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Abstract 

Photoacoustic spectroscopy (PAS) based gas sensors with high sensitivity, wide dynamic range, 
low cost, and small footprint are desirable across a broad range of applications in energy, 
environment, safety, and public health. However, most works have focused on either acoustic 
resonator to enhance acoustic wave or optical resonator to enhance optical wave. Herein, we 
develop a gas sensor based on doubly resonant PAS in which the acoustic and optical waves are 
simultaneously enhanced using combined optical and acoustic resonators in a centimeter-long 
configuration. Not only the lower detection limit is enhanced by the double standing waves, but also 
the upper detection limit is expanded due to the short resonators. As an example, we developed a 
sensor by detecting acetylene (C2H2), achieving a noise equivalent absorption of 5.7×10−13 cm−1 
and a dynamic range of eight orders. Compared to the state-of-the-art PAS gas sensors, the 
developed sensor increases the sensitivity by two orders of magnitude and extends the dynamic 
range by three orders of magnitude. Besides, a laser-cavity-molecule locking strategy is proposed 
to provide additional flexibility of fast gas detection.  

 
Introduction 
Laser-based optical gas sensors are increasingly required in many fields such as environmental 
monitoring (1,2), marine science (3,4), biological studies (5,6), and breath analysis (7,8). By 
measuring light attenuation through a gas sample, quantitative gas analysis can be performed. To 
enhance sensitivity, the absorption path length can be increased to hundreds of meters by a 
multipass cell or several kilometers by a high-finesse optical cavity. Among the most sensitive laser-
based gas sensing techniques, noise-immune cavity-enhanced optical heterodyne molecular 
spectroscopy (NICE-OHMS) achieved 10−14 cm−1 in noise equivalent absorption (NEA) (9). The 
minimum detectable concentration of a specific molecule has been achieved by saturated-
absorption cavity ring-down (SCAR) with a limit of a few parts-per-quadrillion (ppq) (6,10). However, 
the relatively long cavity used in this class of gas sensors sets a limit on the dynamic range because 
the high finesse degrades even at low gas concentrations, which also leads to, in turn, the large 
overall footprint and weight. For example, with a cavity finesse of 30,000 and a cavity length of 37.8 
cm used in NICE-OHMS, the dynamic range is limited to four orders of magnitude (11). Dynamic 
range is a very important parameter of gas sensors. For example, the NH3 concentration changes 
by orders from tens of parts-per-million (ppm) to parts-per-billion (ppb) in applications including 
chemical hazards monitoring for occupational safety and health, contaminant control in hydrogen 
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source for fuel cell, and contaminant requirement in lithography processing in semiconductor 
industry (12). 
To get a combined high sensitivity and wide dynamic range, photoacoustic spectroscopy (PAS) is 
a promising candidate as the acoustic signal linearly increases with laser power, rather than a long 
absorption path. Numerous studies have been focused on applying various acoustic transducers 
and designing resonators to enhance the acoustic wave (13-16). An optical resonator can also be 
used to enhance the laser power by precisely matching the cavity mode and laser frequency using 
low-frequency dither locking (17,18), optical feedback (19,20), and Pound-Drever-Hall (PDH) 
locking method (21,22). However, compared to the well-assessed cavity ring-down spectroscopy 
(CRDS) and NICE-OHMS techniques (10−14–10−13 cm−1 in NEA), the NEA of state-of-the-art PAS 
gas sensors (13,14,17,21–24) is limited to 10−11–10−8 cm−1, while the dynamic range is limited to 
five orders of magnitude. It is worth mentioning that researchers recently tried to combine an 
acoustic resonator with an optical resonator to advance the performance (25). However, the 
sensitivity and dynamic range cannot be simultaneously improved because of the limited optical 
and acoustic buildup factors, noise floor limited by the optical feedback strategy and the long optical 
cavity with a Brewster window (25). A high-efficiency doubly resonant strategy, which can enhance 
the intracavity PAS signal by orders linearly, is worth pursuing. Another limitation of the above 
techniques is the response time. To record the entire spectrum, the laser and optical cavity need 
to be relocked in a stepwise manner which is time-consuming (several minutes). The sensor will 
become much faster if the laser wavelength can be stabilized to the target absorption line while 
being locked with the optical cavity.  
In this work, we report a PAS sensor with opto-acoustic resonance enhancement for gas detection 
with ultra-high sensitivity and ultra-wide dynamic range. The proposed photoacoustic design, 
leveraging on a double standing wave effect, achieves a combined acoustic amplification factor of 
144 and laser power enhancement of almost three orders of magnitude. The laser-cavity-molecule 
locking strategy, which enables the simultaneous locking of laser frequency, cavity mode and 
absorption line, has proven a fast response. As a proof-of-principle, we show that our C2H2 sensor 
reaches a record sensitivity of 10−13 cm−1 (NEA) and a record dynamic range of eight orders of 
magnitude. 
 
Results 
Figure 1A shows the schematic of opto-acoustic resonance for PAS. The core gas sensing element 
consists of an optical resonator, an acoustic resonator, and an acoustic transducer. Indeed, when 
the laser is in resonance with optical resonator via the laser-cavity locking, a standing optical wave 
is formed between the resonator mirrors. A high-finesse optical resonator can significantly build up 
the laser power by several orders of magnitude (26). PAS relies on the detection of acoustic waves 
generated by the periodic local heating and thermal expansion in the vibration-translation relaxation 
process of excited molecules after absorbing photons. To generate acoustic waves, the laser 
intensity is modulated at the resonant frequency of the acoustic resonator. A specifically designed 
one-dimensional longitudinal tube can be used to amplify the acoustic signal by forming a standing 
acoustic wave. In this work, we use both a quartz tuning fork (QTF) and an electret microphone to 
measure the PAS signal. The QTF locates nearby the antinode of the standing acoustic wave (27). 
The other configuration using an electret microphone is described in Supplementary Note 1. The 
photoacoustic signal (S) is given by (28):  

( ) ( )( ) ( )( )= 1 ,eff

inS b g K W e f P
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(1) 

where b is the laser power buildup factor, g is the acoustic wave enhancement factor, K is the 
sensor constant, Win is the incident laser power, λ is the laser wavelength, αeff(λ) is the effective 
absorbance by the analyte, τ(P) is the relaxation time at the gas pressure P, and ε is the radiation-
to-sound conversion efficiency. Note that the factor g is related to the geometry, to the material, 
and to the Q-factor of the acoustic resonator (29). The power buildup factor b is determined by 
finesse of the optical resonator which needs to be selected properly (see Supplementary Note 2). 
Besides, a portion of the laser interrogates a low-pressure reference cell. The laser-molecule 
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locking can be achieved by feedback to the cavity length. More details are provided in 
Supplementary Note 3. 

 
Figure 1. (A) Schematic representation of the experimental apparatus. ECDL: external cavity diode 
laser; BS: beam splitter; PD: photodetector; QTF: quartz tuning fork; ASW: acoustic standing wave; 
OSW: optical standing wave. The photo shows the real configuration by comparing with the 1 
Chinese Yuan coin. PAS-1f signal measured by three different configurations: (B) bare QTF, (C) 
QTF with acoustic resonator, and (D) QTF with acoustic and optical resonators.  
 
To evaluate the enhancement effects, the PAS-1f signal of the C2H2 line at 1531.59 nm is 
measured. Figure 1B, C and D compare the typical PAS-1f signals measured using a bare QTF 
(2% C2H2), a QTF with the mere acoustic resonator (0.1% C2H2), and a QTF with the complete 
opto-acoustic resonator (1 ppm C2H2). All the experiments are performed at the same incident laser 
power of 12 mW, lock-in detection bandwidth of 1 Hz, and gas pressure of 760 Torr. After 
normalization by the gas concentration, a comparison of Fig. 1B and Fig. 1C shows that the PAS-
1f signal is enhanced by 175 times. However, with the high concentration C2H2 used in the bare 
QTF measurement, we must consider attenuation for the incident power before reaching the QTF. 
With a power attenuation of 17.3%, the enhancement factor of using the acoustic resonator is 
evaluated as 144. Besides, the optical resonator provides another enhancement factor of 980, as 
emerging from a comparison of Fig. 1C and Fig. 1D. Hence, the combined opto-acoustic 
amplification provides an overall enhancement of the PAS signal by a factor of 105 via the double 
standing wave effect. 
The measurement of PAS-1f signal is performed with 12-mW incident power at 760 Torr for different 
C2H2 concentrations (100 ppb and 10 ppb in nitrogen balance) and high-purity (99.999%) nitrogen 
when the laser wavelength is tuned from 1531.32 nm to 1531.75 nm, as shown from Fig. 2A to Fig. 
2C. Note that the background signal is contributed by the thermoelastic effect due to unwanted 
absorption at the optical windows and resonator mirrors (30). A neighboring water line with quite 
low intensity of 2.896×10−24 cm−1/(molec·cm−2) near 1531.37 nm is detected. This is probably due 
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to residual water in the gas chamber. To reduce the measurement error and background, a multi-
spectral fitting method based on HITRAN database (31), is implemented. Figure 2D compares the 
PAS-1f signal at 1 ppb C2H2 under two different incident powers. The PAS-1f amplitude is increased 
by a factor of about 22.5 when the incident power is increased from 12 mW to 300 mW (a factor of 
25). The slight deviation of the enhancement factor between laser power and PAS signal is caused 
by the variation of the optical coupling efficiency. The linear relationship between signal-to-noise 
ratio and incident power is shown in Supplementary Note 4. 

 
Figure 2. Representative PAS-1f signal of C2H2/N2 mixtures and N2 balance gas: A 100 ppb, B 10 
ppb and C N2 cylinder. D PAS-1f signal of 1 ppb C2H2 measured at two different incident optical 
power levels: 12 mW (top panel) and 300 mW (bottom panel). Due to the wide measurement span, 
error bars in A, B, D-top panel and D-bottom panel are magnified by 20, 2, 2 and 20 times, 
respectively, for the sake of clarity. E Background-subtracted PAS-1f amplitude as a function of 
gas concentration for an incident optical power of 12 mW. Error bars show the 1-σ standard 
deviation from 120 s measurements. F Allan–Werle deviation analysis. The dashed line in the top 
panel represents a 1/t0.44 slope. The bottom panel depicts the raw data of noise measured for nearly 
2 hours. 
 
Figure 2E shows the background-subtracted PAS-1f amplitude as a function of C2H2 concentration, 
from 1 ppb to 500 ppm. The sensor shows a very good linear response with a slope of 36.4 μV/ppb 
and an R-square value of 0.99 from 1 ppb to 50 ppm. Considering the 12-mW incident optical 

power, the normalized linear response coefficient of the sensor is 3 μV/(mW·ppb). Due to the 

verified linear relationship between incident optical power and PAS-1f amplitude, the response 
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coefficient remains unchanged at 300 mW. However, the sensor deviates from the linear response 
at higher C2H2 concentrations due to the apparent degradation of finesse of the optical resonator. 
The Allan–Werle deviation analysis is conducted by tuning the laser wavelength to the peak of the 
C2H2 absorption line and measuring nitrogen, as shown in Fig. 2F. The noise equivalent 
concentration (NEC) is determined to be 5.1 ppt at an integration time of 1 s. At an incident optical 
power of 300 mW and a detection bandwidth of 1 Hz, we obtain an NNEA coefficient of 1.7×10−12 

W·cm−1·Hz−1/2
 (see Methods). The NEC can be improved to 0.5 ppt at a longer integration time 

of 300 s, leading to a NEA coefficient of 5.7×10−13 cm−1. As a result, the proposed gas sensor 
achieves a dynamic range of 1.0×108 (see Methods). Besides, the dynamic stability of the sensor 
is evaluated by operating the gas sensor when continuously filling C2H2/N2 gas samples into the 
gas chamber (see Supplementary Note 5). 

 
Figure 3. Continuous PAS measurement with and without locking the laser and molecular line. 
Unlocking state: laser and molecular line are not locked; locking state: laser and molecular line are 
locked. Note that the laser is kept being locked to the optical cavity during the entire test. The PID 
output refers to the laser-molecule locking loop.  
 
To evaluate the performance of the laser-cavity-molecule locking strategy, we purposely apply 
external heating to the gas chamber to disturb the system. With 5 ppm C2H2/N2 filled in the gas 
chamber, the laser wavelength is first tuned to the absorption line-center without implementing the 
molecular line-locking. Figure 3 shows that the PAS-1f amplitude varies sharply due to heat 
disturbance. This is because the laser wavelength drifts with the varied cavity length. Note that the 
gas temperature inside the chamber has little change during the heating disturbance (~ 3 s). 
Conversely, when the laser-cavity-molecule locking is activated, the PAS-1f amplitude remains 
unchanged under the condition of external heating disturbance. The PID output shows the 
compensation for the varied cavity length caused by the heating source. In this way, the laser, 
optical cavity and absorption line are tightly locked, leading to the immunity to laser wavelength 
drift and cavity length variation. The PAS-1f amplitude can thus be acquired continuously with no 
need for scanning the entire spectrum. Note that we use a relatively low gas pressure of 10 Torr in 
this test to avoid spectral interference.  
 
Discussion  
The key parameters of the state-of-the-art gas sensors are summarized in Table 1. Compared to 
PAS gas sensors, our work shows a dynamic range that is three orders of magnitude wider than 
the state-of-the-art (105) (23), and an NEA that is two orders of magnitude better than the state-of-
the-art (10−11 cm−1) (22). Compared to other ultrasensitive spectroscopic methods such as NICE-
OHMS, SCAR, CRDS and off-axis integrated cavity output spectroscopy (OA-ICOS) (6,9,32,33), 
NICE-OHMS and CRDS exhibit 57 times and 4 times better sensitivities, respectively. But our 
sensor shows evident merits of size (5–8 times shorter cavity) and dynamic range (2–3 orders 
wider). Besides, our sensor can operate at atmospheric pressure, which is more suitable for field 
applications. 
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Table 1. Key parameters of state-of-the-art gas sensors. 
 

Gas Method λ(µm) L(mm) D NEC(ppt) NEA(cm−1) t(s) P(Torr) 

NO2 PAS (23) 

P
A
S 

0.45 NA 1×105 54 2.3×10−10 1 640 

SF6 QEPAS (24) 10.5 NA 3×103 50 6.1×10−9 1 75 

CO2 I-QEPAS (17) 4.33 174 3×103 300 1.4×10−8 20 38 

C2H2 CECEPAS (22) 1.53 147 7×103 24 2.4×10−11 100 150 

C2H2 CE-PAS (21) 1.53 130 1×104 300 1.9×10−10 300 50 

HF CEPAS (13) 2.47 NA 4×104 0.65 1.3×10−10 1920 150 

SF6 α-BiB3O6-PAS (14) 10.6 NA 1×105 0.75 8.1×10−11 100 760 

C2H2 This work 1.53 60 
1×108 0.5 5.7×10−13 300 

760 
1×107 5.1 5.8×10−12 1 

14CO2 SCAR (6) C
E
A
S 

4.5 1000 NS 0.005 1.1×10−12 7200 9.12 

CO2 CRDS (32) 1.6 330 7×105 40000 1.4×10−13 4 0.075 

C2HD NICE-OHMS (9) 1.06 469 NS NS 1×10−14 1 0.0018 

CO OA-ICOS (33) 1.57 1100 NS 1000 1.9×10−12 1 197 

λ: laser wavelength. L: cavity length. D: dynamic range. t: integration time. P: pressure. CEAS: 
cavity-enhanced absorption spectroscopy. NA: not applicable. NS: not stated. 
Note that the dynamic range values are calculated using the same definition in the Methods. 
The two PAS sensors (13,14) that can achieve sub-ppt sensitivity are both based on mid-
infrared lasers. The NEAs with different integration times are listed here because different 
sensors have different stability. A sensor may have a sensitivity improvement by averaging if 
it is stable enough with white noise dominant. The integration time is not normalized here as 
it cannot reflect the ultimate performance of sensors. 

 
In summary, we have developed a photoacoustic gas sensor based on double standing wave 
enhancement. The photoacoustic signal has been enhanced by five orders of magnitude compared 
to a bare QTF, thus providing ultrasensitive gas detection. The optical resonator with a moderate 
finesse and a short length maintains the high optical coupling efficiency and enables a wide 
dynamic range. A strategy of laser-cavity-molecule locking is proposed to increase the sensor 
response for fast and continuous measurements. As a result, we have demonstrated an NEC of 
0.5 ppt, an NEA of 5.7×10−13 cm−1, and a dynamic range of eight orders of magnitude for C2H2 

detection. Although the demonstration is performed in the near-infrared region, the concept can be 
extended to the mid-infrared range, where many molecules have much stronger fundamental 
absorption bands.  
 
Materials and Methods 
 
NNEA calculation. The NNEA coefficient can be calculated by the following equation: 

min in
W

NNEA
BW

 
=

 
where αmin is the NEA, Win is the incident power and BW is the detection bandwidth. With the NEC 
of 5.1 ppt, NEA can be easily obtained based on the HITRAN database (31). Considering the 
incident power of 300 mW and the detection bandwidth of 1 Hz, the NNEA is 1.7×10−12 
W·cm−1·Hz−1/2. 
 
Dynamic range definition. The dynamic range is defined as the maximum concentration that is in 
the linear fitting range divided by the NEC (34–36). In this work, the maximum concentration in the 
linear fitting range is 50 ppm and the NEC is 0.5 ppt, leading to a dynamic range of eight orders of 
magnitude. 
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Supplementary Information 

Supplementary Note 1: Sensor performance with a microphone 

 

Supplementary Figure 1. Principle of the opto-acoustic resonance for PAS using a microphone. 
ASW: acoustic standing wave; OSW: optical standing wave. The amplitude of the OSW is 
modulated at the resonant frequency of the acoustic resonator. Two buffers are designed on both 
sides to form the acoustic standing wave with an antinode located at the center of the resonator. 

The principle of the opto-acoustic resonance for PAS with a microphone as the acoustic transducer 
is illustrated in Supplementary Fig. 1. The cylindrical PAS cell is designed to have a total length of 
70 mm, which is placed inside an optical resonator with a length of 80 mm. In particular, the acoustic 
resonator has a length of 35 mm and an inner diameter of 3 mm, and the two buffers on both sides 
of the acoustic resonator have a length of 17.5 mm and an inner diameter of 12 mm. The 
photoacoustic cell is characterized to have a resonant frequency of 3.5 kHz and a Q-factor of 25 at 
760 Torr. An electret microphone is mounted at the center of the photoacoustic cell for acoustic 
detection, which corresponds to the antinode of the standing acoustic wave. The representative 
PAS-1f signals measured at different C2H2 concentrations (0.1–10 ppm) with an incident power of 
12 mW are shown in Supplementary Fig. 2. 

 

Supplementary Figure 2. Representative PAS-1f signals of C2H2 measured at different 
concentrations along with the spectral fitting curves at 760 Torr. The target C2H2 peak is observed 
at 1531.59 nm. The detection bandwidth of the lock-in amplifier is 1 Hz. 
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The linear response of the sensor is studied by measuring C2H2 of different concentrations shown 
in Supplementary Fig. 3. The sensor shows an excellent linear response from 1 ppb to 30 ppm with 
an R-squire value of 0.999. The Allan-Werle deviation analysis is plotted in Supplementary Fig. 4 
by measuring nitrogen for about 1.5 hours at 760 Torr. The detection bandwidth of the lock-in 
amplifier is 1 Hz. As a result, the sensor can achieve a noise equivalent concentration (NEC) of 
1.75 ppt at an integration time of 180 s, corresponding to a noise equivalent absorption (NEA) of 
1.9×10-12 cm-1. In this case, the dynamic range of the sensor is about seven orders of magnitude.  

 

Supplementary Figure 3. Background-subtracted PAS-1f amplitude as a function of C2H2 
concentration. The linear fitting yields an R-square value of 0.999 from 1 ppb to 30 ppm. The 
incident laser power is 12 mW and the detection bandwidth of the lock-in amplifier is 1 Hz. Error 
bars show the 1-σ standard deviation for 120 s measurements. 

 

Supplementary Figure 4. Allan‐Werle deviation analysis for the microphone-based sensor. The 
laser wavelength is tuned to the peak of the C2H2 absorption line with the chamber filled with 
nitrogen. As a function of integration time, the analysis shows a NEC of 1.75 ppt at 180 s. The 
detection bandwidth is 1 Hz, the same as signal measurement. 
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Supplementary Note 2: Selection of finesse for the optical resonator 

First, the selection of a higher finesse theoretically provides a larger power enhancement factor. 
However, the linewidth of the cavity mode decreases with the increased finesse (1), making it more 
challenging to achieve a high coupling efficiency of the laser into the optical resonator. Second, the 
dynamic range of the sensor is affected by the finesse. The finesse is determined by the round-trip 
loss inside the optical resonator which includes the mirror transmission and absorption, gas 
absorption, and loss induced by the acoustic module (1). The finesse increases with the larger 
reflectivity of cavity mirrors, but it decreases apparently when the loss induced by gas absorption 
becomes comparable (1–3). Hence, the physical length of the optical resonator should be selected 
as short as possible to minimize the gas-absorption loss inside the cavity.  
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Supplementary Note 3: Experimental setup in detail 

3.1 Photoacoustic sensor apparatus 

 

Supplementary Figure 5. Schematic of the photoacoustic sensor with opto-acoustic resonance. 
ECDL, external cavity diode laser; EOM, electro-optic modulator; OS, optical switch; FC, fiber 
collimator; PBS, polarization beam splitter; QWP, quarter-wave plate; PD, photodetector; PZT, 
piezo transducer; FG, function generator; PDH, phase demodulator and laser servo 
(PDD110/mFALC110, TOPTICA Photonics); PID, proportion integration differentiation controller 
(LB1005, Newport); TIA, trans-impedance amplifier; LIA, lock-in amplifier.  

The schematic of the doubly resonant PAS sensor is shown in Supplementary Fig. 5. An external 
cavity diode laser (ECDL, TOPTICA Photonics) is used to detect the P(11) transition of C2H2 at 
1531.59 nm. The ECDL is phase modulated by an electro-optic modulator (EOM, iXblue Photonics) 
at 20 MHz and locked to the optical resonator using the PDH method (4). The polarization beam 
splitter is used with the quarter-wave plate to pick up the reflected beam from the optical resonator, 
which is then detected by a photodetector (PD1). Details of the application of the PDH method to 
PAS can be found in our previous work (3). In this work, the current and piezo transducer (PZT) 
feedback loops of the ECDL are both used to improve the locking performance. Each mirror 
(Layertec Inc.) of the optical resonator has a radius of curvature of 150 mm and reflectivity of 
99.923% (finesse 4078) at the laser wavelength, as measured by cavity ring-down (see 
Supplementary Note 3.2). Compared with other cavity-enhanced absorption spectroscopic 
methods (5,6), the optical resonator used here for the opto-acoustic resonance features a much 
shorter length (60 mm in this work). Two mode matching lenses (focus length: L1=30 mm and L2=50 
mm) and a photodetector (PD2) are used to maximize the coupling efficiency (84%) between the 
laser and the optical resonator. With a maximum incident laser power of 300 mW, the intracavity 
optical power is boosted to 264 W in this work (see Supplementary Note 3.3). 

The intracavity laser beam passes through the acoustic resonator, consisting of two stainless-
steel tubes (inner diameter 1.3 mm, length 23 mm), and does not touch any surface. The central 
axis of the acoustic resonator is about 1.2 mm below the top of the QTF prongs, thus optimizing 
the piezoelectrical conversion efficiency (7). The two tubes are placed at a distance of ~60 μm from 
the QTF, so that it lies near the antinode of the acoustic wave and leaves its Q-factor unaffected. 
The beam waist (340 μm in diameter) is located between the two prongs of the QTF, which has a 
gap of 800 μm, a resonant frequency of 7.2 kHz and a Q-factor of ~8000 (gas pressure 760 Torr) 
(7). The optical resonator, the acoustic resonator and the QTF are all enclosed inside a chamber 
(PAS cell in Supplementary Fig. 5). A high-speed lithium niobate optical switch (NanoSpeed, 
Agiltron) is used to chop the laser beam at the same frequency as the resonant frequency of the 
QTF. The piezoelectric current from the QTF is collected by a trans-impedance amplifier and then 
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amplified by a low-noise voltage preamplifier (SR560, Stanford Research Systems). Finally, a lock-
in amplifier (MFLI 5 MHz, Zurich Instruments) with a detection bandwidth of 1 Hz is used to 
demodulate the first harmonic signal (1f) at the sensor output. To retrieve a complete spectrum, 
the optical cavity length is tuned by a PZT attached to one cavity mirror via the function generation 
FG1.  

Besides the laser-cavity locking using the PDH method, another pair of sidebands are generated 
by applying a 100 MHz modulation (FG2) to the same EOM, if locking the laser to the absorption 
line is also required. A small portion of the incident laser passes through a 3-m reference gas cell 
filled by 2% C2H2 (pressure 7.6 Torr) and impinges on a photodetector PD3. The error signal is 
retrieved by mixing the PD3 signal with a 100 MHz reference signal, which is used to PID-control 
the other cavity mirror that is attached to a PZT. As a result, these two feedback loops enable the 
simultaneous locking of laser frequency, cavity mode and absorption line. More details of this laser-
cavity-molecule locking strategy will be described in Supplementary Note 3.4. 

3.2 Characterization of mirror reflectivity 

To characterize the mirror reflectivity using ring-down measurement, a longer optical resonator of 
600 mm is designed with two high-reflectivity mirrors which have a radius of curvature (ROC) of 
1500 mm. Note that all the mirrors used in this study are fabricated in the same coating process 
and have the same reflectivity. An optical switch with 85‐ns fall time is used to swiftly generate the 
ring-down event, which is monitored by a high-bandwidth (150 MHz) photodetector. The ring-down 
signal, illustrated in Supplementary Fig. 6, is acquired by a high-speed data acquisition card with a 
100‐MHz sampling rate and a 16-bit analog-to-digital converter. 

 

Supplementary Figure 6. Characterization of mirror reflectivity using cavity ring-down 
measurement. The averaged ring-down time (average of 84 ring-down events) is determined to be 
2.596 μs, corresponding to a reflectivity of 99.923%.  

3.3 Optical coupling efficiency and intracavity power 

It is important to couple as much light as possible into the optical resonator. To evaluate the 
coupling efficiency, the reflected light from the optical resonator is detected by a photodetector. By 
scanning the resonator length using a piezo transducer (PZT), the fundamental resonator mode 
shown in Supplementary Fig. 7 is used to investigate the coupling efficiency. Based on the ground 
voltage (4.451 V) and valley voltage (0.719 V), a coupling efficiency of about 84% is determined in 
this work. 
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Supplementary Figure 7. Measured intensity of the reflected light from the optical resonator. A 
coupling efficiency of about 84% is determined from the ground voltage (4.451 V) and valley voltage 
(0.719 V). 

According to the main text, the optical resonator enhances the photoacoustic signal by a factor of 
980. Considering the 84% coupling efficiency, the intracavity power enhancement factor is 1166, 
which is slightly lower than the theoretical buildup factor of 1300. This is probably due to the extra 
cavity loss caused by the QTF. As the empty cavity has a finesse of 4078, an additional loss of 
0.017% can deteriorate the buildup factor from 1300 to 1166. When the incident power is adjusted 
from 12 mW to 300 mW, there is an extra 10% degradation of coupling efficiency. Hence, the 
maximum of the intracavity power is determined to be 264 W, by the product of the incident laser 
power (300 mW), the power enhancement factor of the empty cavity (1166) and the coupling 
efficiency (84%×(1−10%)=75.6%).  

3.4 Laser-cavity-molecule locking 
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Supplementary Figure 8. Molecular line locking measurement. Typical transmission (black curve) 
and error signal (red and blue curves) measured during the laser-cavity locking (upper panel) and 
laser-molecule locking (bottom panel), respectively. 

Rather than scanning the entire spectrum, it is of interest to explore the feasibility of the continuous 
photoacoustic measurement at the absorption line center. By scanning the laser wavelength, 
Supplementary Fig. 8 shows the representative transmission and the error signals for the laser-
cavity locking and laser-molecule locking, respectively. In the upper panel of Supplementary Fig. 
8, the center zero-point of the PDH error signal corresponds to the peak of cavity transmission. In 
the bottom panel of Fig. 8, the center zero-point corresponds to the absorption peak of the gas (2% 
C2H2, 7.6 Torr) in the reference gas cell.   
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Supplementary Note 4: Signal-to-noise ratio with incident power 

By repeating the measurement at 100 ppb C2H2, supplementary Fig. 9 shows the variation of the 
PAS-1f amplitude with the incident optical power. The sensor signal increases almost linearly (0.25 
mV/mW) with the incident power. In contrast, the noise level remains almost unchanged over the 
entire power range, as shown in Supplementary Fig. 9 (1-σ standard deviation of N2 over 120 s). 
This makes our set-up very promising to further enhance detection sensitivity by simply increasing 
the incident laser power.  

 

Supplementary Figure 9. PAS-1f amplitude for 100 ppb C2H2 and 1-σ standard deviation (STD) 
of the noise (a measurement of nitrogen over 120 s) versus incident power. The PAS-1f amplitudes 
of 1 ppb C2H2 at different incident power levels need to be inferred from the fitting results. All these 
measurements are performed at 760 Torr and a detection bandwidth of 1 Hz. The error bars (1-σ 
STD) are calculated from the raw data taken in a time interval of 120 s. Error bars are magnified 
by 200 times, for the sake of clarity. 
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Supplementary Note 5: Continuous measurement 

With the laser wavelength tuned at the peak of the absorption line, the sensor is tested by 
continuously filling 100 ppb C2H2 into the gas chamber. The flow rate is varied (200, 300, and 400 
mL/min) at 60 s and 120 s, respectively, during the continuous measurement. As shown in 
Supplementary Fig. 10, the sensor can work continuously without losing locking due to the robust 
locking between laser and optical resonator.  

 

Supplementary Figure 10. Continuous monitoring of 100 ppb C2H2 at varied flow rates (200, 300, 
and 400 mL/min). The flow rate is changed at 60 s and 120 s, respectively, during the continuous 
measurement. 
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