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Abstract: Due to the sparsity of point clouds obtained by LIDAR, the depth information is usually
not complete and dense. The depth completion task is to recover dense depth information from
sparse depth information. However, most of the current deep completion networks use RGB images
as guidance, which are more like a processing method of information fusion. They are not valid when
there is only sparse depth data and no other color information. Therefore, this paper proposes an
information-reinforced completion network for a single sparse depth input. We use a multi-resolution
dense progressive fusion structure to maximize the multi-scale information and optimize the global
situation by point folding. At the same time, we re-aggregate the confidence and impose another
depth constraint on the pixel depth to make the depth estimation closer to the ground trues. Our
experimental results on KITTI and NYU Depth v2 datasets show that the proposed network achieves
better results than other unguided deep completion methods. And it is excellent in both accuracy
and real-time performance.

Keywords: depth completion; lidar data processing; image processing; deep learning

1. Introduction

With the gradual expansion of computer vision applications, all walks of life have
higher requirements for depth information. Accurate depth data is essential for self-driving
cars, autonomous navigation systems, and virtual reality [1]. However, depth is often
sparse and partially missing due to device and environmental limitations. It is fatal in the
reconstruction of 3D information [2]. Therefore, the completion methods of the sparse depth
data have been widely studied in recent years [3,4]. However, traditional methods often
fail to achieve good results because of the sparsity and lack of sufficient prior knowledge
of the missing depth [5,6]. With the development of deep learning, people began to use
deep neural networks to complete the depth information and achieve better results than
the traditional interpolation methods [7,8].

At present, most depth completion networks supplement the missing depth infor-
mation through the guidance of RGB images [9]. It can provide effective real edges to
distinguish the contours between objects. The mapping relationship between sparse depth
and a color image is established image through network learning [10,11]. And then the
dense depth is regressed together [12]. Although they achieve a better result, these data are
based on the joint action of multiple sensors, which requires the important premise that
the image and the point cloud correspond to each other. The problem can be effectively
controlled in the datasets. However, the joint calibration of heterogeneous sensors will
increase the cost and uncertain error, and the reliability of the function cannot be guar-
anteed in practical application [13,14]. Therefore, our network no longer uses any RGB
image to guide and only relies on a single sparse depth image to complete the depth to be
more suitable for real-world scenarios. We use the confidence re-aggregation to consider
the depth reliability of the neighborhood and obtain the most accurate local pixel depth
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estimation. In fact, the depth of the outdoors is more complex and variable than the interior.
The overall texture is required to be enhanced, and the range of variation of each target
is required to be enlarged. Therefore, we further research the information processing of
autonomous driving. We design the structural multi-resolution dense progressive fusion
processing and point folding module to further improve the accuracy of global prediction
in autonomous driving. We cancel the additional information of RGB images and use
only one-fourth of the information of other methods [15,16], which avoids the necessary
complex and error operations such as joint calibration and calibration in actual use. It
greatly reduces the volume of the network and achieves the requirements of accuracy and
speed, which is more suitable for the real-world situation.

In fact, it is difficult to achieve good results by only entering depth information
because of the limitation of information content [17,18]. Researchers have come up with
several ideas for solving. SI-Net [19] found that ordinary convolution directly used to
complete depth could not achieve good results. They proposed a simple and effective
sparse convolution layer, which weighted the elements of the convolution kernel according
to the validity of the input pixels. Then they transferred the information about the validity
of pixels to the subsequent layers of the network. The improvement makes the deep
completion task based on a convolutional neural network successful. The relationship
between convolution and confidence has become a research hotspot in this field [20,21].
Considering that the use of confidence as a binary value mask to filter out lost measurements
can ignore valuable information in the confidence map, N-CNN [22] proposed an algebraic
constrained convolutional layer for sparse input CNNS. They used signal confidence as
a continuous measure of data uncertainty and convolution constrained by confidence
to achieve superior performance. However, Spade [8] believed that sparse convolution
is not necessary. They used the ordinary dense CNN architecture and the new sparse
training strategy to produce significantly better performance. However, it depends on
the change of training mode, and the robustness is poor. According to HMS-NET [23],
sparse invariant convolution not only loses numerous spatial information but also cannot
be directly integrated into multi-scale structures. Therefore, they proposed three sparse
invariant operations for processing sparse inputs and feature maps. And they designed a
hierarchical multi-scale network structure that integrates information of different scales to
solve the deep completion task.

SPN [24] combined global and local information to learn confidence in an unsupervised
manner. The predicted depth maps are weighted by the respective confidence maps. On this
basis, PNCNN [25] learned the input confidence estimator in a self-supervised way based
on a normalized convolutional neural network to identify the interference measurements
in the input. They proposed a probabilistic version of NCNN that produces a statistically
meaningful measure of uncertainty for the final prediction. However, the reliability of the
effect cannot be guaranteed when the completion result is directly used for the subsequent
judgment of depth because the confidence degree is not supervised by the truth value in the
learning of these networks. As sparse information provided by spare depth is limited, we
should make full use of the local neighborhood information to strengthen the dependence
relationship of the neighborhood [26,27].

An affinity is a display form of neighborhood information, which can represent the
coherence of color and texture and the similarity between pixels and pixels at the semantic
level. But it is not usually seen as part of the learning problem [28]. SPN [24] proposed
spatial propagation networks that use learned affinities to guide and disseminate informa-
tion in images. All modules are differentiable and jointly trained using stochastic gradient
descent methods, which are also computationally very efficient. Based on this, CSPN [29]
proposed a convolution space propagation network. It no longer scans row/column prop-
agation from four directions like SPN [24] but propagates in parallel through recursive
convolution operation. Learning the affinity between adjacent pixels by the deep convo-
lutional neural network can improve the effectiveness and speed of the deep completion
task. However, the mode of propagation has a definite limitation, requiring a fixed local
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neighborhood configuration for propagation. Once the local neighbor is fixed, there will be
irrelevant information mixed with the reference information, resulting in the mixing depth
problem, especially at the depth boundary. Therefore, NLSPN [30] introduced a learnable
affinity normalization method to learn affinity combinations better. They avoided the irrel-
evant local neighborhood effectively and focused on the relevant non-local neighborhood
in the propagation process. However, it has a strong dependence on the neighborhood
and a low dependence on confidence. In addition, it takes numerous iterations to receive
good results. The complex calculation makes the speed decrease greatly and cannot meet
the real-time demand. Based on CSPN [29], DSPN [31] decoupled the neighborhood into
different parts according to different distances, generates independent attention graphs
recursively, and refines these parts into adaptive affinity matrices. However, it is still based
on sparse depth and color image fusion. Therefore, we put forward the idea of confidence
reaggregation. We learn neighborhood affinity in the form of spatial propagation and
further refine local depth in order to improve the accuracy of depth completion.

In addition, global information is crucial to the complete effect. The multi-scale struc-
ture can enhance the reliability of global information, which is very useful for sparse depth
of missing information [32]. U-Net [33] designed the contraction path and expansion path
following the typical architecture of convolutional networks, and effectively become the
main framework for various other tasks to solve the problem of medical image segmenta-
tion. Most networks added different residual structures to the U-Net [33] framework with
improved points to learn features with different resolutions, which solves the degradation
problem and greatly improves the fitting ability of neural networks. However, it only
makes up for the loss of resolution caused by convolution and ignores the original informa-
tion of different resolutions. Therefore, we design a dense progressive fusion multi-scale
structure as a complement to the global information to make maximum use of the existing
original information. The global completion effect is improved by fusing the global depth
information of different scales.

Depth completion is essentially the same as point cloud completion. They are both
estimates of 3D information. The difference lies in the way they represent three-dimensional
information. Folding-Net [34] wrapped a constant 2D grid into the shape of an input 3D
point cloud in the point cloud completion task. Since the network integrates mappings from
lower dimensions, it increases the possibility of more points. Similarly, for sparse depth
images, the possibility of more pixels requests to be added. Therefore, we designed a point
folding module from 1D to 2D to integrate the one-dimensional point information into the
missing two-dimensional information through the learning of the network to strengthen
the density of the overall depth. It can increase the density of global information.

In summary, we construct a deep completion network with a single sparse depth input
that integrates local and global information, which strengthens the known information and
does not require any color image guidance (EIR-NET). Compared with other networks, the
paper has the following contributions:

1. We propose a confidence re-aggregation method, which is re-aggregate the local area,
effectively based on the confidence of the local pixel neighborhood to improve the
estimation accuracy of local details.

2. We designed a dense progressive fusion network structure to further improve the
accuracy of global completion by using multi-scale information.

3. We propose a 1D to 2D point folding module to increase the density of global depth
information.

2. Methods

Our network structure is shown in Figure 1. The sparse depth image is input into the
U-shaped network to obtain the initial confidence. The confidence is re-aggregated and
optimized by the neighborhood information to obtain deep confidence in the confidence
re-aggregation module. The confidence and original sparsity depth are input into the
encoding of dense progressive fusion. The convolution results are fused layer by layer
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from different levels, and the different resolution information of multiple branches is used
to supplement the details. We use the point folding module to increase the possibility of
points and add it to the final fused feature code in the decoding. After that, the complete
depth image is output as the final result.
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Figure 1. The overall structure of the network. Our network is divided into three steps: confidence
generation, deep coding, and deep decoding, which are identified by three long lines from top to
bottom. Firstly, we generate a confidence depth image based on the input sparse depth image by
special convolution and aggregation methods. Then, the depth is gradually encoded according
to confidence in the second step. Finally, the dense depth image is completed by the decoder. In
addition, our ideas are marked in the figure. The pink dashed box (a) is the confidence re-aggregation
module, which is described in Section 2.1. The yellow dashed box (b) is the dense progressive fusion
module, which is described in Section 2.2. The green dashed box (c) is the point folding module,
which is described in Section 2.3. The input and output are processed into false-color depth images
for a clear presentation.

2.1. Confidence Re-Aggregation Module

We can use convolution to extract features to obtain the confident prediction of depth
images. However, there is no real supervision in the network learning, which makes
the transmission volatility large. The resulting confidence prediction will have errors.
As mentioned in the NLSPN [30], affinity normalization ensures stability and neighbor-
hood correlation during propagation. We used absolute and normalized affinities (AS),
regular absolute and normalized affinities (AS*), and hyperbolic tangent functions (TC)
to experiment.

AS is restricted to the lines satisfying |ω1|+ |ω2| = 1 after normalized affinity. It can
be expressed as

AS(ωi,j
m,n) = ω̂

i,j
m,n/ ∑

(i,j)∈Nm,n

∣∣∣ω̂i,j
m,n

∣∣∣ (1)

where ω̂ represents the original confidence before normalization and ω represents the
refined confidence after normalization. m and n represent the size of the window. i and j
represent the coordinates.
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AS* is restricted by
∑d|ωd| > 1 (2)

where d represents the different dimensions.
TC can be represented as

ωd = tanh(ω̂d)/C (3)

where C represents the normalization factors. tanh are hyperbolic tangent functions.
The essence of spatial a propagation network is to learn a large affinity matrix and

transform its diffusion into local linear spatial propagation. It simply and effectively
enhances the output. Similarly, we can use it to further enhance unreliable self-monitoring
results. The difference is that our specification body is the confidence rather than the
convolution. We describe the difference between confidence re-aggregation and normal
confidence in Figure 2. The initial confidence is derived from the feature. According to
the feature image, the affinity optimization of the initial confidence is carried out to obtain
the fine confidence. Then the better feature images are obtained according to the fine
confidence and initial feature images. As shown in Figure 1, the module is attached after
the feature extraction to generate effective confidence in Step 1. After experiments, we
chose absolute and normalized affinities (AS) as the aggregation method in Section 3.3.1.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 17 
 

 

AS is restricted to the lines satisfying 1 2 1ω ω+ =  after normalized affinity. It can be 
expressed as 

,

, , ,
, , ,

( , )

ˆ ˆ( ) / | |
m n

i j i j i j
m n m n m n

i j
AS ω ω ω

∈

= 


 (1)

where ω̂  represents the original confidence before normalization and ω  represents the 
refined confidence after normalization. m and n represent the size of the window. i and j 
represent the coordinates. 

AS* is restricted by 

1dd
ω >  (2)

where d represents the different dimensions. 
TC can be represented as 

ˆ( ) /d dtanh Cω ω=  (3)

where C represents the normalization factors. tanh  are hyperbolic tangent functions. 
The essence of spatial a propagation network is to learn a large affinity matrix and 

transform its diffusion into local linear spatial propagation. It simply and effectively en-
hances the output. Similarly, we can use it to further enhance unreliable self-monitoring 
results. The difference is that our specification body is the confidence rather than the con-
volution. We describe the difference between confidence re-aggregation and normal con-
fidence in Figure 2. The initial confidence is derived from the feature. According to the 
feature image, the affinity optimization of the initial confidence is carried out to obtain the 
fine confidence. Then the better feature images are obtained according to the fine confi-
dence and initial feature images. As shown in Figure 1, the module is attached after the 
feature extraction to generate effective confidence in Step 1. After experiments, we chose 
absolute and normalized affinities (AS) as the aggregation method in Section 3.3.1. 

 
Figure 2. The structure of the confidence re-aggregation module. We selected a square window in a 
feature image as an example to show it. (a) is the processing method of ordinary confidence. The 
confidence is obtained from the input. And then the input goes with the confidence to get the output. 
(b) is our processing method for confidence re-aggregation. We added a step in the middle. The 
confidence is re-aggregated based on the input. 

Figure 2. The structure of the confidence re-aggregation module. We selected a square window in a
feature image as an example to show it. (a) is the processing method of ordinary confidence. The
confidence is obtained from the input. And then the input goes with the confidence to get the output.
(b) is our processing method for confidence re-aggregation. We added a step in the middle. The
confidence is re-aggregated based on the input.

Finally, we fuse the aggregate result with the original output and receive the new
output to avoid degradation. The results of (a) and (b) in Figure 2 are fused on the channel,
which can be expressed as

ω
i,j
m,n ∈ ΦB,C1+C2,H,W = cat(AS(ωi,j

m,n) ∈ ΦB,C1,H,W , ω̂
i,j
m,n ∈ ΦB,C2,H,W) (4)

where Φ represents the representation of dimensions and size. B represents the batchsizes.
C represents the channel, H and W represent the height and the weight. The structure of
connections increases reliability and makes up for the defects caused by self-supervision.
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2.2. Densely Progressive Fusion Module

We request to make the most of the depth map information because our network
is not guided by color images. The loss of global information may directly lead to the
omission of information. The image pyramid structure will receive different resolutions of
depth and receive different scales of information. Making full use of the multi-resolution
multi-branch structure can benefit the overall and detailed regression. Therefore, we design
a new contraction path based on U-Net [33]. A U-shaped encoder architecture that follows
the basic framework of convolution is generated, which is no longer completely symmetric
with the expansion path of the decoder.

NCNN [22] is an effective way to fuse confidence and depth features. Similar to
the operation of ordinary convolution, the normalized convolution is an operation in
the domain of each point pair of the signal. The convolution at each point results in an
effective inner product between the kernel of the conjugate and reflection filters and the
neighborhood. For a sparse signal s, the finite neighborhood of each of its signals is defined
in a finite space n ∈ Cn. The confidence c ∈ Rn of s represents the reliability of the
neighborhood, which is usually nonnegative.

The local modeling approach of the signal is to project each sample onto a subspace
spanned by basic functions. The signal s can be denoted as

S = Br (5)

where B is a m× n matrix and r is the coordinates of the sample and the basic function
concerning B. Thus, the least squares estimation of coordinates with weight matrix w can
be obtained as

argmin
r∈Cn
‖Br− s‖w (6)

Taking an applicability function a ∈ Cn as the weight of the basis and a window
function as the benchmark, we can receive the following solution:

r̂ = (B∗WB)−1B∗Ws = (B∗DaDcB)−1B∗DaDcs (7)

where the weight matrix W is the product of Da = Diag(a) and Dc = Diag(c). Diag is the
diagonal matrix. The equivalent inner product is expressed as follows:

r =

 (b1, b1)w · · · (b1, bm)w
...

. . .
...

(bm, b1)w · · · (bm, bm)w


−1 (b1, f )w

...
(bm, f )w



=

 (a·c·b1, b1) · · · (a·c·b1, bm)
...

. . .
...

(a·c·bm, b1) · · · (a·c·bm, bm)


−1 (a·c·b1, f )

...
(a·c·bm, f )


(8)

when choosing a constant function as the basis, we set B = 1 and can obtain:

r̂ = (1∗DaDc1)−11∗DaDcs =
a·(c� s)

a·c (9)

where � is the Hadamard product. Through convolution operation of signal s, we
can obtain:

r̂[k] = ∑n
i a[i]s[k− i]c[k− i]

∑n
i a[i]c[k− i]

(10)
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where k and i are the current coordinate and the unit coordinate in the formula for convolu-
tion in the discrete domain. n is the degree. The propagation value between normalized
convolutional layers is:

ĉi =
〈a|c〉
〈1n|a〉

(11)

where ci represents the confidence value of the i pixel. Although it is obtained by con-
volution calculation, the relationship between Windows is not tight enough. It hurts
spatial transmission.

Aggregation can calculate the neighborhood correlation more accurately and enhance
the local effect. The aggregated values are stored in the original space S, still in one-to-one
correspondence with element positions. The energy function can be expressed as

x(c) = xoriginal(c) + xneighbor(c) = ω (12)

where xoriginal and xneighbor are the original item and the neighborhood aggregation item,
respectively.

PNCNN [25] proposed a probabilistic version of a normalized convolutional neural
network by deriving the connection between normalized convolutional and statistical least
squares methods. Define the signal s = Br + e, where e is a random noise variable with
mean 0 and variance σ2V, then σ2 is the global signal and V is a positive definite matrix
describing the covariance between observations. It can be expressed as

W = V−1 (13)

The uncertain value is:

cov(ŝ) = cov(Br̂) = Bcov(r̂)B∗ (14)

After substituting in the calculation, it can be expressed as

cov(ŝ) = B((B∗V−1B)−1B∗V−1s)B∗

= σ2B(B∗V−1B)−1B∗

= σ2B(B∗WaWcB)−1B∗
(15)

when B = 1, we can obtain:

ĉ = σ21(1∗WaWc1)−11∗ =
σ2

〈a|c〉 (16)

where the variance σ2 has to be estimated. a and c are the applicability and output confi-
dence of the last layer of the normalized convolutional neural network.

As shown in Figure 3, our dense progressive fusion structure is characterized by multi-
branching and multi-resolution scales. The contraction path divides into three branches.
The expansion path is a gradual step shape continuous fusion. It is more flexible and
maneuverable than the ordinary U-shaped structure. We encode features through this
hierarchical fusion structure in step 2, which is shown in Figure 1.
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Figure 3. The schematic diagram of the dense progressive fusion module. There is a main road
and two branches with different resolutions. The down arrows in the dashed box represent the
down-sampling, and the up arrows are the up-sampling. After the fusion of multiple branches, the
color of the feature is gradually deepened, which means that the effect is gradually better.

The corresponding confidence of the output features of different depths x̂i
m,n can be

expressed as

ĉi
m′,n =

σ2〈
a
∣∣∣ci

m,n−1

〉 (17)

where i indicates the branch number. m represents the resolution scale. n represents the
number of layers. Half of them are up-sampled and half of them are down-sampled. The
transition sampling between m′ and m is defined as the 2-fold relation. xi

m,0 represents the
original layer. i ∈ 0, · · · , imax − 1 where imax = 3. m ∈ 0, · · · , mmax/2 where mmax = 8.

Therefore, the results of the layer n in the down-sampling stage can be expressed as

xi
m,n, ci

m,n = nconv(xi
m−1,n−1, ci

m−1,n−1) (18)

The results of the layer n in the down-sampling stage can be obtained by progressive
fusion of the main path and branch path and can be expressed as

x̂m,n, ĉm,n = cat(Rmain, Rbranch)
= cat(nconv(x0

m+1,n+1, c0
m+1,n+1), up(nconv(x0

m−1,n−1, c0
m−1,n−1))

, up(nconv(x1
m−1,n, c1

m−1,n)), up(nconv(x2
m−1,n−1, c2

m−1,n−1)))
(19)

2.3. Point Folding Module

Folding-Net [34] complements spare depth by expanding 2D points into 3D point
clouds through folding. The folding operation of reconstructed surfaces from 2D meshes
fundamentally establishes the mapping from 2D regular fields to 3D point clouds. It acts
as a filling and completion. Similarly, we can consider reducing the dimensionality to
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complement the 2D pixels with the 1D points. As shown in Figure 4, we expand the
dimension of the folded network and use similar ideas to learn the completion depth
information. As shown in Figure 1, we arranged it at the front of the decoder to enrich
the encoded content and increase plasticity in Step 3. We fold 1D random points into the
2D grid.
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Figure 4. The schematic diagram of the point folding module. The top line is a folding network for
point cloud completion, which folds 2D random grid points into 3D shapes through neural network
learning to complete point clouds. The bottom row is our proposed folding network for depth
completion, which folds 1D random discrete points into 2D grid points through neural network
learning to complete depth information.

The depth image D with size i× j and n random points folded can be expressed as

D =
{

D̂ , {P|Pi,j}
}
=
{

D̂ , {P|Trans(ps)}
}

(20)

where ps is the random point, s = 1, · · · , n. Pi,j is the pixel folded into the grid. D̂ is the
original depth image.

3. Experimental Evaluation
3.1. Datasets and Setup

KITTI-Depth [35]: The KITTI dataset is an authoritative and widely used deep com-
pletion dataset in vehicles. The author collected six hours of real traffic conditions. The
dataset consists of calibrated and synchronized images, radar scans, high-precision GPS
information, IMU acceleration information, and other modal information. Sparse depth
images of the KITTI dataset were obtained by projecting the original LIDAR points onto
the camera view. Ground truth semi-dense depth images are generated by projecting
cumulative LIDAR scans of multiple time stamps and then removing abnormal depth
values from occluded and moving objects. Since there are few LIDAR points at the top
of the depth map, the bottom center of the input image is cropped. The remaining depth
image has a resolution of 1256 × 352. In the depth completion dataset, a sparse depth
image has about 6% valid pixels, while a ground truth depth image has about 14% valid
pixels. The dataset contains 86,898 frames for training, 7000 frames for validating, and
1000 frames for testing.
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NYU Depth v2 [36]: The NYU dataset is a color and depth camera from Microsoft
Kinect, which consists of video sequences of various indoor scenes. According to the official
method, we used about 50K images for training and 654 images for testing. We evaluated
the effective region of 304 × 228 in order to match the resolution of RGB images and depth
maps and compare it with other methods.

Our network runs on the Pytorch framework and is trained end-to-end on a single-
stage NVIDIA GTX 2080 Ti GPU. During training, we use the Adam optimizer with
β1 = 0.9, β2 = 0.99. The initial learning rate is 0.01 and decay of 10−1 every 3 epochs.
We refer to the network parameters and the evaluation indicators of PNCNN [25] to
compare the results fairly. We use the following common evaluation indicators to test our
network performance. MAE is Mean Absolute Error (L1 loss). It is the mean of the distance
between the model’s predicted value and the true value. Its convergence is fast and its
gradient is stable. Therefore, it has a relatively robust solution. MSE is Mean Square Error
(L2 Loss), which refers to the Mean squared difference between the predicted value of the
model and the real sample value. Because its penalty is squared, it is sensitive to outliers.
ABSREL is the Absolute Relative Error. RMSE stands for Root Mean Square Error. IMAE
is Inverse Mean Absolute Error. IRMSE is Inverse Root Mean Square Error. DELTA is the
percentage of pixels that are satisfied. MAE is shown in Equation (19). Other formulas can
be expressed as

MSE =
1
n

n

∑
p∈Pv

(
Dgt

p − Dp

)2

(21)

ABSERL =
1
n

n

∑
p∈Pv

∣∣∣∣∣D
gt
p − Dp

Dgt
p

∣∣∣∣∣ (22)

RMSE =

√√√√ 1
n

n

∑
p∈Pv

(
Dgt

p − Dp

)2

(23)

IMAE =
1
n

n

∑
p∈Pv

∣∣∣∣∣ 1

Dgt
p
− 1

Dp

∣∣∣∣∣ (24)

IRMSE =

√√√√ 1
n

n

∑
p∈Pv

(
1

Dgt
p
− 1

Dp

)2

(25)

DELTAτ = δτ : max(
Dp

Dgt
p
−

Dgt
p

Dp
) < τ, τ ∈

{
1.25, 1.252, 1.253

}
(26)

where Pv represents the set of valid pixels. Dgt
p represents the true value of the pixel p. Dp

represents the predicted value of the pixel p, and n represents the number of points.
Although the improvement of the loss function has achieved good results, the im-

provement effect is relatively small. Moreover, the improvement of the loss function of
each network is targeted. It is poor in its extensiveness. While with L2 loss there are more
outliers in the data, L2 will bring more errors due to the square operation. Therefore, L1
performs slightly better than L2 [8] in depth prediction. Therefore, we chose the most
commonly used mean absolute error MAE (L1 loss) as the loss function of our network,
which represents the sum of all absolute differences between the true and predicted values.

3.2. Results of Comparative Experiments

The completed results are shown in Figure 5. As shown in the figure, our network
can effectively recover the depth of information and strengthen the density and integrity
of 3D information. In some detail, the results are visually clear and obvious. Targets are
clearly defined and easier to distinguish. It is very important for the further processing of
3D information.



Remote Sens. 2022, 14, 4689 11 of 17

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 17 
 

 

Although the improvement of the loss function has achieved good results, the im-
provement effect is relatively small. Moreover, the improvement of the loss function of 
each network is targeted. It is poor in its extensiveness. While with L2 loss there are more 
outliers in the data, L2 will bring more errors due to the square operation. Therefore, L1 
performs slightly better than L2 [8] in depth prediction. Therefore, we chose the most 
commonly used mean absolute error MAE (L1 loss) as the loss function of our network, 
which represents the sum of all absolute differences between the true and predicted val-
ues. 

3.2. Results of Comparative Experiments 
The completed results are shown in Figure 5. As shown in the figure, our network 

can effectively recover the depth of information and strengthen the density and integrity 
of 3D information. In some detail, the results are visually clear and obvious. Targets are 
clearly defined and easier to distinguish. It is very important for the further processing of 
3D information. 

 
Figure 5. The complete results of our network on KITTI. (a) is the input sparse depth image. (b) is 
the completed depth image we output. (c) is the ground truth. 

Our results on KITTI are shown in Table 1, where our network (EIR-Net) achieves 
the best results with MAE and IMAE compared to other networks with a single depth 
input. The speed is similar to PNCNN, but all the indicators are better. Compared to the 
first two network models, our network speed is twice as slow, but the indicators are better 
than theirs. Compared to S2D++, both RMSE and IRMSE are worse. However, the differ-
ence is not much, only increased by 11.25% and 17.45%, but decreased by 27.89% and 
32.35% in MAE and IMAE, respectively. 

Table 1. Comparisons to other methods without RGB image guidance on KITTI. The bold numbers 
are the best. 

 SI-Net [19] NCNN [22] IP-Basic [2] S2D++ [9] PNCNN [25] EIR-Net 
MAE 481.27 360.28 302.60 288.64 251.77 225.70 
IMAE 1.78 1.52 1.29 1.35 1.05 1.02 
RMSE 1601.33 1268.22 1288.46 954.36 960.05 1061.75 
IRMSE 4.94 4.67 3.78 3.21 3.37 3.77 
Time(s) 0.01 0.01 - 0.04 0.02 0.02 

The completed results are shown in Figure 6. The depth of objects in the interior scene 
is effectively completed. Our results are shown in Table 2. Our network (EIR-Net) achieves 
the best results compared to other networks with a single deep input and some GRB-
guided networks. 

Figure 5. The complete results of our network on KITTI. (a) is the input sparse depth image. (b) is
the completed depth image we output. (c) is the ground truth.

Our results on KITTI are shown in Table 1, where our network (EIR-Net) achieves the
best results with MAE and IMAE compared to other networks with a single depth input.
The speed is similar to PNCNN, but all the indicators are better. Compared to the first
two network models, our network speed is twice as slow, but the indicators are better than
theirs. Compared to S2D++, both RMSE and IRMSE are worse. However, the difference is
not much, only increased by 11.25% and 17.45%, but decreased by 27.89% and 32.35% in
MAE and IMAE, respectively.

Table 1. Comparisons to other methods without RGB image guidance on KITTI. The bold numbers
are the best.

SI-Net [19] NCNN [22] IP-Basic [2] S2D++ [9] PNCNN [25] EIR-Net

MAE 481.27 360.28 302.60 288.64 251.77 225.70
IMAE 1.78 1.52 1.29 1.35 1.05 1.02
RMSE 1601.33 1268.22 1288.46 954.36 960.05 1061.75
IRMSE 4.94 4.67 3.78 3.21 3.37 3.77
Time

(s) 0.01 0.01 - 0.04 0.02 0.02

The completed results are shown in Figure 6. The depth of objects in the interior
scene is effectively completed. Our results are shown in Table 2. Our network (EIR-Net)
achieves the best results compared to other networks with a single deep input and some
GRB-guided networks.

Table 2. Comparisons to other methods on NYU. The bold numbers are the best.

TGV [37] RGB-d [38] S2D [9] NCNN [22] SPN [24] PNCNN [25] EIR-Net

RMSE 0.635 0.228 0.230 0.171 0.162 0.144 0.142
ABSREL 0.123 0.042 0.044 0.026 0.027 0.021 0.020

δ1 81.9 97.1 97.1 98.3 98.5 98.8 98.8
δ2 93.0 99.3 99.4 99.6 99.7 99.8 99.8
δ3 96.8 99.7 99.8 99.9 99.9 99.9 99.9
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Figure 6. The complete results of our network on NYU. (a) is the input sparse depth image. (b) is the
completed depth image we output. (c) is the ground truth.

3.3. Results of the Ablation Experiments
3.3.1. Confidence Re-Aggregation Module

We used different methods to experiment. As can be seen from Table 3, re-aggregation
is effective and the different aggregation methods have little impact on the loss function.
At the same time, we found that the aggregation effect of AS is better than TC and AS*, and
all indicators have been improved to different degrees. Finally, MAE decreased by 0.769,
RMSE decreased by 1.611, IMAE decreased by 0.05, and IRMSE decreased by 8.058. In
addition, these three methods take the same amount of time because the computation cost is
the same. However, the time is only increased by 0.003 s to achieve the effect improvement.
This means that the real-time performance of the network can still be guaranteed.

Table 3. The ablation experiments of the confidence re-aggregation module. The bold numbers are
the best.

Model Original +CR(TC) +CR(AS*) +CR(AS)

MAE 227.416 227.581 226.786 226.647
MSE 1,274,874.118 1,298,745.842 1,281,756.162 1,270,920.852

RMSE 1065.504 1074.616 1067.330 1063.893
IMAE 1.02 0.98 0.99 0.97

IRMSE 13.821 5.961 13.351 5.763
Time 0.014 0.017 0.017 0.017

A more intuitive comparison is shown in Figure 7. We can find that the details are
strengthened in the completed image after adding this module. Barely visible gaps are more
fully displayed. In addition, the line of the back is smoother. Overall, we re-aggregated
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the confidence to strengthen the local detail effect, so that the outline of the person and the
bicycle component is clearer.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

MSE 1,274,874.118 1,298,745.842 1,281,756.162 1,270,920.852 
RMSE 1065.504 1074.616 1067.330 1063.893 
IMAE 1.02 0.98 0.99 0.97 

IRMSE 13.821 5.961 13.351 5.763 
Time 0.014 0.017 0.017 0.017 

A more intuitive comparison is shown in Figure 7. We can find that the details are 
strengthened in the completed image after adding this module. Barely visible gaps are 
more fully displayed. In addition, the line of the back is smoother. Overall, we re-aggre-
gated the confidence to strengthen the local detail effect, so that the outline of the person 
and the bicycle component is clearer. 

 
Figure 7. The effects of the confidence re-aggregation module. (a) is the input sparse depth image 
and (b) is the ground truth. (c) is the completion effect without confidence re-aggregation module 
and its false-color image is (e). (d) is the completion effect without the confidence re-aggregation 
module and its false-color image is (f). The red circle on the left is the gap between the man and the 
handlebars. The red line on the right is the curvature of the backs of people, bikes, and wheels. 

  

Figure 7. The effects of the confidence re-aggregation module. (a) is the input sparse depth image
and (b) is the ground truth. (c) is the completion effect without confidence re-aggregation module
and its false-color image is (e). (d) is the completion effect without the confidence re-aggregation
module and its false-color image is (f). The red circle on the left is the gap between the man and the
handlebars. The red line on the right is the curvature of the backs of people, bikes, and wheels.

3.3.2. Densely Progressive Fusion Module

The effect of our dense progressive fusion Module is shown in Figure 8. From the
previous frame, we can know that there is a car in the part marked in the box. However,
the network lost the car in learning. The U-shaped structure of the network degrades the
resolution in the network without intensive progressive fusion. The original information
that can be learned is destroyed. The ideal situation of this position is a plane, and the
blank space is output. However, after adding the dense progressive fusion module, we
no longer learn features around a single branch but multiple branches in parallel. The
combination of multi-resolution images and progressive fusion makes the network not lose
any effective information globally. We show exactly where the car is in the image.
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Figure 8. The effects of the dense progressive fusion module. The image from the previous frame
is shown in the left box, and the image from the contrast frame is shown in the right box. (a) is the
ground truth. (b) is the output before joining the module. (c) is the output after joining the module.
Their lower right corner is their false-color image.

We find that the module can be used to compensate for the loss of detail due to
the resolution gap. Most current network architectures use convolutional structures with
varying resolutions. Therefore, a loss between resolutions can be caused by down-sampling.
The module can not only be used in depth completion to fine details but also can be used
in other fields to avoid local weakening.

The effect of our intensive progressive fusion is shown in Table 4. DPF represents dense
progressive fusion module. (.) represents the number of layers. P-Folding represents the
point folding module. Experiments show that the effect is improved. However, increasing
the number of layers increases the time cost. In addition, the size of the resolution down-
sampling is limited, and the number of layers is limited by the original size. Considering
the real-time performance and the complexity of the structure, we choose two layers of DPF
to add to our network to improve the global depth. Compared with the network without
this module, MAE decreases by 0.776, RMSE decreases by 0.269, and IRMSE decreases by
0.4. IMAE increases, but only by 0.1. The pixel percentage of the second gradient increased
by 0.001.

Table 4. The ablation experiments of the dense progressive fusion module and the point folding
module. The bold numbers are the best.

Model MAE RMSE IMAE IRMSE δ1 δ2 δ3 Time

None 226.647 1063.893 0.97 5.763 99.594 99.845 99.921 0.017
DPF(1) 226.266 1066.031 1.06 22.622 99.595 99.845 99.921 0.018
DPF(2) 225.871 1063.624 1.07 5.363 99.595 99.846 99.921 0.020

+P-Folding 225.703 1061.745 1.02 3.774 99.600 99.846 99.922 0.020
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3.3.3. Point Folding Module

We show the point folding module in action in Figure 9. In the beginning, the car
surface in the lower left corner does not have a good effect when the output completes the
depth because the input depth is too sparse. The surface of the car is very uneven and large
areas are missing. The point folding module can effectively supplement the missing part.
As we can see, the surface depth of the car becomes flatter and denser with the addition
of the point folding module. Further thinking, the shape of the car is more complete and
clearer, which will be very conducive to improving the accuracy of 3D target recognition.
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We show the effect of our dot fold module in the last row of Table 4. As we can
see, the results are significantly improved compared to networks without this module.
MAE decreased by 0.168, RMSE decreased by 1.879, IMAE decreased by 0.05, and IRMSE
decreased by 1.989. The pixel percentages of the first and third gradients were increased by
0.005 and 0.001, respectively. There is no doubt that our module plays a role in optimizing
the overall situation. The results of experiments show that our modules are efficient and
portable not only when used separately but also when used in combination. The best
results were obtained when we combine them.

4. Conclusions

In this paper, we designed a deep learning network that can directly complete sparse
depth without color image. Unlike most existing approaches that require guidance, we
re-aggregate confidence to enhance detail. And the global information is improved by
dense progressive fusion structure and point folding module. The combination of modules
makes the use of effective information to the greatest extent. Through experiments and
comparisons on KITTI and NYU Depth v2, we demonstrate the effectiveness of the network.
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