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Abstract: Concentric circular antenna arrays (CCAAs) can obtain better performance than other
antenna arrays. However, high overhead and excessive sidelobes still make its application difficult.
In this paper, we consider the sparse synthesis optimization of CCAAs. Specifically, we aim to turn
off a specific number of antennas while reducing the sidelobe of CCAAs. First, we formulate an
optimization problem and present the solution space. Then, we propose a novel evolutionary method
for solving the optimization problem. Our proposed method introduces hybrid solution initialization,
hybrid crossover method, and hybrid update methods. Simulation results show the effectiveness of
the proposed algorithm and the proposed improvement factors.
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1. Introduction

With the rapid development of computer technology and wireless communication
technology, increasing numbers of users are being connected to the network. However, due
to the large number of users accessing 5G and 6G networks, a single common antenna often
cannot provide sufficient network support for users. Increasing the transmission power of
the antenna alone often cannot improve the network quality, and creates severe interference
problems. In this case, using multiple antennas to form an antenna array and conduct
beamforming can be seen as an effective technique to enhance wireless communication
performance [1].

Specifically, multiple antennas can be controlled by a single controller and then emit
the same electromagnetic wave towards the target. These electromagnetic waves are
superimposed and canceled in free space to generate a beam pattern with a distribution of
strengths and weaknesses [2]. We note that the direction with the strongest gain is called
the mainlobe and the rest are called the sidelobes. By pointing the mainlobe to the target
user, the power received by the target user can be greatly enhanced, thus strengthening the
performance of the antenna system in long-range and high-speed scenarios.

The antennas can be distributed in different manners to form different antenna arrays.
Common antenna arrays include linear antenna arrays, square antenna arrays, Yagi–Uda
antenna arrays, etc. In recent years, concentric circular antenna arrays (CCAAs) [3] have
received a lot of attention from researchers due to their unique advantages and inherent
merits [4]. As shown in Figure 1, CCAAs consist of some concentric circular rings, and
each ring contains a various number of antennas. Compared with other antenna arrays,
CCAAs can perform 360-degree beam scanning to achieve more comprehensive cover-
age [5]. On the other hand, CCAAs can obtain relatively small sidelobes, thus reducing the
interference signals.
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Figure 1. CCAA model.

In existing CCAAs, the excitation current weights of array elements are often set as
uniform, as this scheme requires no further design and is easy to implement. However,
these unoptimized and simple uniform CCAAs have some drawbacks that lead to their
limited application in the real world. Specifically, CCAAs often contain a huge number of
array elements which indeed effectively improve the transmission performance of CCAAs
but cause a large overhead. Actually, in most scenarios, not all array elements need to
be turned on. On the other hand, the sidelobes of uniform CCAAs are also difficult to
suppress, which may generate a great deal of interference to the surrounding devices [6].
Therefore, some of the array elements of CCAAs can be turned off and some array elements
can be assigned low excitation current weights, thereby completing the sparse synthesis
optimization of CCAAs.

The existing methods for performing sparse synthesis are based on the following types
of methods. Some work has utilized deterministic optimization methods to perform sparse
synthesis of various antenna arrays, such as convex optimization methods to determine
which antennas need to be turned off and optimize the excitation current accordingly.
However, these methods often require the relaxation of certain key constraints, leading to a
degradation of the optimization performance. Several works have employed evolutionary
computation to perform sparse synthesis tasks. This is due to the fact that evolutionary
computation is able to solve many NP-hard problems and does not require information
about the gradient of the problem. Therefore, evolutionary computation can be seen
as an effective method to perform the sparse synthesis optimization of CCAAs. For
instance, references [7–9] considers using moth flame optimization, a teaching–learning-
based optimization algorithm, and a cuckoo search algorithm to solve the sparse synthesis
optimization of CCAAs and obtain suitable results.

Most of these methods only consider reducing the sidelobes or decreasing the number
of active antennas as much as possible. However, aiming to keep the transmission power
steady, there also is a requirement to reduce the maximum sidelobe level while switching
off a fixed number of antennas. This requirement has been overlooked in the literature.
Note that turning off a specific number of array elements of CCAAs while optimizing
sidelobes is challenging because the structure of the decision variables will be changed.
Different from these methods, we aim to turn off the specific number of antennas while
reducing the sidelobe of CCAAs via a novel evolutionary algorithm in this work. Our
contributions are summarized as follows.

• We formulate a novel optimization problem to turn off a specific number of antennas
while reducing the sidelobes of CCAAs. The problem is challenging because it involves
both binary and continuous decision variables and is an NP-hard problem.

• We propose an enhanced whale optimization algorithm (EWOA) to solve our formu-
lated problem. EWOA introduces chaos theory and thereby proposes a novel hybrid
solution initialization method. Moreover, we propose a hybrid solution crossover
approach to balance the exploitation and exploration abilities of the EWOA. Finally, we
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propose a hybrid solution update method to handle the specific structure of the prob-
lem. After being enhanced, the proposed EWOA is more suitable and efficient in solv-
ing our considered problem and has a main difference from the conventional EWOA.

• We conduct extensive simulations to verify the performance of the proposed EWOA.
The simulation results show that the proposed EWOA is effective and outperforms
other peer algorithms. Moreover, the proposed improved factors are also evaluated
and demonstrated.

The rest of the paper is organized as follows. In Section 2, we briefly present some
existing works in terms of deterministic methods and evolutionary approaches. Moreover,
Section 3 introduces the considered models and formulates our problem. In addition, we
propose the EWOA and the corresponding improved factors in Section 4. Furthermore,
Section 5 conducts the simulations. Finally, the paper is concluded in Section 6.

2. Related Works

In this work, we consider using an evolutionary algorithm to solve the antenna
optimization problem. Thus, in this part, we briefly present some existing works in the
fields of deterministic methods and evolutionary approaches.

2.1. Deterministic Methods

Some works use deterministic methods to determine the excitation current weights
of array elements. For instance, Buttazzoni et al. [10] proposed an iterative algorithm
for sparse antenna arrays which introduces a compressive sensing approach for trans-
forming the original non-convex optimization problem into a convex problem. Moreover,
the authors in [11] proposed a deterministic approach to the optimal power synthesis
of mask-constrained shaped beams through the CCAAs. Additionally, Fan et al. [12]
formulated a unified sparse array design framework for beam pattern synthesis based
on this design metric. The authors in [13] discussed a novel technique for sparse array
synthesis in which the synthesis strategy was based on a sparse forcing algorithm using
an improvement of reweighted minimization. In [14], a novel analytical approach to the
synthesis of linear sparse arrays with non-uniform amplitude excitation was presented and
thoroughly discussed. Comisso et al. [15] presented an iterative algorithm for the synthesis
of the 3D radiation pattern generated by an antenna array of arbitrary geometry. However,
these methods often require a relaxation of certain key constraints, leading to a degradation
of the optimization performance.

2.2. Evolutionary Computation Approaches

Some approaches have adopted various evolutionary computation approaches to
perform sparse synthesis tasks. For example, the authors in [4] used three evolutionary
optimization algorithms, quantum particle swarm optimization (QPSO), teaching–learning-
based optimization (TLBO), and symbiotic organism search (SOS), to thin the CCAAs.
Moreover, Dutta et al. [16] proposed an improved version of QPSO to minimize the SLLs of
CCAAs, in which the array elements have been considered to be uniformly excited with
unit excitation amplitude. In [7], the authors presented an accurate approach based on moth
flame optimization (MFO) to solve the CCAA synthesis problem for achieving lower SLL.
In addition, Ismaiel et al. [17] proposed an optimization method based on a comprehensive
learning particle swarm optimizer (CLPSO) to reduce the SLL of CCAAs, in which the
excitation current weights are considered. In [18], a method based on a combination of
ant lion optimizer and sequential quadratic programming was proposed for concentric
circular antenna array (CCAA) synthesis, in which excitation amplitudes of array elements
were optimized for CCAAs with low maximum sidelobe level (MSL), narrow first null
beamwidth (FNBW), and low dynamic range ratio (DRR). Challa et al. [19] presented an
optimized CCAA of antennas based on biogeography-based optimization (BBO). In [20],
the authors used a political optimizer (PO), which is a novel evolutionary algorithm, to
reduce the SLL of the CCAA. However, most of these methods only consider reducing the
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sidelobes or decreasing the number of the activated antennas as much as possible and do
not consider turning off the specific number of array elements of CCAAs while decreasing
the sidelobes.

Different from these works, we consider turning off a specific number of antennas
while reducing the sidelobe of CCAAs via a novel evolutionary algorithm in this work. The
details of our model and problem are presented as follows.

3. Model and Problem

In this section, we first present our considered CCAA model. Then, we formulate our
considered sparse synthesis optimization problem in CCAAs.

3.1. CCAA Models

We show CCAA models in Figure 1. As can be seen, CCAAs consist of some con-
centric circular rings, and each ring contains a various number of antennas. Moreover,
we assume that each antenna element of CCAA is radiation isotropic. In addition, all the
antenna elements of CCAA are controlled by a centralized process and these antennas are
synchronized in terms of time, frequency, and initial phase. Furthermore, all the antenna
elements are fixed and the relative positions cannot be changed.

In this case, the electromagnetic waves generated by all the array elements will be
precisely superimposed at the receiver and offset in some directions. Intuitively, these
antennas will generate a beam pattern that contains a mainlobe and some sidelobes [21].
Mathematically, we can use the array factor as the index to show the signal strength of the
CCAA system. In CCAAs, the array factor is a complex function of the excitation current
weights of array elements of CCAAs, which is shown as follows [22].

F(θ, φ) =
M

∑
m=1

Nm

∑
n=1

Imn · ej[krm sin(θ) cos(φ−φmn)]+γmn , (1)

where M is the number of concentric rings. Moreover, Nm is the number of antennas of
the mth concentric rings, where m = 1, 2, . . . , M. Note that we use NT to denote the total
number of antennas in the CCAA, which can be calculated as NL = ∑M

m=1 Nm. In addition,
k = 2π/λm, where λ is the wavelength. Additionally, rm is the radius of the mth circle
with the value of Nmdm/2π, wherein dm is the spacing between the elements on the mth
concentric rings. Furthermore, θ and φ are the zenith and azimuth angles, θ0 and ϕ0 are
the directions of the mainlobe, and φmn is the central angle of the nth antenna element of
the mth concentric rings. The most important parameters of Equation (1) are Imn and γmn,
where Imn is the excitation current weight of nth antenna element of the mth circle and
γmn is the initial phase of nth antenna element of the mth circle. We assume that the initial
phase of all the antennas are synchronized, thus γmn can be calculated as follows.

γmn = −kγm sin(θ0) cos(ϕ0 − ϕmn). (2)

3.2. Inactivated or Activated Antenna Model

In this work, we aim to turn off a specific number of array elements in CCAAs
while achieving some other optimization objective. Thus, we introduce our inactivated or
activated antenna model in this section.

Specifically, we consider the use of a binary vector B = {b1, b2, . . . , bNT} to denote the
antenna’s inactivated or activated condition. As shown in Figure 2, we use 0 to indicate that
the antenna is not turned on, and 1 to indicate that the antenna is turned on. Mathematically,
this model can be expressed as follows.

bl =

{
0, The lth antenna is turned off,
1, The lth antenna is turned on.

(3)
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Figure 2. Inactivated or activated antenna model.

3.3. Sidelobe Suppression Model

As previously mentioned, the portion of the signal that is not the mainlobe belongs to
the sidelobes. Therefore, it is difficult for us to evaluate the suppression of the sidelobes
in a beam pattern. Generally speaking, we use the maximum sidelobe level (SLL) as a
performance index to evaluate the suppression of the total sidelobes. This is because once
the maximum SLL is suppressed, all the sidelobes will be suppressed. Mathematically, the
calculation of the maximum SLL is as follows:

fsll(I) =
B|AF(θSLL)|
|AF(θML)|

, (4)

where I = {I1, I2, ..., INT} is a vector denote the excitation current weights of the total
antennas.

3.4. Optimization Problem

In this work, we aim to turn off a specific number of antennas while reducing the
sidelobe of CCAAs. Based on the models and analyses above, we can carefully control B
and I to optimize the maximum SLL. Specifically, our considered optimization problem
can be expressed as follows:

min
{B,I}

f = fsll (5a)

s.t. 0 6 Il 6 1, ∀l ∈ NT (5b)

bl = [0, 1], ∀l ∈ NT (5c)

We mention that our considered problem is a very complex optimization problem.
Specifically, controlling the excitation current weights of antennas to minimize the max-
imum SLL is already an NP-hard problem. Our problem is more complicated than that,
which means that our problem is also a complex NP-hard problem. Moreover, most ex-
isting works only consider optimizing the excitation current weights, which only have
continuous decision variables. Likewise, there are also some works that only consider
determining whether the antennas should be switched on or switched off, which only have
binary decision variables. Different from these works, we consider both excitation current
weight and antenna switched-on optimizations. Thus, our formulated problem involves
both continuous and binary decision variables, which is difficult to solve with the existing
methods. In this case, a powerful high-performance algorithm is urgently needed to solve
our problem.

4. Proposed Algorithm

In this section, we aim to propose a novel and powerful algorithm to solve our
considered problem. To this end, we introduce an evolutionary computation method and
then enhance the algorithm, thereby achieving better objective values by controlling the
decision variables of B and I.

4.1. Overview of Evolutionary Computation

Evolutionary computation is a very popular advanced optimization method in recent
years. Evolutionary computation refers to the rules and guidelines of nature, physics, and
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chemistry, so as to abstract important mathematical models with solution significance,
thereby achieving the purpose of searching the solution space [23].

Specifically, most evolutionary computation algorithms generate a population in
which each individual in the population is a solution to the problem to be solved. These
individuals can be evaluated by an objective function, and the corresponding individuals
with high objectives will have higher values. Individuals in the population are constantly
updated in iteration, and individuals with high values can influence individuals with low
values to update. In this way, through continuous iteration, the algorithm can continuously
search for better solutions in the solution space.

Mathematically, we denote the population as P, in which P = {X1, X2, ..., XNpop},
wherein Xi is the ith solution of the population. Moreover, Xi must be a feasible so-
lution to the optimization problem shown in Equation (5), which can be denoted as
Xi = {x1, x2, ..., xNdim} = {Bi, Ii}.

4.2. Conventional Whale Optimization Algorithm

Among the various evolutionary computation algorithms, the whale optimization
algorithm (WOA) is a recently proposed algorithm with high performance. In some
engineering problems, WOA often achieves better performance than other algorithms.
WOA considers th prey-encircling spiral bubble-net feeding maneuver, and the search for
prey of the whale population. These models can be expressed as follows.

4.2.1. Encircling Prey

Whales can find prey and surround them. The WOA algorithm allows individuals
other than other individuals to update their positions to approach the optimal position,
which can be expressed as follows.

~D =
∣∣∣~C · X∗(t)− X(t)

∣∣∣,
X(t + 1) = X∗(t)− ~A · ~D,

(6)

where t indicates the iteration, X∗ is the position vector of the best solution of current
population, and || is the absolute value operator. The coefficient vectors A and C can be
calculated as follows.

~A = 2~a · r−~a,
~C = 2r,

(7)

where a is a parameter that is linearly decreased from 2 to 0 through the iteration and r is a
random number [0, 1].

4.2.2. Bubble-Net Attacking Method

The bubble-net attacking method contains two methods which are detailed as follows.

(i) Shrinking encircling mechanism. This behavior is achieved by reducing the value of
parameter a, and the details can be found in [24].

(ii) Spiral updating position. WOA uses a helix-shaped movement of humpback whales
to guide the update of the population, which can be shown as follows.

−→
D′ = |X∗(t)− X(t)|,
X(t + 1) =

−→
D′ · ebl · cos(2πl) + X∗(t),

(8)

where
−→
D′ is the distance between the current whale and prey, b is a constant parameter, and

l is random in [−1, 1].

4.2.3. Search for Prey

WOA develops a random selection method to enhance the exploration capabilities of
the algorithm, as follows.
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~D =
∣∣∣~C · Xrand − X

∣∣∣,
X(t + 1) = Xrand − ~A · ~D,

(9)

where Xrand is a random position vector.

4.2.4. Shortcomings

Although WOA has many inherent advantages, there are still some flaws and urgent
problems in WOA that are relevant to solving our problem. For example, the problem
requires that the partial decision variables be binary, and the partial decision variables
are continuous variables from 0 to 1. This makes our problem a very intractable mixed
solution optimization problem, which poses a challenge to the solution of WOA. Second, the
development ability and exploration ability required by WOA to solve different problems
are not the same. These flaws prompted us to improve it and propose an improved version
of WOA.

4.3. Proposed Enhanced Algorithm

In order to make WOA more able to solve our optimization problem, we propose
an enhanced WOA (EWOA) in this part. The details and improved factors are shown
as follows.

4.3.1. Hybrid Solution Initialization Method

The conventional WOA uses a stochastic number generator to generate the initial
population. A generated initial population via this type has the following issues. First, this
method will lead to a decrease in the performance of the initial solution, thereby reducing
the convergence performance of the algorithm. Second, our problem is a mixed solution
problem, and a stochastic number generator can only produce continuous solutions. Due
to these reasons, we propose a hybrid solution update method in this part.

First, we generate the continuous part of the solution via chaos maps. Note that chaos
maps are special mathematical structures that include periodic and stochastic continuous
sequences. Because of their characteristics, they are often used in the improvement of
initialization in evolutionary computation algorithms. Specifically, there are about 10 com-
mon chaotic maps, namely, Chebyshev, circle, Gauss/mouse, iterative, logistic, piecewise,
sine, singer, sinusoidal, and tent. In this work, we select an iterative map to generate the
continuous part of the solutions, which can be detailed as follows.

pq+1 = sin
(

cπ

pq

)
, c = 0.7, (10)

where pq is the qth sequence of the iterative map. Then, the continuous part of a solution
can be initialized as follows.

xk = lbk + pq(ubk − lbk), (11)

By using this method, the initial solution generated by the algorithm will have a more
balanced performance, so the algorithm’s performance is better.

Second, we generate the binary part of the solution, which can be detailed as follows.

B = Rand1,0(Nsel , NS − Nsel ), (12)

where Rand1,0(a, b) can generate a vector combined with a ones and b zeros.

4.3.2. Hybrid Solution Crossover

We consider a crossover method to hybridize solutions to enhance the exploration
ability of our proposed algorithm. Specifically, the best solution for the population often
contains the most information and can guide all individuals to explore in a better direction.
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In each iteration, we select some individuals and use the crossover with the best solution
to improve them. The details of this method are as follows. As with the proposed hy-
brid solution initialization method, this crossover method operates on different classes of
solutions separately.

For the discrete part, we first find the discrete dimension which is different from the
best solution and exchange information between the two. Subsequently, we judge whether
the discrete part of the current individual satisfies the selected number of antennas. If
the number is too large or too small, we invert the random selection solution from the
individual until the number of antennas selected by the individual is appropriate.

For the continuous part, we make individuals exchange information with the best
solution with half the probability. The pseudocode for this method is shown in Algorithm 1.

Algorithm 1: Hybrid Solution Crossover.

1 Define the related parameters: a solution Xi, best solution X′ = [x′1, x′2, ..., x′Ndim
],

dimension number Ndim, etc.;
2 for n = 1 to Ndim/2 do
3 if Nrand< 0.5 then
4 if xn!=x′n then
5 xn=x′n;
6 end
7 xn+Ndim/2=x′n+Ndim/2;
8 end
9 end

10 while sum ([x1, x2, ..., xNdim/2])== Nsel do
11 if sum ([x1, x2, ..., xNdim/2])> Nsel then
12 Select a dimension with value 1 and assign it to 0;
13 end
14 if sum ([x1, x2, ..., xNdim/2])< Nsel then
15 Select a dimension with value 0 and assign it to 1;
16 end
17 end
18 Return Xi;

4.3.3. Hybrid Solution Update

In this section, we update the two parts of the hybrid solution separately. Specifically,
the continuous solution part is still updated using the original WOA update method. For
discrete solutions, we consider mutating and crossing them first. The method is specifically
shown in Algorithm 2.
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Algorithm 2: Hybrid Solution Update.

1 Define the related parameters: a solution Xi, best solution X′ = [x′1, x′2, ..., x′Ndim
],

dimension number Ndim, etc.;
2 if Nrand< 1

3 then
3 [x1, ..., xr1, ..., xr2, ..., xNdim ]= [x1, ..., xr2, ..., xr1, ..., xNdim ];
4 end
5 else if Nrand< 2

3 then
6 for n = 1 to Ndim/2 do
7 if Nrand< 0.5 then
8 if xn!=x′n then
9 xn=x′n;

10 end
11 xn+Ndim/2=x′n+Ndim/2;
12 end
13 end
14 end
15 while sum ([x1, x2, ..., xNdim/2])== Nsel do
16 if sum ([x1, x2, ..., xNdim/2])> Nsel then
17 Select a dimension with value 1 and assign it to 0;
18 end
19 if sum ([x1, x2, ..., xNdim/2])< Nsel then
20 Select a dimension with value 0 and assign it to 1;
21 end
22 end
23 Return Xi;

4.3.4. Main Steps and Complexity Analysis of EWOA

The main steps of the proposed EWOA can be shown in Algorithm 3. Moreover, the
complexity of EWOA is examined. The calculation of the objective function value, which is
considerably more difficult than other steps in our optimization problem, takes the longest.
Thus, other steps can be skipped in this situation. As a result, when the maximum number
of iterations and population size are denoted as tmax and Npop, respectively, the complexity
of EWOA is O(tmax · Npop).

Algorithm 3: EWOA.

1 Define the related parameters: population size Npop, bat dimension Ndim,
maximum iteration tmax, and objective function, etc.;

2 Initialize the population by using Equations (10)–(12);
3 for t = 1 to tmax do
4 Calculate the objective values of all individuals;
5 Select the individual with the highest objective value as the best solution X∗;
6 Update the individuals via conventional WOA method (e.g., Equations (6)–(9));
7 Perform crossover operation via Algorithm 1;
8 Perform solution update via Algorithm 2;
9 end

10 Return X∗; //X∗ is the best solution obtained by the algorithm

5. Simulations

In this section, we perform simulations to evaluate the performance of EWOA. First,
we present our experimental setup, comparison algorithms, etc. Second, we present our
optimization results. Third, we illustrate the effectiveness of the improvement factors.
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5.1. Setups

In this work, we use a CCAA with 10 rings for the simulation. In this case, the total
number of antenna elements in the CCAA is 440, and the number of elements per ring is
8× m, where m is the number of turns. Furthermore, we aim to turn off one half of the
antenna elements. Moreover, our used CPU was an 11th Gen Intel(R) Core(TM) i7-11700 @
2.50 GHz with 16 GB of RAM.

In addition, we introduced some comparison algorithms for comparison, specifi-
cally, the dragonfly algorithm (DA) [25], conventional WOA [24], gray wolf optimization
(GWO) [26], sine cosine algorithm (SCA) [27], and salp swarm algorithm (SSA) [28]. In this
case, all algorithm populations were set to 50, and the number of iterations was set to 200.
Note that these algorithms are both evolutionary algorithms, in which their computational
complexities correspond to the times of fitness calculations. Thus, in this work, these
algorithms have the same complexity which is tmax × Npop, i.e., 50× 200.

5.2. Simulation Results

We first evaluated the objective function values of different algorithms to solve our
problem and give the average, maximum, and minimum values in Table 1. It can be seen
that our proposed method is superior to all other comparison algorithms. The reason is that
we have a better balance between exploration ability and exploitation ability. Moreover,
as shown in Figure 3, we give the convergence curves of different algorithms. It can be
seen that our algorithm’s convergence is the fastest. It can be seen that our proposed initial
solution method can effectively speed up convergence. In addition, as shown in Table 2,
we give the running time of different algorithms. It can be seen that the running time of all
algorithms is similar, and our algorithm does not increase the running complexity of the
algorithm. Furthermore, as shown in Figure 4, we provide the beam patterns of the CCAAs
obtained by different algorithm. As can be seen, our proposed EWOA achieved the best
beam pattern performance. For a more intuitive demonstration, we plot the structure of the
optimized CCAAs in Figure 5. Specifically, the entire antenna array is the structure of the
original CCAA. After being optimized by our algorithm, some antennas are switched off
while the rest are also switched on.

Table 1. Statistical results of the objective values obtained by different approaches.

(DB) AVE. MAX. MIN.

DA −23.2598 −22.6900 −23.7409
GWO −23.2644 −22.6404 −24.0011
SSA −23.2434 −22.6982 −23.8245

WOA −23.441 −22.8497 −24.0907
SCA −21.2753 −20.1031 −22.3683

EWOA −23.7883 −23.2147 −24.1995

Table 2. Statistical results of the running time obtained by different approaches.

(DB) AVE. MAX. MIN.

DA 409.3217 520.8348 286.9482
GWO 271.8296 298.7387 232.12
SSA 273.4268 302.3688 222.1255

WOA 297.5742 312.5098 290.1445
SCA 254.5393 290.0058 189.7762

EWOA 313.075 250.7853 331.1821
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Figure 3. Beam patterns obtained by different algorithms.
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On the other hand, we evaluated the impact of different improved factors on the
algorithm. We considered different chaotic map-based initialization methods and proposed
crossover methods. The optimization results and running time are shown in Tables 3 and 4,
respectively. It can be seen that our selected chaotic map has the best performance, and the
proposed crossover method can also effectively improve the performance of the algorithm.
In addition, these algorithms are all on the same running time, which means that there is
no additional increase in the running time of the algorithm.

Table 3. Statistical results of the objective values obtained by different improved factors.

(DB) AVE. MAX. MIN.

Chebyshev −23.5074 −23.0789 −23.934
Circle −23.4647 −23.0118 −23.8412

Guass/mouse −23.4788 −22.9087 −24.0222
Iterative −23.5758 −23.0417 −23.9682
Logistic −23.4941 −22.5767 −23.9068

Piecewise −23.4257 −22.7275 −23.8546
Sine −23.4498 −22.8004 −24.0941

Singer −23.4784 −22.9801 −23.9801
Sinusoidal −23.508 −23.0097 −23.9226

Tent −23.4395 −23.0049 −23.9017
Crossover −23.7153 −23.1617 −24.2604

EWOA −23.7883 −23.2147 −24.1995

Table 4. Statistical results of the running time obtained by different improved factors.

(s) AVE. MAX. MIN.

Chebyshev 300.2103 311.8449 273.2599
Circle 300.4639 308.2679 264.3575

Guass/mouse 305.5025 321.2203 285.5261
Iterative 311.7976 337.1776 182.6852
Logistic 306.6116 323.0361 290.9548

Piecewise 306.8332 328.9165 279.5588
Sine 331.7841 340.0234 322.1776

Singer 333.9409 341.0207 314.4988
Sinusoidal 337.2349 350.9823 277.0756

Tent 336.8633 354.8735 274.9848
Crossover 302.2373 316.8397 243.6888

EWOA 313.075 331.1821 250.7853

Except for the considered scenario in our original submission, we further added
examples: one involving a very low population within 440 antenna elements and another
one involving smaller arrays of 100 elements with large and small populations. The
corresponding simulation results are presented as follows. Specifically, Table 5 shows
the simulation results obtained by different algorithms in the case with 10 populations
and 440 elements. Moreover, Table 6 shows the simulation results obtained by different
algorithms in the case with 50 populations and 120 elements. In addition, Table 7 shows
the simulation results obtained by different algorithms in the case with 10 populations and
120 elements. As can be seen, our proposed algorithm also outperforms other compared
algorithms in the three cases. The reason may be that we balance the exploration and
exploitation abilities and can make our proposed algorithm more suitable for solving our
optimization problem.
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Table 5. Statistical results of the objective values obtained by different approach in the case with
10 populations and 440 elements.

(DB) AVE. MAX. MIN.

DA −22.492 −21.281 −23.5388
GWO −22.7027 −21.8035 −23.5196
SSA −22.7403 −22.0197 −23.8178

WOA −22.7205 −21.647 −23.4629
SCA −20.1068 −18.9223 −22.2253

EWOA −23.0437 −22.5879 −23.6858

Table 6. Statistical results of the objective values obtained by different approach in the case with
50 populations and 120 elements.

(DB) AVE. MAX. MIN.

DA −8.73719 −8.39645 −9.46009
GWO −9.05977 −8.16812 −9.57519
SSA −8.99624 −8.71156 −9.36257

WOA −9.09705 −8.32748 −9.47902
SCA −8.91788 −8.3524 −9.36407

EWOA −9.41423 −9.15111 −9.6363

Table 7. Statistical results of the objective values obtained by different approach in the case with
10 populations and 120 elements.

(DB) AVE. MAX. MIN.

DA −8.27269 −7.7332 −9.08744
GWO −8.68996 −7.24128 −9.26944
SSA −8.59402 −7.72822 −9.31861

WOA −8.67264 −7.46379 −9.38475
SCA −8.56307 −7.73576 −9.14937

EWOA −9.1513 −8.67405 −9.45595

6. Conclusions

This paper considered the sparse synthesis optimization of CCAAs. We aimed to
turn off a specific number of antennas while reducing the sidelobe of CCAAs. First, we
formulated an optimization problem and presented the solution space. Then, we proposed
an EWOA method for solving the optimization problem. EWOA introduced hybrid solution
initialization, crossover, and update methods. Finally, we conducted simulations to show
the effectiveness of the proposed EWOA and the proposed improvement factors.
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