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In thisminireview, we comprehensively reviewed recent progress on fabricating

anti-icing/de-icing surfaces by femtosecond laser technologies. Typical

bioinspired micro-/nano-structures fabrication strategies, superhydrophobic

surfaces with anti-icing properties, and photothermal surfaces with de-icing

properties are summarized. At last, we discussed challenges and prospects in

anti-icing/de-icing surfaces fabricated by femtosecond laser technologies.
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1 Introduction

Icing shows serious problems in power, energy, and communications (Pan et al., 2015;

Han et al., 2020a). Traditional de-icing technologies include manual, mechanical, thermal,

laser, electromagnetic, and ultrasonic field (Dhyani et al., 2022; Huang et al., 2022).

Among various traditional de-icing technologies, manual de-icing technology is the most

commonly used. But manual de-icing is low efficiency and high cost (Cheng et al., 2022;

Patel et al., 2022). In the past decade, inspired by nature, significant progress in de-icing/

anti-icing has been developed (Yi et al., 2021; Jiao et al., 2023). For example, inspired by

the superhydrophobic properties of lotus leaves, researchers have successfully prepared

superhydrophobic surfaces for anti-icing (Han et al., 2020b; Chen et al., 2022). Inspired by

moth eyes, micro-/nano-structures convert light into thermal energy under sunlight

irradiation leading to ice melting, which is energy-saving, environmentally friendliness,

and low-cost (Zhao et al., 2021; Chen et al., 2022; Liu et al., 2022).

Femtosecond laser fabrication technologies have advantages in ultrashort pulse

duration, ultra-high instantaneous power, ultra-fine processing structure (You et al.,

2020; Zheng et al., 2020; Fu et al., 2021; Zhang et al., 2021; Jin et al., 2022). In particular,

the fine micro-/nano-structures play a vital role in the aspect controlling surface

wettability, such as de-icing, anti-icing, superhydrophobic, superoleophobic, and

slippery surface (Yong et al., 2017; Yong J. et al., 2019; Feng and Yong, 2020; Yong

et al., 2020; Yong et al., 2022a). Compared with other micro-/nano-fabrication

technologies, femtosecond laser shows distinguish advantages in flexible realizing

three-dimensional micro-/nano-structures for a variety of materials (Liu et al., 2020;

Fang et al., 2021; Somers et al., 2021; Wang et al., 2021).
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FIGURE 1
Fabrication of anti-icing/de-icing surfaces using the femtosecond laser. (A) Femtosecond laser direct writing experimental setup. (B) The
scheme for laser scanning. (C) The scheme for the interaction between femtosecond laser andmaterials. Reproduced under the terms of the CC-BY
Creative Commons Attribution 4.0 International License (Yong et al., 2022a) Copyright 2022, The Authors, Published by AAAS. Reproduced under the
terms of the CC-BYCreative Commons Attribution 3.0 International License (Yong et al., 2022b) Copyright 2022, The Authors, Published by IOP
Publishing Ltd. Reproduced from (Yong J. L. et al., 2019) with permission of American Chemical Society. (D) SEM images of mound structures.
Reproduced from (Huang et al., 2018) with permission of Laser Institute of America. (E) SEM images of periodic square-shaped structures.
Reproduced under the terms of the CC-BYCreative Commons Attribution 4.0 International License (Volpe et al., 2020) Copyright 2020, The Authors,

(Continued )
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In this minireview, we comprehensively reviewed recent

progress on fabricating anti-icing/de-icing surfaces by

femtosecond laser technologies. Typical bioinspired micro-/

nano-structures fabrication strategies, superhydrophobic

surfaces with anti-icing properties, and photothermal surfaces

with de-icing properties are summarized. At last, we discussed

challenges and prospects in anti-icing/de-icing surfaces

fabricated by femtosecond laser technologies.

2 Fabrication of structured surfaces

Micro-/nano-structures are essential in superhydrophobic

anti-icing surface and photothermal de-icing surfaces.

Figure 1A shows the scheme for typical laser processing

equipment (Yong J. L. et al., 2019; Yong et al., 2022a; Yong

et al., 2022b). A femtosecond laser is focused on the material

surface through an objective lens. The sample is fixed on a

translation stage. During the laser treatment process,

femtosecond laser direct writing occurs on materials surfaces

by moving the translation stage (Figures 1B,C). In the process of

femtosecond laser treatment, high temperature and high pressure

will be formed on the laser focus area (Zhang et al., 2017; Zhang

and Sugioka, 2019; Zhang et al., 2020; Liu et al., 2022; Zhang D. S

et al., 2022). Therefore, various bio-inspired structures have been

fabricated for superhydrophobic anti-icing surfaces and

photothermal de-icing surfaces.

Using the above-mentioned processing equipment, various

bioinspired micro-/nano-structures, such as mound structures,

periodic square-shaped structures, microcones structures,

Siberian-cocklebur-like structures, and moth-eye-inspired

structures, have been fabricated (Huang et al., 2018; Volpe

et al., 2020; Ge et al., 2021; Pan et al., 2021). For example, as

shown in Figure 1D, Huang et al. reported mound-structured

surfaces on an aluminum alloy surface (Huang et al., 2018). The

tall and short mound surfaces were fabricated by controlling the

femtosecond laser fluence, laser spot radius, and different laser

pulses. As shown in Figure 1E, Volpe et al. fabricated periodic

square-shaped structures on aluminum alloy by scanning in

parallel and perpendicular directions (Volpe et al., 2020). The

depth is ~8 μm, and the hatch distance is 10 μm–500 μm.

Impressively, Pan et al. fabricated a triple-scale surface (Pan

et al., 2021). The microcones were prepared by ultrafast laser

ablation. The nano grasses and micro flower were formed on

microcones structures after chemical oxidation (Figure 1F).

3 Superhydrophobic surfaces for
anti-icing

Typically, the contact angle of water droplets on

superhydrophobic surfaces is above 150°. Therefore, water

droplets roll freely on superhydrophobic surfaces. The reason

for superhydrophobic anti-icing surfaces are as follows

(Figure 1G): i. Water droplets are hard to stay on

superhydrophobic surfaces. ii. The formation time of ice

crystals will be delayed. iii. The adhesion will be decreased.

When it comes to superhydrophobic surfaces fabricated by

femtosecond laser technology, Huang et al. fabricated a

superhydrophobic aluminum alloy surface by combining

femtosecond laser technology with surface chemistry

modification technology (Huang et al., 2018). The freezing

delay can be up to 530 s because of excellent

superhydrophobic properties. As a pioneer, Zhong’s group

prepared a superhydrophobic surface with triple-scale

structures (Pan et al., 2021). Notably, the contact angle of

water drops is above 150° (Figure 1H). The ice adhesion is

~1.7 kPa at -25°C (Figure 1I). Further, Zhong’s group

developed superhydrophobic surfaces with robust icephobic

performance by modification of polydimethylsiloxane on

superhydrophobic surfaces (Che et al., 2022). In addition to

post-modifying, Yin et al. prepared superhydrophobic

polytetrafluoroethylene (PTFE) only by femtosecond laser

technology (Yin et al., 2018). The contact angle of water

drops is 157°. The water froze on the untreated PTFE after

~14 min. In contrast, the water froze on the treated PTFE

after ~33 min.

4 Photothermal surfaces for de-icing

Photothermal surfaces convert solar energy into heat to melt

the ice on the surface. Photothermal surfaces for de-icing show

great features of low-cost and energy saving. As shown in

Figure 1J, the incident light reflects between the micro-/nano-

structures, reducing the reflectivity of materials and improving

FIGURE 1 (Continued)
Published byMDPI. (F) SEM images of triple-scale structures. Reproduced from (Pan et al., 2021) with permission of American Chemical Society.
(G) The scheme for superhydrophobic surfaces with anti-icing properties. Reproduced from (Pan et al., 2021) with permission of American Chemical
Society. (H) The relationship betweenCA and Laplace pressure. Reproduced from (Pan et al., 2021) with permission of American Chemical Society. (I)
The ice adhesion strength of different superhydrophobic surfaces. Reproduced from (Pan et al., 2021) with permission of American Chemical
Society. (J) The scheme for photothermal surfaces with de-icing properties. Reproduced from (Zhao et al., 2021) with permission of Elsevier. (K) The
photothermal performance of laser-treated surfaces. Reproduced from (Chen et al., 2022) with permission of Elsevier. (L) Outdoor de-icing
experiments. Reproduced from (Chen et al., 2022) with permission of Elsevier.
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the absorption of materials. Therefore, sunlight is trapped in

micro-/nano-structures, leading to enhancing light absorption.

It is worth noting that femtosecond laser technology can

fabricate micro-/nano-structures to improve photothermal

conversion ability for de-icing. For example, Zhao et al.

fabricated moth-eye-inspired texturing surfaces for

photothermal de-icing surfaces (Zhao et al., 2021). The

remelted particles wrapped the micro-mountain, increasing

optical path and light absorption. Moth-eye-inspired texturing

surface temperatures rise from room temperature (~30°C) to

~80°C under one sun (1 kW/m2) irradiation for 300 s. After 180 s

of illumination, the ice and melted water slide away. Moreover,

Chen et al. prepared cauliflower-like surfaces for durable

photothermal de-icing (Chen et al., 2022). Because of the

combination of chemical reaction treatment, nanoscale

structures are grown on the aluminum surface. The

absorptivity reaches 97.3%. The high absorptivity results in

better photothermal conversion capability, which is helpful to

improve the photothermal deicing ability. The surface

temperature increases by 48.5 °C within 300 s under one sun

(1 kW/m2) irradiation (Figure 1K), and the ice can melt in 2 min

(Figure 1L).

5 Conclusion and outlook

In this minireview, we comprehensively reviewed fabricating

anti-icing/de-icing surfaces by femtosecond laser technologies.

Typical bioinspired micro-/nano-structures fabrication

strategies, superhydrophobic surfaces for anti-icing, and

photothermal surfaces for de-icing are summarized. The

superhydrophobic anti-icing surface and the photothermal de-

icing surface depend on the bioinspired micro-/nano-structures.

In the future, new concept micro-/nano-structures can be

designed and fabricated to improve anti-icing and de-icing

performance. For example, as a pioneer, Chen’s group

reported the slippery liquid-infused porous surfaces for

excellent ice resistance performance (Zhang J. L et al., 2022).

The ice-delay time of slippery liquid infused porous surfaces was

extended by 21.5% compared with the superhydrophobic surface.

Furthermore, new fabrication technologies (such as laser

interference and multi-beam parallel processing) will be

explored to efficiently prepare large-area anti-icing and de-

icing surfaces using an optical processing system design. In

the future, significant progress will contribute to femtosecond

laser technologies that enable anti-icing/de-icing surfaces into

potential applications in aircraft, ships, and aerospace surfaces.
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