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The purpose of polarization calibration is to obtain the response matrix of an instrument such that the subsequent
observation data can be corrected. The calibration precision, however, is partially restricted by the noise of the
detector. We investigate the precision of the normalized response matrix in the presence of signal-independent
additive noise or signal-dependent Poisson shot noise. The influences of the source intensity, type of noise, and
calibration configuration on the precision are analyzed. We compare the theoretical model and the experimen-
tal measurements of the polarization calibration to show that the relative difference between the two is less than
16%. From this result, we can use the model to determine the minimum source intensity and choose the optimal
configurations that provide the required precision. ©2022Optica PublishingGroup

https://doi.org/10.1364/AO.465538

1. INTRODUCTION

Polarization imaging technology is widely used in various fields,
including astronomy [1–3], biology [4], medicine [5], agri-
culture [6], and the military field [7]. Polarization calibration
configurations are formed with well-chosen angles to correct the
instrument depending on the Stokes–Mueller method [3]. In
most cases, the first three elements of the Stokes vector are con-
sidered to be due to the zero value of circular polarized element
[3,8]. The noise of the detector determines the precision that the
polarization imager achieves; therefore, we can choose optimal
calibration configurations according to the detector noise.

In recent years, Foreman found that the distribution of the
optimal analysis states over the Poincaré sphere is described by
a regular polygon [9]. The equivalence of an optimization has
been established based on the equally weighted variance and
the condition number κ of the associated response matrix. The
estimation variance increases with the number of measurements
N when the noise is additive; it is independent of N in the
presence of Poisson shot noise and decreases with N when the
angles of the analyzers fluctuate [10]. They also proposed a set
of polarization states whose estimation precision depends on
the observed Mueller matrix only through its intensity reflec-
tivity, not through its other polarimetric properties in the full
polarization frame [11]. Furthermore, Goudail demonstrates
that the architectures that minimize and equalize the estimation
variances for both types of noise are based on spherical designs of
order 2 or 3 over the Poincaré sphere [12]. The optimal reference

polarization states have been derived, and the analytical results
were verified via simulations and experiments [13]. It is noted
that the influence of incident light is analyzed, and the effec-
tive calibration method can be used to ensure the precision in
practice according to different incident polarization states [14].

These references assume that the measured intensities are
influenced by Gaussian and Poisson noise, under the condition
of the unnormalized response matrix. In practice, the response
matrix is usually normalized by the instrument throughput, and
the variance of the normalized matrix represents the precision
that the polarization calibration can reach [3]. Research on the
variance of the normalized response matrix is necessary, and it is
helpful to design the polarization calibration scheme in advance
according to the detector noise.

In linear polarization calibration, we obtain the estimation
variance for the normalized response matrix in the presence of
Gaussian and Poisson noise. We shall see that the calibration
precision depends on three types of perturbation, namely,
the source intensity, configuration, and noise. We compare the
theoretical model and the experimental measurements of the
polarization calibration to show that the relative difference
between the two is less than 16%. From this result, we can use
the model to determine the minimum source intensity and
choose the optimal configurations that provide the required
precision. We verify this conclusion with experiments.

This paper is organized as follows: in Section 2, we describe
the model for linear Stokes calibration. Then we obtain the
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estimation variance of the normalized response matrix in the
presence Gaussian and Poisson noise and propose the theoreti-
cal prediction model (Section 3). In Section 4 we present the
experimental setups, results, discussions, and systematic errors.
Finally, we conclude this paper in Section 5.

2. CALIBRATION MODEL FOR LINEAR
POLARIZATION POLARIMETER

We consider the linear polarization calibration that performs
more than nine intensity measurements. The response matrix of
the polarization calibration of the instrument is defined as

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 . (1)

The measuring system consists of a light source of the inten-
sity I0, a polarization state generator (PSG) that illuminates the
optical system with special orientation, and a polarization state
analyzer (PSA) that is used to analyze the polarization states of
light generated by the instrument. A detector is then used to
collect the light exiting from the PSA in a particular direction.
The intensities acquired from an unpolarized light source I0 are
given by

I = I0 AMGT , (2)

where I is the intensity measured by a detector, which depends
on the measurements obtained from the combination of a PSA
and PSG, the matrix G (A) which is formed by a PSG (PSA) has
the dimensions NG × 3 (NA × 3), and the superscript of T,
which denotes the transpose of the matrix. To obtain the rela-
tionship between I and M, Eq. (2) can be rewritten as follows
[11,12]:

VI = [A⊗ G]VM, (3)

where ⊗ denotes the Kronecker product [15], VM =

[ (VM)1 (VM)2 · · · (VM)9 ] is a nine-dimensional vector, and
VI = [ (VI )1 (VI )2 · · · (VI )NG NA ] is a NG × NA-dimensional
vector. VM and VI are nine-dimensional vectors obtained by
reading matrices I0 M and I , respectively, in lexicographic order.

In this paper, we investigate the calibration precision in which
the response matrix is normalized by the instrument throughput
M11 (that is, M/M11) in the presence of Gaussian and Poisson
noise.

3. PRECISION OF RESPONSE MATRIX IN THE
PRESENCE OF GAUSSIAN AND POISSON NOISE

Equation (3) can be rewritten as follows:

VM = P VI , (4)

with

P = [A⊗ G]†, (5)

where P is the pseudo-inverse matrix. Based on the properties of
the Kronecker product [15], the matrix P is rewritten as

P = [FA ⊗ FG ][A⊗ G]T , (6)

where FU = (U TU)−1, and U = G or A. The covariance
matrix can then be determined by [16,17]

0VM = P0VI P T , (7)

where 0VM is the covariance matrix of VM . A standard scalar
performance criterion is the sum of the estimation variance of
the response matrix, which is the trace of 0VM :

C =Tr[0VM ], (8)

where 0VI is the covariance of VI . I is replaced by R due to the
normalization as

R =
I
z
, (9)

where z is the value M11 for every pixel, and R is a NG × NA-
dimensional matrix. We obtain the variance of the normalized
response matrix from the Taylor series expansion with a
first-order approximation:

D[R(m, n)]

≈
D[I (m, n)] + R2(m, n)D(z)− 2RCov[z, I (m, n)]

z2
,

(10)

where D[I (m, n)] is the variance of the measurement inten-
sity, Cov[z, I (m, n)] represents the covariance between the
intensity I (m, n) and the normalized element z, m ∈ (1, NG),
and n ∈ (1, NA). The relative differences between the first-
order approximation and theoretical values are less than 10% if
5D(z) < E (z). D(z) and E (z) are the variance and the mean
value of M11 for every pixel, respectively. We assume that addi-
tive Gaussian noise has a zero-mean with the variance σ 2. It is
noted that equal angle sets minimize and equalize the estimation
variances [9,10,14], and the angles evenly distributed over the
half-circle are [9]

θi =
(i − 1)× 180◦

N
, (11)

where i varies from 1 to N, and the initial positions of the PSG
and PSA are 0◦. If the polarizer is ideal, we can use the fact that
E (z)= I0, D(z)= 16σ 2/(NG NA); thus, the expression of the
variance is

DGau[R(m, n)] =
σ 2

I 2
0

{
1+

8[2I 2(m, n)− I (m, n)]
NG NA

}
,

(12)
and the covariance is

CovGau[R(m, n), R(m′, n′)]

=
4σ 2

I 2
0

·
4I (m, n)I (m′, n′)− I (m′, n′)− I (m, n)

NG NA
, (13)

where m ∈ (1, NG), and n ∈ (1, NA); m =m′ and n = n′

are not satisfied simultaneously. If we assume that the response
matrix has the form diag(1,1,1), the covariance matrix 0VM ,
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Fig. 1. Theoretical variance coefficient of (a) Gaussian and (b) Poisson noise for different intensities I0. The configuration of NG , NA = 4 is con-
sidered. The colors are used for different variances of Gaussian noise: σ 2

= 10 (black), σ 2
= 40 (red), σ 2

= 70 (blue), and σ 2
= 100 (green).

which represents the estimation variances of the response
matrix, is

VAR[M]gau
n =

16σ 2

NG NA I 2
0

− 2 2
2 5 4
2 4 5

 , (14)

and

C gau
n =

16

I 2
0

·
26σ 2

NG NA
, (15)

where NG > 3, NA > 3, and the subscript n denotes the results
of the normalized response matrix. It is easily seen that the esti-
mation variances of the normalized response matrix increase
linearly with 1/I 2

0 , which is much different from the unnormal-
ized matrix (independent with I0) [14]. Within the maximum
DN value of the detector, the estimation variance decreased with
an increasing DN value.

The influences of Gaussian noise on the variance coefficient
are shown in Fig. 1(a). It is worth noting that Gaussian noise
has a great influence on the low source intensity (I0 < 500),
and the variance matrix coefficient decreases rapidly with an
increasing intensity. This is why Gaussian noise is dominant at
low intensities.

We use the property of Poisson noise in which its variance
is equal to the mean value, and it is easily seen that E (z)= I0

and D(z)= 4I0/(NG NA). The variance and covariance can be
rewritten from Eq. (10):

DPoi[R(m, n)] =
1

I0

(
I −

4I 2(m, n)
NG NA

)
, (16)

and

CovPoi[R(m, n), R(m′, n′)] =
1

I0
·
−4I (m, n)I (m′, n′)

NA NB
.

(17)
We use the same assumption to obtain the estimation vari-

ances of Poisson noise, and the estimation variance of the
response matrix for NG , NA = 3 is

VAR[M]poi
n =

4

NG NA I0

− 2 2
2 4 3
2 3 4

 , (18)

for other configurations:

VAR[M]poi
n =

4

NG NA I0

− 2 2
2 3 4
2 4 3

 , (19)

and

C poi
n =

4

I0
·

22

NG NA
. (20)

It can be noted that the variance matrix of Poisson noise is
inversely proportional to the intensity I0 (linear with I0 for an
unnormalized matrix [14]); therefore, the DN values have less
influence on the estimation variance compared with Gaussian
noise. In other words, if the DN value is low enough, the dom-
inant noise is considered to be a Gaussian distribution. In
contrast, if the DN value is strong enough, the dominant noise is
a Poisson distribution (I0� 4σ 2), as shown in Fig. 1(b).

These two types of noise jointly influence the precision under
practical conditions; therefore, Gaussian and Poisson noise are
used to study the variations in estimation the variance. The
property of variance is described as

VAR[M]sn = VAR[M]gau
n + VAR[M]poi

n , (21)

where the superscript S denotes the sum of the estimation
variance in the presence of Gaussian and Poisson noise. For the
configuration of 3× 3, VAR[M]s (2, 2) and VAR[M]s (3, 3)
have the same value (6I0 + 20σ 2)/(NG NA I 2

0 ). For other
configurations, VAR[M]s (2, 2) and VAR[M]s (3, 3) are
(8I0 + 20σ 2)/(NG NA I 2

0 ); in contrast, VAR[M]s (2, 3) and
VAR[M]s (3, 2) are (6I0 + 16σ 2)/(NG NA I 2

0 ). After substi-
tuting Eqs. (14), (18), and (19) into Eq. (21), it can easily be
seen that the total estimation variance matrix can be written as
NG = 3, NA = 3:

VAR[M]sn =
4I0 + 16σ 2

NG NA I 2
0

− 2 2

2 4I0+20σ 2

I0+4σ 2
3I0+16σ 2

I0+4σ 2

2 3I0+16σ 2

I0+4σ 2
4I0+20σ 2

I0+4σ 2

 , (22)

and for other configurations:
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Fig. 2. Theoretical variance (a) coefficient and (b) M22/M33 for different intensities I0. The colors are used for different variances of Gaussian
noise: σ 2

= 10 (black), σ 2
= 40 (red), σ 2

= 70 (blue), and σ 2
= 100 (green).

Fig. 3. Optical schema for the verification of the calibration strategy.

VAR[M]sn =
4I0 + 16σ 2

NG NA I 2
0

− 2 2

2 3I0+20σ 2

I0+4σ 2 4

2 4 3I0+20σ 2

I0+4σ 2

 . (23)

With the increase of the variance of Gaussian noise, the ele-
ments VAR[M]s (2, 2), VAR[M]s (3, 3), VAR[M]s (3, 2), and
VAR[M]s (2, 3) of the configuration of 3× 3 and the elements
VAR[M]s (2, 2), VAR[M]s (3, 3) of the others increase, which
is the key to verifying the theory from the experiments. The
theoretical results disturbed by two types of noise are illumi-
nated in Fig. 2. If the maximum DN value is beyond 1000, the
influence of Gaussian noise is considered to be negligible with
σ 2
= 100(< 16.7%), and the dominant noise is a Poisson dis-

tribution. We can measure the noise of the detector in advance
and choose the suitable configuration and intensity value that
provide the required precision.

Next, we will illuminate the conclusion of the experiments.

4. EXPERIMENTS

A. Experimental Setups

The PSG and PSA have the same component and are composed
of a polarizer (CODIXX, COLORPOL-VIS-600-BC5). One
of them can be rotated 360◦ via a motorized rotation stage
(Zolix, RAK100), and the other can be rotated by a manual
rotation stage (Zolix, KSMR5A-120). The light beam emitted
from the tungsten lamp as a point source passes through two

polarizers. A spike filter will be used at 700 nm with the colli-
mator parallel to the incident light. The extinction ratio of the
polarizer is less than 1:100000 in 700 nm. The intensity fluc-
tuations were checked to be negligible (approximately <0.5%
in half an hour). A complementary metal oxide semiconductor
(CMOS) camera (Ximea, MQ042CG-CM) with 100× 100
pixels is employed to calculate the normalized variance.

We employ the configuration of NG = 4, NA = 4
(θNA(NG ) = 0◦, 45◦, 90◦, 135◦), with the experimental setup
shown in Fig. 3. According to the full well capacity and 10 bit
analog-to-digital converter, the relationship between the DN
value and the number of electrons is 13e−1/DN. First, we let the
maximum DN value passing through the PSA be approximately
900 by regulating the voltage of the tungsten lamp, and the
exposure time is kept at 28 ms. For the 10 bit analog-to-digital
converter, this DN value (900) is large enough. During the
experiments, we decrease the DN value by approximately 100
each time until the minimum DN value is 200. A Newtonian
telescopic system is then employed to create the real calibra-
tion environment and to verify whether the conclusion can
be applicable under the condition of an off-diagonal response
matrix.

B. Results and Discussion

To evaluate the performance of the polarization calibration, no
component between the PSG and the PSA is used to ensure the
validity of the experiment. Mos represents the response matrix of
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(a) (b)

Fig. 4. Photograph of the experimental setup for (a) no component but air between the PSG and PSA and (b) the measurement of CMOS noise.
The devices are (a) collimator, PSG, spike filter, PSA, and CMOS and (b) collimator, spike filter, and CMOS from left to right.

the optical system, and Mno represents that of no component but
air between the PSG and PSA shown in Fig. 4(a). More than 100
measurements are performed, and the response matrix is

Mno =

 1 0 0.002
0.004 0.996 −0.005
−0.003 −0.002 0.997

 . (24)

Equation (24) is close to the ideal diagonal matrix, which
demonstrates the validity of the experiment. The response
matrix of a Newtonian telescopic system is

Mos =

 1 −0.052 0.026
−0.013 0.98 0.091
0.027 −0.053 0.95

 . (25)

The combination of a tungsten lamp, a collimator, filter,
and CMOS camera is used to determine the σ 2

DN in dark field
shown in Fig. 4(b), and the mean/variance of DN is equal to
17.5/5.8 with 20 repeated measurements. The variance of the
DN value corresponding to Poisson noise can be approximately
considered to be one-tenth of the DN value shown in Fig. 5.
One notices that the detector parameters for the measurement
of Poisson noise are consistent with those for polarization cal-
ibration, which can reduce the step of conversion between the
number of electrons and DN value. Therefore, the variance can
be conveniently described by the DN value in this experiment.

According to the experimental results, the variance matrix can
be rewritten from Eq. (23):

VAR[M]sn =
2I0 + 80σ 2

5NG NA I 2
0

− 2 2

2 3I0+200σ 2

I0+40σ 2 4

2 4 3I0+200σ 2

I0+40σ 2

 . (26)

The variances of the response matrix consist of the matrix
coefficient (2I0 + 80σ 2)/(5NG NA I 2

0 ) and the matrix ele-
ments. The elements VAR[M]s (2, 2) and VAR[M]s (3, 3) are
less than those of Eq. (23), since the noise is lower compared
with theory. We substitute the intensities I0 of the eight groups,
ranging from 200 to 900 into Eq. (26). The theoretical and
experimental results of the matrix coefficient are shown in
Fig. 6. The matrices for the estimation variance are described
in Table 1. The relative differences between the theoretical and
experimental results are less than 11.7% for the coefficient of
the variance matrix and 5.3% for the element. With the increase

Fig. 5. Changes of the variance with the number of the DN value of
the CMOS camera.

Fig. 6. Changes in the response matrix coefficient with the source
intensity I0. The red lines show the predictable results, whereas the
black lines show the measurement results.

of intensity I0, the variances decrease gradually. The variances
of the matrix element are shown in Fig. 7. It can be seen that the
variance of M11 is 0 due to the normalization. The variances
of M22 and M33 decrease with I0; in contrast, the variances of
the other elements are nearly constant (2 or 4) shown in Fig. 7.
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Table 1. Theoretical and Experimental Variance Matrix for Different I0
a

Experimental
Matrix

Theoretical
Matrix

Experimental
Matrix

Theoretical
Matrix

Experimental
Matrix

Theoretical
Matrix

VAR[M] =
V1−3 × V1−3

 0 2.03 1.98
2.03 3.89 3.93
1.96 3.82 3.58

  0 2.00 2.00
2.00 3.78 4.00
2.00 4.00 3.78

  0 2.02 1.99
2.03 3.85 3.87
1.97 3.89 3.71

  0 2.00 2.00
2.00 3.59 4.00
2.00 4.00 3.59

  0 2.02 1.99
2.02 3.52 3.97
1.97 3.84 3.47

  0 2.00 2.00
2.00 3.48 4.00
2.00 4.00 3.48


1.15× 10−4 1.12× 10−4 6.83× 10−5 6.25× 10−5 4.83× 10−5 4.27× 10−5

VAR[M] =
V4−6 × V4−6

 0 2.02 1.99
2.04 3.58 4.03
1.96 3.82 3.39

  0 2.00 2.00
2.00 3.40 4.00
2.00 4.00 3.40

  0 2.01 1.99
2.03 3.45 4.09
1.97 3.91 3.34

  0 2.00 2.00
2.00 3.34 4.00
2.00 4.00 3.34

  0 2.01 2.00
2.02 3.35 4.16
1.97 3.99 3.30

  0 2.00 2.00
2.00 3.30 4.00
2.00 4.00 3.30


3.75× 10−5 3.27× 10−5 2.95× 10−5 2.56× 10−5 2.44× 10−5 2.12× 10−5

VAR[M] =
V7−9 × V7−9

 0 2.01 2.00
2.01 3.24 4.03
1.98 4.12 3.23

  0 2.00 2.00
2.00 3.26 4.00
2.00 4.00 3.26

  0 1.99 2.02
2.01 3.16 4.15
1.99 4.16 3.22

  0 2.00 2.00
2.00 3.25 4.00
2.00 4.00 3.25

  0 1.98 2.03
2.00 3.05 4.06
2.00 4.09 3.11

  0 2.00 2.00
2.00 3.23 4.00
2.00 4.00 3.23


2.01× 10−5 1.80× 10−5 1.92× 10−5 1.72× 10−5 1.65× 10−5 1.56× 10−5

aEach V1 − V9 corresponds to a I0 (368, 569, 718, 956, 1176, 1382, 1600, 1666, 1812).

Fig. 7. Changes in the variance of the response matrix element with source intensity I0. The red lines show the predicted results, whereas the black
lines show the measurement results.

The experimental results are in good agreement with the theo-
retical prediction values for the matrix coefficient and element.
Therefore, the theoretical model can predict the calibration pre-
cision well. If 10−4 (1% standard deviation) is required for the
variance, the configuration of NG = 4, NA = 4, and I0 = 1200
can be chosen according to Eq. (26). When the numbers of
illumination (NG ) and analysis (NA) states are greater than 4,
the value of I0 will be decreased; for example, the configuration
of NG = 5, NA = 5, and I0 = 820 should be employed.

Additionally, the dominant noise is Poisson noise because
M22 and M33 are close to 3 in terms of the strong source inten-
sity (I0 > 1500) shown in Fig. 7. The product of the coefficient
and element is the variance of M12 −M33. With the increase
of I0, the coefficient and element of M22/M33 are decreased,
and variance of M22 −M33 is decreased. It must be noticed that
Poisson noise is still dominant for I0 ≈ 400 due to the small
varianceσ 2 of Gaussian noise. We can choose the suitable source
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Fig. 8. Deviation of 10 repeated measurements for the different I0 368 (gray), 569 (red), 718 (dark blue), 956 (green), 1176 (brown), 1382 (pur-
ple), 1600 (yellow), 1666 (blue), and 1812 (dark green) on the response matrix (M11 −M33). Each estimation variance is normalized by the mean
value of variance for 10 measurements.

intensity I0 and calibration configurations according to the
requirements when the noise of the detector is measured.

C. Systematic Error

During the derivation of the theory, we only consider the influ-
ence of Gaussian and Poisson noise. However, the calibration
precision will deviate from the theoretical prediction in practice
due to other types of noise (such as uniform noise, salt & pepper
noise, and compound noise) and errors. Figure 6 shows that
the variance matrix coefficient of the experiment is larger than
the one of theory. Moreover, the difference is less than 16%
for the sum of the variance matrix. This means that Gaussian
and Poisson noise are dominant in these measurements. It can be
ensured that the rotation error of the polarizer is less than 0.1◦,
and the angle error between the PSG and PSA is 0.1◦. Although
all parts are completely fixed, there can be a slight change in the
orientation of the PSG and PSA, which influence the variance.
Combined with the relative deviation of 1% in Eq. (24) and
16% for the sum of the variance matrix, the systematic errors
have no significant influence on the experiment.

Ten repeated measurements were made to obtain the mea-
surement precision for the errors, as shown in Fig. 8. The relative
differences in 10 repeated measurements are found to be less
than 2.8% for the variation of M12, M13, M21, and M31 and
4.1% for the variation of M22, M23, M32, and M33, respec-
tively. The variances fluctuate due to the randomness of noise

(Gaussian, Poisson, other types of noise, errors), which causes
the 4.1% variation in the 10 repeated measurements. This
means that small systematic errors and other noise have no
significant influence and are less than the influence of change of
I0 (about 17% for M22 and M33) in the polarization calibration,
which can ensure the validity of the experiment.

5. CONCLUSION

We have studied the estimation variance of the normalized
response matrix and analyzed the influences of the source
intensity, noise, and calibration configuration. Moreover, the
theoretical prediction model of polarization calibration is built.
The experiments show that the relative changes between the
theoretical prediction and experimental results are less than
16%, and the model can be adopted to choose the optimal
configurations that provide the required precision.

The method is useful for arbitrary linear polarization calibra-
tion, and we assess their fundamental limits in the presence of
Gaussian and Poisson noise. We will focus on the influence of
every element on the estimation variance in the future.
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