSMC method to further enhance the robustness
nd reduce the torque ripple in the PMSM system. The pro-
osed method can not only effectively suppress the phenomenon
f torque ripple, but also ensure excellent dynamic response
erformance and disturbance rejection capability.
The article is organized as follows. Section 2 presents the

athematical model of the PMSM and analyzes the main source
f the torque ripples. Section 3 puts forward a novel DOB based on
terative learning principles. In Section 4, two ITSMC algorithms
re compared in numerical simulations to demonstrate the ad-
antages of ITSMC. Then, the FITSMC combined with the ILC-DOB
s proposed for the PMSM speed controller. In Section 5, com-
rehensive experiments are carried out to verify the proposed

lgorithm. Finally, Section 6 concludes this article. t

2

2. Torque ripple analysis and system modeling

Some preliminaries are introduced, such as PMSM models
and brief PMSM torque ripple analyses. Then a mathematical
model of PMSM considering periodic and aperiodic disturbances
is established in this section.

2.1. PMSM model

Neglecting hysteresis losses and eddy currents, the PMSM
voltage model in the d-q synchronous rotating reference frame
are expressed as⎧⎪⎨⎪⎩

ud = Rsid + Ld
did
dt

− pnωmLqiq

uq = Rsiq + Lq
diq
dt

+ pnωm(ψf + Ldid)
(1)

here, id and ud denote the stator current and voltage of the d-
xis, respectively; iq and uq denote the stator current and voltage
f the q-axis respectively; Rs is stator resistance; Ld, Lq are the d-
nd q-axis inductances of the stator windings, respectively; pn is
umber of pole pairs; ωm denotes the rotor mechanical angular
elocity; ψf represents the rotor flux linkage.
The dynamic equation of PMSM is expressed as

dωm

dt
= Te − TL − Bωm (2)

where J is rotational inertia; B denotes viscous friction coefficient;
TL is load torque; Te is electromagnetic torque, which can be
expressed as

Te = 1.5pn
[
ψf iq + (Ld − Lq)idiq

]
(3)

When the surface-mounted PMSM is selected for the drive
system, which satisfies Ld = Lq, then the electromagnetic torque
equation can be expressed as Te = 1.5pnψf iq. In general, the
technology of field-oriented control (FOC) is applied to control
the PMSM, which has a cascaded double closed-loop structure. In
order to obtain d-q axis control voltages, PI controllers are used
in the current loops.

2.2. Torque ripple analysis

In the practical application of PMSM, torque smoothness is
one of the important indicators to describe performance. How-
ever, many non-ideal factors in the motor control systems cause
periodic ripples in the output of torque, which in turn lead
to speed fluctuations. The torque ripple is mainly produced by
magnetic flux harmonics, cogging torque, inverter nonlinearity
and current detection error. Considering the above factors, the
output electromagnetic torque of PMSM is expressed as

Te =
3pn
2

(ψf +

∞∑
i=1

ψ6i cos(6iθe)) · (∆iinverter +∆ioffset

+∆iscaling + iq) + Tcog

(4)

where θe is the electrical angle of the motor; Tcog represents the
cogging torque of the motor; ψf , ψ6i represent the permanent
agnet flux and the harmonic amplitude of the 6ith order flux

of the motor, respectively; ∆ioffset , ∆iscaling , ∆iinverter are current
rrors caused by the offset and scaling of the current sensors and
he nonlinearity of inverters, which can be further expressed as
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5).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆iinverter =
ωe√

R2
s + (6ωeLs)2

[−A1 cos(6θe + θ5)

+ A2 cos(6θe + θ7) +
48Vdead

35ωeπ
sin(6θe)]

∆ioffset =
2

√
3

√
∆i2a +∆ia∆ib +∆i2b · cos(θe + θ1)

∆iscaling =
is

√
3
(
ka − kb
kakb

)[cos(2θe +
π

3
) +

1
2
]

Tcog =

∞∑
i=1

Tcogi sin(iNcθe)

(5)

In (5), A1, A2, θ5, θ7 and Vdead are the amplitudes of the har-
monics, the initial phase angle and the voltage change due to
dead-time effects, respectively; ∆ia, ∆ib represent the DC offsets
of the phase current ia, ib and θ1 is a constant angle depending
on ∆ia and ∆ib; is represents the amplitude of the phase current;
ka, kb represent the scaling factors of the a-phase and b-phase
currents, respectively; Tcogi represents the amplitude of the ith
cogging torque harmonic, and Nc represents the least common
multiple between the number of motor cogging and pole pairs.

From (4) and (5), it can be known that the magnetic flux har-
monics, the nonlinearity of the inverter and the cogging torque
generate the 6th harmonic component in the electromagnetic
torque. Besides, current sensor offset produces the 1st harmonic
component, and current sensor scaling produces the 2nd har-
monic component [30]. Therefore, the electromagnetic torque is
mainly composed of DC components and the 1st, 2nd, 6th and
12th harmonic components, which can be simplified as

Te = Te0 + Tripple = Te0 +

∑
k

Tek cos(kθe − φk)

=
3pnψf

2
iq +

∑
k

Tek cos(kθe − φk)
(6)

where Tripple represents the torque ripple; k represents the har-
monic order; Te0 represents the amplitude of the DC component;
Tek, ψk represent the amplitude and phase angle of the harmonic
component, respectively.

Moreover, considering the uncertainty of system parameters
and current loop tracking error, the dynamic model of PMSM can
be rewritten as

ω̇m =
3pnψf 0

2J0
i∗q + ε(t) (7)

where ψf 0 and J0 represent the nominal values of permanent
magnet flux linkage and moment of inertia, separately; i∗q de-
notes the reference current of q axis; ε(t) presents the lumped
disturbance, which can be expressed as

ε(t) =
3pnψf

2J
iq −

3pnψf 0

2J0
i∗q −

B
J
ωm −

TL
J

−

∑
k

Tek
J

cos(kθe − φk)

(8)

From (8), it can be known that the 1st, 2nd, 6th and 12th
armonic components of the electromagnetic torque are included
n the lumped disturbance. In Sections 3 and 4, the estimation and
ompensation of the lumped disturbance will be introduced.

. Design of iterative learning-based DOB

As a motivation to estimate the above lumped disturbance, a
ovel disturbance observer ILC-DOB, will be proposed and formu-
ated. Firstly, a high-gain DOB is presented, which can observe
3

the aperiodic disturbance effectively. Then, an ILC-DOB com-
bined with a high-gain DOB and an iterative learning strategy is
presented to suppress the periodic disturbance.

3.1. A high-gain DOB

A first-order system with the external disturbance is used to
describe the design procedure, which is represented as follows

ẋ = ax + bu + d (9)

where x denotes the system state, a and b are constant coeffi-
ients, u denotes the system control signal, and d denotes the
umped disturbance.

The high-gain DOB can be expressed as{
d̂ = K (x − x̂)
˙̂x = ax̂ + bu + d̂

(10)

here, x̂, d̂ denote the estimated system state and lumped dis-
urbance, separately; K is a constant gain.

Then, we have the following results.

heorem 1. If the high-gain DOB is constructed as (10) and the
arameter K is large enough, the estimation will be converged to
he disturbance.

roof of Theorem 1. From (10), we have
˙̂

= K (ẋ − ˙̂x) = K (ẋ − ax̂ − bu − d̂) (11)

And from (10), we can get x̂ = x −
d̂
K . Together with (11), it

implies
˙̂d − ad̂ = K (ẋ − ax − bu − d̂) (12)

Both sides of (12) are divided by K ( ˙̂d − ad̂), we can obtain

1
K

=
ẋ − ax
˙̂d − ad̂

−
bu + d̂
˙̂d − ad̂

(13)

When the parameter K tends to infinity, it has

˙ − ax = bu + d̂ (14)

With (9) in mind, we can directly obtain from (14) that d̂ → d.
The schematic diagram of the high-gain DOB is shown in Fig. 1.

o decrease the influence of measurement noise, a low-pass filter
s usually added at the state observation error, where µ is time
onstant of the low-pass filter. Moreover, in the speed loop of
he PMSM system, we have a = 0. Thus, the transfer function
f the high-gain DOB from the disturbance to the disturbance
stimation can be written as

(s) =
D̂(S)
D(s)

=
K

s(µs + 1) + K
(15)

Fig. 1. Structure diagram of the high-gain DOB.
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Fig. 2. Bode plot of disturbance estimation of the high-gain DOB for K =

10, 20, 40].

The bode plot of G(s) is given in Fig. 2. It is clear that a larger
K can provide smaller estimation error and phase lag, but the ob-
server’s suppression performance for high-frequency noise would
be decreased, then the estimation accuracy would reduced in
turn. Accordingly, the high-gain DOB can only effectively estimate
the DC component of the lumped disturbance.

3.2. Improvement based on iterative learning strategy

To exactly estimate the 1st, 2nd, 6th and 12th periodic har-
monic torque, iterative learning control (ILC) is introduced here.

Based on a certain iterative law, ILC applies information from
previous experiments to obtain control inputs constantly that
produce desired output trajectories. Thus, it is an algorithm that
iteratively generates an optimized input signal so that the system
output is as close as possible to the ideal. The P-type iterative
learning law with a forgetting factor and current cycle feedback
is expressed as follows

uj(t) = (1 − ξ )uj−1(t) + γ ej(t) (16)

Fig. 3. Structure diagram of the ILC-DOB.
4

where, uj(t) denotes the control input of the j th iteration, j
enotes the iterative index; ej(t) denotes the tracking error of
he j th iteration; γ is the learning coefficient, which affects
he learning ability of ILC controller; ξ is the forgetting factor,
hich can reduce the impact of the non-repetitive disturbance
n system convergence. In order to stabilize the ILC algorithm,
he value of ξ should be selected in the range of (0, 1).

Firstly, we construct the novel DOB based on the iterative
earning strategy, which is depicted in Fig. 3. The ILC-DOB can
e written as⎧⎪⎨⎪⎩
˙̂xj = ax̂j + buj + d̂j
ej = γ (xj − x̂j) + (1 − ξ )ej−1

d̂j = Kej

(17)

where xj, x̂j, uj, dj denote the system state, the estimated system
state, the control input and the estimated disturbance for the
jth iteration cycle, respectively; ej, ej−1 represent the estimated
error of the system state of the jth and j-1th iteration cycles,
espectively.

The ILC-DOB’s schematic diagram of the transfer function is
hown in Fig. 4. To suppress the torque harmonic Tripple, the period
f iteration τ , that is, the time delay between ej−1 and ej should
e equal to the fundamental period of the torque ripple

=
2π
ωe

(18)

In Fig. 3, the memory unit is responsible for storing the esti-
mate error in the previous iteration and plays a crucial role. For
further analysis, it is rewritten as e−τ s in the complex domain.
And referring to (15), we can get

G2(s) =
D̂(S)
D(s)

=
γK

s[1 − (1 − ξ )e−τ s](µs + 1) + γK
(19)

Compared with (15), the ILC-DOB inserts a delay element in
he denominator to extract harmonic disturbances. Considering
he disturbance center on the frequency of 6ωe, then s = j6ωe
nd e−τ s satisfies
−τ s

= e−j6ωeτ = e−j12π
= 1 (20)

According to (20), when ξ = 0, (19) equals 1, which indi-
cates that the 6th-order torque harmonic is completely estimated.
Similarly, the 12th-order or higher order torque harmonic can be
completely observed. When the disturbance is concentrated in a
low frequency, 1 − (1 − ξ )e−τ s < 1, which indicates that the
performance of high-gain DOB in low frequency is also improved
effectively.

3.3. Parameters determination for the ILC-DOB

Comparing (15) and (19), it is feasible to select the learning
gain γ = 1 for simplifying analysis and decreasing the parameter

Fig. 4. Schematic diagram of the transfer function of the ILC-DOB.
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uning workload because γ and K have the same function. Then,
arameter characteristic of the ILC-DOB with different K , ξ and
is given in Fig. 5.
As shown in Fig. 5, the parameter K determines the overall

rend of the bode plot, indicating that K affects the estimation
erformance of the ILC-DOB at low, medium and high frequency.
ikewise, ξ affects the peak gain at specific frequencies. And µ
nfluences estimation ability for high-frequency disturbance and
oise suppression performance more. Hence, parameters K and
are important for the observation performance of the ILC-DOB.
he selection of K requires a compromise between the observa-
ion error and noise. A basic rule for adjusting K is to increase
from a small initial value till the system performance require-
ents are satisfied. For the forgetting factor ξ , the conclusion

hat a smaller ξ will lead to better observation for the periodic
isturbance can be drawn from Fig. 5(b). Still, the accumulative
ffect of the low-frequency non-periodic disturbance is greater,
nd it has potential to diverge the ILC-DOB. Consequently, the
alue of ξ cannot be too small and it is typically chosen nearby
.2. In the speed loop of the PMSM system, µ is typically chosen
n the vicinity of 5–10 times than the bandwidth of the speed
oop.

. FITSMC design for PMSM speed loop

The SMC speed controller is adopted to compensate the total
isturbance that has been accurately observed. Firstly, the basic
SMC design with sliding mode reaching law (SMRL) method and
he proposed FITSMC are given. Then, the first-order system is
sed to verify the superiority of FITSMC compared with ISMC and
TSMC, respectively.

.1. ISMC design

The SMC can be designed in two stages: (1) the sliding mode
urface design, which forces the system state to reach the equi-
ibrium point of the system; (2) the reaching law design, which
uarantees that the trajectory of the system is driven towards the
liding mode surface and remains on it thereafter. The system’s
obustness is not ensured during the reaching phase of the tradi-
ional sliding mode control. To solve this issue, ISMC is introduced
o eliminate the reaching phase.
5

A nonlinear system with the external disturbance is used to
escribe the ISMC design procedure, which is expressed as

˙ = f (x) + g(x)u + d (21)

here x is the system state, f (x) and g(x) are the nonlinear
unctions of x; u denotes the system control signal, and d is the
umped disturbance.

Defining tracking error e(t) = xd − x (xd, the desired output),
hen the ISMC sliding mode surface is designed as

(t) = e(t) + k
∫ t

0
e(τ )dτ (22)

here k > 0 is a coefficient that needs to be designed.
To speeds up the approaching process and suppress the chat-

ering in the sliding mode surface, a terminal sliding mode reach-
ng law is selected [21]. The terminal sliding mode reaching law
s expressed as

˙ = −m |s|λ sgn(s) − ns (23)

here m and n are the positive coefficients, and 0 < λ < 1.

.2. Comparison of two ITSM controller

In (22), when the integration has the initial value −e(0)/k, s(t)
s initially at zero and hold throughout the system response. On
he ISMC manifold s(t) = 0, we can derive that

(t) = e(0) exp(−kt) (24)

hich cannot ensure that the system state convergences to 0 in
finite time. To overcome this problem, ISMC is combined with

he Terminal SMC which can realize finite-time tracking. There
re two types of ITSMC named ITSMC1 and ITSMC2, which add
terminal attractor to the proportional term or integral term.
hen adding the terminal attractor to the proportional term, the

TSMC1 sliding mode surface is as follows [31]:

(t) = α

∫ t

0
e(τ )dτ + ep1/p2 (t), α> 0 (25)

here p1 and p2 are positive odd integers satisfying 1 < p1/p2 <
.
On the other hand, the ITSMC2 can be described as

(t) = e(t) + β

∫ t

eq1/q2 (τ )dτ , β> 0 (26)

0
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Fig. 6. Simulation waveforms of the ISMC, ITSMC1, and ITSMC2 for the same
nonlinear system. (a) System output response. (b) Error response. (c) Control
input response.

where q1 and q2 are odd integers satisfying q2 > q1 > 0.
For (25), we defined the integral term eI (t) =

∫ t
0 e(τ )dτ , and

assured eI (0) = −ep1/p2 (0)/α, when s(t) = 0, we can derive that

Tf 1 =
|e(0)|p1/p2−1

α(1 − p2/p1)
(27)

Similarly, we can derive the convergent time from (26):

Tf 2 =
|e(0)|1−q1/q2

β(1 − q1/q2)
, (assuring eI (0) = −

e(0)
β

) (28)

The performance of the ISMC and two ITSMCs is compared
sing numerical simulations. System parameters are selected as
(x) = 5 sin(x), g(x) = 6sgn(x), and d = 2 sin(π t/4). Controller
arameters are selected q = 3, q = 5, p = 5, p = 3 and
1 2 1 2

6

k = α = β = 5. The initial state is set as x(0) = 10. The
eaching law parameters are set as m = n = 30, λ = 1/3. Fig. 6
ompares the performance of the ISMC, ITSMC1 and ITSMC2. The
ollowing conclusions can be obtained from (27), (28) and Fig. 6.
hese controller have the desirable tracking performance when
he control system is influenced by the nonlinear team f (x), g(x)
nd the disturbance term d(t). When the system error satisfies
e(t)| ≥ 1, the ISMC reaching speed is more superior than ITSMCs.
ut when |e(t)| < 1, the finite-time convergent advantage of
TSMCs appears. It can be seen that when (27) and (28) have
he same denominator, ITSMC1 has faster convergent speed when
e(t)| < 1 and is more robust but with unexpected chattering. It
s also noticeable that ITSMC1 is singular, because the controller
utput will be gigantic especially when the error tends to zero.

.3. FITSMC and controller design

To overcome the shortcomings of the above ISMC and ITSMCs,
FITSMC with fast convergent property is defined as

(t) = e(t) +

∫ t

0
[αsgn (e (τ ))+β|e (τ )|q1/q2sgn (e (τ ))]dτ (29)

here e(t), β, q1, q2 are defined the same as in the ITSMC2, α > 0
s a constant that requires to be designed.

On the FITSMC manifold s(t) = 0, there is

˙(t) = −αsgn(e(t)) − β|e(t)|q1/q2sgn(e(t)) (30)

Compared with (26), (29) contains an integral term of αsgn(e).
t ensures that the speed tracking error converges faster when it
s distant from the equilibrium point. The beginning value of the
ntegration, −e(0), ensures that s(t) is always remained at zero.
urthermore, by solving (30), the convergent time Tf 3 makes e(t)
each e(Tf 3) = 0 from e(0). Then, Tf 3 is calculated as

f 3 =
|e(0)|
2α

+
|e(0)|1−q1/q2

2β(1 − q1/q2)
(31)

hich indicates that the finite-time convergent advantage of
TSMC is not affected and the FITSMC also offers a faster conver-
ent rate for tracking error than the ITSMC2.
Defining the speed tracking error of the PMSM system eω =

ref
m − ωm, where ωref

m denotes the mechanical angular velocity
eference. Then, the sliding mode surface is designed as

(t) = eω(t) +

∫ t

0
[αsgn (eω (τ ))+β|eω (τ )|q1/q2sgn (eω (τ ))]dτ

(32)

Taking derivative of (32), and then combining with the reach-
ng law (23) yields

˙
ref
m −

3pnψf 0

2J0
i∗q − ε(t) + αsgn(eω) + β|eω|q1/q2sgn(eω)

= −m|s|λsgn(s) − ns
(33)

Thus, the control law can be obtained as

∗

q =
2J0

3pnψf 0
[m|s|λsgn(s) + ns + ω̇ref

m + β|eω|q1/q2sgn(eω)

+ αsgn(eω) − ε(t)]
(34)

The control law is non-singular, as can be noticed from (34),
ut the αsgn(eω) will cause higher chattering than ITSMC2. To
inimize chattering brought by the sign function, a sigmoid

unction is used to replace it, which is given as follows

igmoid(µ, eω) =
2

− 1 (35)

1 + exp(−µeω)
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Fig. 7. Block diagram of the FITSMC with ILC-DOB for the speed regulation.

here µ > 0 and µ = 2 is selected to acquire a compromise
etween the robustness and chattering.
Finally, the control structure of FITSMC with ILC-DOB is shown

n Fig. 7. According to Fig. 7, the ILC-DOB firstly estimates the
isturbance of the PMSM system, and then feed-forward compen-
ates for the FITSMC controller with the estimation value. And by
ewriting (34), the control law is obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂ωmj =
3pnψf 0

2J0
i∗qj + ε̂j

ej = γ (ωmj − ω̂mj) + (1 − ξ )ej−1

ε̂j = Kej

i∗q =
2J0

3pnψf 0
(m|s|λsgn(s) + ns + ω̇ref

m − ε̂j + αsigmoid(2, eω)

+ β|eω|q1/q2sgn(eω))

(36)

here ωmj, ω̂mj, i∗qj, ε̂j denote the actual and estimated rotor me-
chanical angular velocity, the reference current of q axis, and the
estimated disturbance for the jth iteration cycle, respectively; ej,
j−1 represent the estimated error of the rotor mechanical angular
elocity of the jth and j-1th iteration cycles, respectively.
The overall control diagram based on the FITSMC with ILC-DOB

s shown in Fig. 8. To analyze the stability of the above FITSMC
ith ILC-DOB control law, Lyapunov function at jth iteration is
onstructed as follows

j = V 1
j + V 2

j + V 3
j (37)

where V 1
j =

⏐⏐sj⏐⏐, V 2
j =

1
2γK

∫ t
0 rTj rjdτ , rj = εj − ε̂j, V 3

j =

1
2
(ωmj − ω̂mj)2. sj is the sliding mode surface of the jth iteration

after introducing the ILC-DOB. Substituting (36) into (32), we can
get

ṡj = −m
⏐⏐sj⏐⏐λsgn(sj) − nsj − rj (38)

Thus, the change of the first Lyapunov function V 1
j between

wo sequent iterations can be derived as:

V 1
j =

⏐⏐sj⏐⏐ −
⏐⏐sj−1

⏐⏐
=

∫ t

0
sgn(sj)ṡjdτ−

⏐⏐sj−1
⏐⏐

= −

∫ t

0
sgn(sj)rjdτ +

∫ t

0
sgn(sj)(−m

⏐⏐sj⏐⏐λsgn(sj) − nsj)dτ

−
⏐⏐sj−1

⏐⏐

(39)

7

The change of the second Lyapunov function V 2
j between two

sequent iterations has the following form:

∆V 2
j =

1
2γK

∫ t

0
(rTj rj − rTj−1rj−1)dτ

=
1

2γK

∫ t

0
(ε̂j−1 − ε̂j)(2(εj − ε̂j) + ε̂j − ε̂j−1)dτ

= −

∫ t

0
rj(ωmj − ω̂mj)dτ +

ξ

γ

∫
rjej−1dτ

−
1

2γK

∫ t

0
(ε̂j − ε̂j−1)

2dτ

(40)

The change of the third Lyapunov function V 3
j between two

sequent iterations can be written as:

∆V 3
j =

1
2
(ωmj − ω̂mj)2 −

1
2
(ωmj−1 − ω̂mj−1)2

=

∫ t

0
(ωmj − ω̂mj)(ω̇mj −

˙̂ωmj)dτ −
1
2
(ωmj−1 − ω̂mj−1)2

=

∫ t

0
(ωmj − ω̂mj)rjdτ −

1
2
(ωmj−1 − ω̂mj−1)2

(41)

The change of the Lyapunov function Vj between jth and j-1th
iteration can be obtained by adding above all together.

∆Vj =∆V 1
j +∆V 2

j +∆V 3
j

= −

∫ t

0
sgn(sj)rjdτ − n

∫ t

0

⏐⏐sj⏐⏐ dτ −
⏐⏐sj−1

⏐⏐
−

1
2γK

∫ t

0
(ε̂j − ε̂j−1)

2dτ −
1
2
(ωmj−1 − ω̂mj−1)2

+

∫ t

0
sgn(sj)(−m

⏐⏐sj⏐⏐λsgn(sj))dτ +
ξ

γ

∫ t

0
rjej−1dτ

(42)

Considering that ξ/γ is relatively small, then the equation
entioned above satisfies

Vj ≤

∫ t

0
sgn(sj)(−m

⏐⏐sj⏐⏐λsgn(sj) − rj)dτ (43)

Let the reaching law coefficient satisfy m ≥
|rj|
|sj|λ

, then ∆Vj is

emi-negative definite and s ̸= 0,∆Vj < 0. Therefore, the stabil-
ty condition of the control law (36) is satisfied. It is guaranteed
hat the speed tracking error of PMSM system can arrive to 0 from
ny initial values.

Fig. 8. Structure diagram of the FITSMC with ILC-DOB.
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Fig. 9. Photograph of the experimental setup.

Table 1
PMSM parameters.
Parameter Quantity Parameter Quantity

Rated power Pr 5.5 kW Stator resistance Rs 0.675 �
Rated speed Sr 250 rpm Stator inductance Ls 0.0065 H
Rated torque Tr 10 N m Flux linkage ψf 0.29 V s
Rated currentIr 7 A Number of pole pairs pn 3
Current sample period 100 µs Inertia J 0.0425 kg m2

Speed sample period 1 ms Viscous damping B 0.02 N m s

5. Experimental results analysis

To test the effectiveness of the presented FITSMC with ILC-
OB method, the comparative experiments are performed on
5.5 kW PMSM hardware platform, as shown in Fig. 9. The
roposed FITSMC with ILC-DOB strategy is carried out by a C-
rogram in the 32-bit floating-point DSP TMS320F28335. An 18-
it absolute optical encoder is adopted to precisely acquire the
otor speed and position measurement signals. Encoder and A/D
ata processing, the protection of system fault and generation
f inverter switching signals are realized by using the FPGA-
P3C40F324. In the experiment, a magnetic powder brake is
pplied to produce the external load.
8

The classical PI, ISMC, ITSMC2 and the presented FITSMC and
FITSMC with ILC-DOB methods are studied under different work-
ing conditions, which are no-load, sudden load, and sudden un-
load scenarios. Table 1 presents the main nominal parameters of
the PMSM. As a matter of fairness, identical PI current controllers
are implemented in the above methods. The parameters of cur-
rent controllers are: proportional gain Kcp = 2.7, integral gain
ci = 340.

.1. Step response and disturbance rejection performance

This section discusses the performance of the step response
nd disturbance rejection between PI, ISMC, ITSMC2 and FITSMC
ethods. Let above controllers track a step signal (ωref

m = 100
/min). Then, the load torque TL = 1.5 N m is added suddenly at
= 16 s and when t = 25 s it is removed suddenly to test the
isturbance rejection effect. Moreover, the parameters of the PI
peed controller are Ksp = 0.07, Ksi = 0.12. The parameters of
he ISMC, ISMC2 and FITSMC controllers are selected k = 2, α =

, β = 2,m = 2, n = 10, λ = 0.6, q1 = 3, q2 = 5.
Fig. 10 show the speed responses using four different al-

gorithms to a step signal. From Fig. 10(a), it can be obtained
that the settling time to 5% tolerance during the startup pro-
cess is 1.088, 1.274, 2.227, and 1.027 s under PI, ISMC, ITSMC2
and FITSMC methods, separately. Moreover, the settling time to
2% tolerance during the startup process is 1.744, 1.522, 2.477,
and 1.354 s under PI, ISMC, ITSMC2 and FITSMC methods, sep-
arately. Moreover, it is obvious that the PI controller’s speed
response contains a 5.185% overshoot and the speed response of
the FITSMC controller contains a 2.885% overshoot, while those
ISMC and ITSMC2 control methods do not. It is also obvious that
the step response of the proposed FITSMC controller has the
shortest settling time into the given tolerance in the aforemen-
tioned four methods, despite of a mild overshoot. Compared with
the ISMC and ITSMC2 methods, the proposed FITSMC controller
ensures a faster convergence of the speed tracking error in the
entire startup process.

Meanwhile, sudden load and unload experiments are con-
ducted to test the robustness of the conventional PI, ISMC, ITSMC2
and improved FITSMC controllers. Fig. 10(b) and (c) depict the
comparing results using the PI, ISMC, ITSMC2, and FITSMC meth-
ods under a 1.5 N m load. When the load is added abruptly, the
Fig. 10. Speed responses of PI, ISMC, ITSMC2 and FTSMC methods at 100 rpm (a) Step responses under no-load condition. (b) Sudden load responses under 1.5 N
load. (c) Sudden unload responses under 1.5 N m load.
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Table 2
Performance comparison during startup and load transient of the PI, ISMC, ITSMC2 and FITSMC methods.
Control method Startup settling time (s) Startup overshoot (%) Speed drop (rpm) and settling time

(s) Adding 1.5 N m load
Speed rise (rpm) and settling time (s)
removing 1.5 N m load

±5% ±2%

PI 1.088 1.744 5.185 6.6 2.16 6.2 2.42
ISM 1.274 1.522 None 5.4 2.14 5.6 2.62
ITSMC2 2.227 2.477 None 4.6 1.33 3.9 1.58
FITSMC 1.027 1.354 2.885 3.0 0.69 2.7 0.87
l
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c
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d
i
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s
t
1
1
1
t
0
p
c

speed drop of the PI, ISMC, ITSMC2, and FITSMC methods is 6.6,
5.4, 4.6, and 3.0 rpm, respectively, and the settling time of the PI,
ISMC, ITSMC2, and FITSMC methods is 2.16, 2.14, 1.33 and 0.69
s, respectively. When the load is removed suddenly, the speed
rise of the PI, ISMC, ITSMC2, and FITSMC methods is 6.2, 5.6,
3.9, and 2.7 rpm, respectively, and the settling time of the PI,
ISMC, ITSMC2, and FITSMC methods is 2.42, 2.62, 1.58 and 0.87
s, respectively. The conclusion can be drawn from Fig. 10(b) and
(c) that the improved FITSMC has stronger disturbance rejection
capability and shorter recovery time than the other controllers.
In Table 2, several important performance indices among the PI,
ISMC, ITSMC2, and FITSMC methods are listed.

5.2. Torque ripple suppression evaluation

To further investigate the effectiveness of the ILC-DOB on
mproving disturbance rejection ability and torque ripple mini-
ization, experiments are carried out under sudden load, higher
peed (100 r/min) and lower speed (20 r/min) conditions by using
he FITSMC and FITSMC with ILC-DOB methods.

Firstly, the observation effect between the traditional high-
ain DOB and the ILC-DOB are compared. The experimental pa-
ameters of the two types of observers are set as K = 3, ξ = 0.2,
and γ = 1. The experimental responses of the high-gain DOB and
ILC-DOB from no load to 1.5 N m load to no load condition are
shown in Fig. 11. As shown in Fig. 11, the ILC-DOB can estimate
the lumped disturbance as the high-gain DOB, and the estimated
disturbance under the ILC-DOB is much faster than the high-gain
DOB when the load torque changes. Moreover, it is clear from the
experimental results that the ILC-DOB can observe the lumped
disturbance more precisely as expected.

Then, we compare the PMSM regulation system performance
at 100 rpm under the FITSMC with ILC-DOB and FITSMC. The
experimental results of the FITSMC and FITCMC with ILC-DOB
methods are shown in Figs. 12–16. Fig. 12 shows the dynamic

Fig. 11. The estimated lumped disturbance of the high-gain DOB and ILC-DOB
nder 1.5 N m load.
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Fig. 12. Sudden load responses of FITSMC, FITSMC with ILC-DOB methods under
1.5 N m load at 100 rpm.

speed responses from no-load startup to sudden load condition.
As shown in Fig. 12, when beginning under no-load, the speed
response of the FITSMC with ILC-DOB controller contains a 3.01%
overshoot. The settling time of the FITSMC with ILC-DOB method
to the 5% and 2% tolerance during the starting process are 0.857
and 1.755 s, respectively. It is noticeable that the startup perfor-
mance between the FITSMC and FITSMC with ILC-DOB methods is
approximately close, while the steady-state error of the latter has
been reduced from ±1.237 to ±0.513 rpm. Moreover, when the
oad is added abruptly, the speed response of the FITSMC with
LC-DOB controller drops by 2.1 rpm and after 0.44 s of adjust-
ent, the motor speed returns to the reference. The experimental

esults validate that the proposed ILC-DOB combined with the
orresponding FITSMC has more satisfactory robustness to the
isturbance and lower speed ripples.
In order to demonstrate the capability to suppress periodic

isturbance of the ILC-DOB, the fast Fourier transformation (FFT)
s utilized to analyze the speed fluctuations with the FITSMC and
ITSMC with ILC-DOB methods. The speed data in the steady-
tate period of 5–15 s is employed for FFT analysis and to obtain
he 1st, 2nd, 6th and 12th harmonic components. Figs. 13(a) and
4(a) show the steady-state speed response and Figs. 13(b) and
4(b) show the FFT analysis of the related speed. Figs. 13(c) and
4(c) depict the phase current Ia response. As shown in Fig. 13(b),
he 1st, 2nd, 6th, and 12th harmonic contents are 0.0715, 0.0280,
.0029, and 0.0634 rpm, separately. When the ILC-DOB is com-
ensated for the speed loop, the 1st, 2nd, 6th, and 12th harmonic
omponents decrease to 0.0164, 0.0192, 0.0021, and 0.0519 rpm.
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Fig. 13. Experimental waveforms using the FITSMC method at 100 r/min: (a) speed response; (b) harmonic amplitudes of the speed steady state. (c) Ia response.

Fig. 14. Experimental waveforms using the FITSMC with ILC-DOB method at 100 r/min: (a) speed response; (b) harmonic amplitudes of the speed steady state. (c)
Ia response.

Fig. 15. Experimental waveforms using the FITSMC method at 20 r/min: (a) speed response; (b) harmonic amplitudes of the speed steady state. (c) Ia response.

Fig. 16. Experimental waveforms using the FITSMC with ILC-DOB method at 20 r/min: (a) speed response; (b) harmonic amplitudes of the speed steady state. (c) Ia
response.

10
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Fig. 17. Harmonic amplitudes comparison between the FITSMC and FITSMC with
ILC-DOB methods: (a) at 100 r/min; (b) at 20 r/min.

Simultaneously, the phase current is obviously smoother after
the implementation of the ILC-DOB, which indicates that torque
ripple is suppressed effectively.

Considering torque ripples are more pronounced when the
PMSM operates at a lower speed, experiments are also conducted
under lower speed operating condition (20 r/min). Figs. 15(a)
and 16(a) show the steady-state speed response at 20 rpm and
Figs. 15(b) and 16(b) show the FFT analysis of the related speed.
Figs. 15(c) and 16(c) show the phase current Ia response. When
the ILC-DOB is compensated for the speed loop, the steady-state
error of the FITSMC with ILC-DOB has been reduced from ±1.433
to ±0.521 rpm. And as shown in Figs. 15(b) and 16(b), the 1st,
2nd, 6th, and 12th harmonic components decrease from 0.1272,
0.0785, 0.0073 and 0.0139 rpm to 0.0290, 0.0599, 0.0013, and
0.0155 rpm, respectively. Similarly, the phase current is smoother
after the implementation of the ILC-DOB.

Additionally, Fig. 17 gives a histogram representation of the
harmonic amplitude outcomes of the two different methods. The
experimental results indicate that compared with the FITSMC
method, the FITSMC with ILC-DOB method ensures torque rip-
ple suppression to a certain extent under both high and low
operating speed.

According to the above-mentioned comparative results, it is
validated that the proposed FITSMC with ILC-DOB method has
the advantages of faster response and better disturbance rejection
capability.

6. Conclusion

In this paper, a innovative FITSMC with ILC-DOB strategy
is investigated to enhance the disturbance rejection capability
and attenuate torque ripple in PMSM system. Compared with
the ITSMC controller, the improved FITSMC controller provides a
faster error convergent speed when the tracking error is distant
from the equilibrium point. In addition, the presented ILC-DOB
can effectively estimate the periodic disturbance. After the dis-
turbance estimation of ILC-DOB is feed-forward to the FITSMC
controller, the FITSMC with ILC-DOB method can reduce the
dynamic speed tracking error and suppress the phenomenon of
torque ripple effectively. The superiority of the proposed method
is validated by comparing it with traditional methods. This work
can be developed further for application to PMSM drive systems
with various types of disturbances.

However, when the motor operates under heavy loads, the
torque ripples will include more nonintegral order harmonics
from the load side, which decreases the estimation performance
of the proposed observer. In the future, using adaptive tech-
niques to improve estimation performance for disturbances of

nonintegral order harmonics is a promising research direction.
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