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ABSTRACT Real-time dim space target detection is a significant challenge in space situation awareness.
This paper proposes a single-frame space object segmentation and detection method based on deep learning.
Firstly, Channel and Space Attention U-net (CSAU-Net) is presented based on space image features.
We remove unnecessary feature layers and add attention modules in the traditional encoder and decoder
structure to enhance feature fusion and better use original feature layers. The proposed network structure
can achieve accurate segmentation of space objects with fewer data training. At the same time, we construct
a space target dataset for training, which contains targets with different signal-to-noise ratios to enhance the
generalization of convolutional neural networks. After obtaining the segmentation masks, a simple connected
component labeling method is applied to extract the centroid of the space target. Experiments show that our
approach can achieve an ideal segmentation effect when the signal-to-noise ratio of the space target in the
simulated dataset is 0.3. In addition, the proposed algorithm can realize fast segmentation and achieve an
accuracy of 98.5%, which is similar to the traditional multi-frame space target detection method in real space

image detection.

INDEX TERMS Convolutional neural networks, semantic segmentation, dim space target detection,

connected component labeling.

I. INTRODUCTION

With the rapid development of space technology, space
objects in earth orbit increased dramatically during the
past few decades [1]. Break-ups, explosions, and collisions
produced a mass of space debris [2]. This debris will seri-
ously affect the routine flight of space aircraft and satel-
lites. It will cause damage to satellites mission failure and
bring significant Loss to space engineering when space debris
collides with a spacecraft. The trash from the collision can
also threaten spacecraft. Therefore, it is necessary to monitor
spacecraft and satellites in real-time and vital to detect various
objects such as space debris.

Due to their small size, weak brightness, and immense
distance from the charge-coupled device (CCD) or CMOS
sensors, space objects occupy only a few pixels in an opti-
cal image and often appear as points and lines [3]. So the
detection of space target is the extraction of points or lines
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according to the different modes of optical telescope. Over
the past few decades, many typical algorithms have been
proposed and applied in dim and small target detection to
address the problem. The extraction of faint objects in space
is often a multi-step process that always includes background
and noise removal, star removal, and detection of targets at
the end.

Space target detection methods can be divided into single-
frame and multi-frame algorithms according to different
requirements of algorithms. The algorithm based on a single
frame directly uses filtering or morphology to extract the tar-
get, which can achieve faster detection and real-time tracking.
However, when the shape of the target is not apparent, such
a method is easy to cause missed detection or false alarm.
Multi-frame methods use inter-frame information to judge
the authenticity of the target in the image. Compared with
single-frame methods, these methods can judge the target
more accurately, mainly the target with obscure features or
the target blocked by stars. However, multi-frame detection
methods rely on inter-frame information. They can only
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process sequential images, the processing time of algorithms
is always long, and the calculation consumption is colossal.

Methods based on morphological and motion informa-
tion were proposed for space target detection. Sun et al. [4],
[5] presented a morphology method and a Median filterer
algorithm to detect space debris. Kouprianov et al. [6] pro-
posed a method of fitting star and target trajectory using
a point spread function and a logical filtering technique to
improve automatic target detection. Cament ef al. [7] used
the Bernoulli filter method to track debris in low Earth
orbit. Pradhan er al. [8] used the 1.3m Devasthal Fast Opti-
cal Telescope (DFOT) to obtain images of space targets,
effectively identifying space debris up to 50cm in orbit at
1000km with long exposures. A geometric duality method
is proposed for multi-target detection, which is efficient and
insensitive to initialization [9]. Zamani et al. [10] proposed a
method for space target detection using inter-frame match-
ing, which is robust in moving target classification while
running in near real-time. Guo et al [11] used the methods
of image transformation and energy accumulation to detect
space targets, which could achieve specific effects on faint
GEO targets.

The imaging characteristics of space objects in images
under different observation modes are also different.
Researchers have also done a lot of research on streak detec-
tion of space images. Virtanen et al. [12] proposed a prototype
pipeline method, the performance of the pipeline on long
streaks is ideal, while the capability for detecting short lines is
weaker. Laas-Bourez et al. [13] proposed a space target detec-
tion algorithm based on mathematical morphology, which
combines Top-hat and Hough transform. Levesque et al. [14]
applied the matched filter to the space target detection, which
can effectively detect the long target. WASZCZAK et al. [15]
used machine learning classifier methods to detect streaks
of asteroids in LEO, which can effectively distinguish false
alarms from real asteroid targets. Vananti et al. [16] com-
pleted detecting possible fringe objects by matching the
streak with the filter and estimating the image background.
Zimmer et al. [17] proposed a GPU-accelerated streak detec-
tion method, which can effectively improve detection speed
and is expected to detect near-earth space objects of magni-
tude 12-13. Nir et al. [18] cross-correlated the image with a
straight line template broadened by the system’s point spread
function to achieve streak detection in space images. These
methods can achieve accurate detection of long exposure
target, but the detection effect of weak short streak generated
by short exposure is often not ideal, and the detection speed
is not fast enough.

In recent years, a dramatic increase in the calcula-
tion capability of graphics processing unit (GPU) has pro-
moted the development of deep learning. Deep learning
has made remarkable achievements in target detection [19],
classification [20], and semantic segmentation. FCN [21] is a
milestone in semantic segmentation, which realizes the appli-
cation of deep learning in semantic segmentation through the
fully convolutional network. Various semantic segmentation
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algorithms based on deep learning are proposed and achieved
success. U-net [22] is used to solve simple segmentation
problems of small samples, such as the segmentation of medi-
cal images. It follows the same basic principle as FCN, which
adopts the Encoder-Decoder structure and realizes richer
information fusion. SegNet [23] does not directly fuse the
information of layers of different scales, and it uses pooling
with coordinates index to solve the problem of information
loss. PSPnet [24]uses spatial pyramid pooling to obtain fea-
ture maps with different receptive fields. These maps with
different receptive fields are concatenated to complete multi-
level semantic feature fusion. An encoder-decoder structure
with a large dimensional convolution kernel is proposed in
GCN [25].

Some researchers try to apply machine learning and
deep learning methods to space object detection. CNN can
be trained on light curve observation to classify space
objects [26]. Rasit Abay et al. [27] applied image pyramid
network to space target detection and improved the detec-
tion performance of GEO space targets by using subse-
quent processing. Vittori et al [28] proposed a method of
extracting target trajectory based on U-Net, which realized
fast image processing, but the target trajectory was usually
long. Xi et al [29], [30] applied deep learning to space streak
detection and neural network to the pipeline of space target
detection.

This paper constructs the space target dataset used to seg-
ment the target. The dataset contains training sets and test
sets of various SNR. Due to the superficial characteristics of
space objects, the image number of the dataset need not be
huge, and the network should not be too complex to avoid
overfitting. Gaussian noise and shot noise are added to the
test set to further test the network’s robustness. We propose
a Channel and Space Attention U-net (CSAU-Net) for target
segmentation according to this principle. The network con-
tains an encoder-decoder structure like many other semantic
segmentation networks. The attention module is added to
the network to make better use of the low-scale feature map
information and enhance the attention to the target. For space
targets, a loss function suitable for this study is applied to
network training, which is used to solve the imbalance of
positive and negative samples in space image segmentation
and complex case segmentation of dim and weak targets.
Finally, a simple connected component labeling method is
applied to extract the target position after the segmentation
mask outputs of the network.

The remaining works are organized as follows. The pro-
posed method is described detailed in section 2 and section 3.
We describe the structure of the network and training set;
simultaneously, we explain in detail how the dataset is cre-
ated. In section 4, we do some experiments to verify the
effectiveness of the algorithm, including the comparison with
the current semantic segmentation networks and space target
detection algorithm. In section 5, we discuss the performance
and boundedness of the algorithm. Finally, we summarize the
entire research content in section 6.
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FIGURE 1. The proposed architecture with the segmentation networks. Each cube represents a multi-channel feature map. CAM and SAM are channel

attention module and spatial attention module respectively.

Il. SEGMENTATION NETWORK

Ground-based telescopes have different observation modes.
The method we study is based on the image acquired in
the star mode, i.e., the stars appear as points in the picture,
while the space objects appear as short streaks after a specific
exposure time due to their motion. The image features of
space dim target are different from traditional images, the
targets that we aim to detect occupy only a few pixels. Not all
segmentation networks are suitable for this study because the
subsampling structure of convolution and pooling can elimi-
nate small space targets, especially for the backbone network
algorithm. Subsequent upsampling layers cannot restore the
target information in the image after feature extraction using
the backbone network.
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The proposed network focuses on segmenting small dim
targets on high-resolution images. Therefore, the design of
the network should not only avoid the backbone network
with too many layers of pooling but also make good use
of the feature maps information in front of the architecture
effectively. Inspired by U-Net, the proposed network (CSAU-
net), like most semantic segmentation networks, is mainly
divided into encoder and decoder architecture. The overall
structure of the segmentation network is shown in Figure 1.
The proposed contracting path is used to reduce the size of
feature maps and improve computational efficiency.

Too many pooling layers are not suitable for the perfor-
mance of the network. Unlike U-Net, our encoder architecture
consists of eight convolutional layers and three max-pooing
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layers with stride 2 for down-sampling. The convolution
kernels of the network are all 3, and each convolution is
followed by batch normalization (BN) and a non-linear ReLU
layer. Dropout is not utilized in any layers because the weight
sharing in convolutional layers and BN layers provide enough
regularization. Shallow feature maps are essential to the seg-
mentation because of the small target size.

Channel Attention Module(CAM)

Ixixc  1X1XC/64 1x1xC
-] ﬁ\
Add
pool 1XI1XC  1x1xC/64  1x1xC x1xC
=]

Spatial Attention Module(SAM)

HxWxC
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HxWx1
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Conv7x7 ™ Convlxl Convlx1+ReLU Sigmoid

FIGURE 2. Schematic diagram of channel attention and spatial attention
module.

We exploit shallow feature maps by introducing attention
modules [31] for skip connections. In the channel attention
module (CAM), feature vectors with the same channels are
pooled in each feature map. Two feature vectors concate-
nate with each other. The spatial attention module (SAM) is
different from it, Corresponding vectors are pooled at each
point in the feature map, and finally, a single channel feature
map is obtained. Two attention modules provide the feature
map’s channel and space weighted coefficients, respectively.
Channel attention module (CAM) and space attention mod-
ule (SAM) are shown in the following formula:

M, = o (MLP(AvgPool (F)) + MLP(MaxPool(F))) (1)
M, = o(f""([AvgPool (F) ; MaxPool(F)))) )

where M, is the weight parameter of the channel attention
module, M is the output of spatial attention, and F is the input
feature map. It is worth noted CAM and SAM are utilized
together in the first two skip connections, and only CAM for
the third time. In low-size feature maps, spatial attention does
not yield better benefits and increases the parameters of the
network.

Bilinear interpolation but not the convolutional layer is uti-
lized in the upsampling operation. This method can satisfy the
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size of the restored feature maps without bringing additional
network parameters. The expansive path overlays the feature
maps weighted by the attention module with the interpo-
lated image to realize the information fusion. The network’s
input is a single-channel grayscale image. The output is a
2-dimensional tensor, where the corresponding pixel of each
point value is the probability of classification as background
or target. The network completes the segmentation of space
objects by classifying all image pixels.

Ill. DATASET AND IMPLEMENTATION DETAILS
A. DATASET CONSTRUCTION
There is no space target dataset with labels available for use
at present, and a large amount of labeling of space images
will also cause high cost and time consumption. Therefore,
we create a dataset for semantic segmentation and space
object detection. Unlike traditional pictures with complex
scenes and contours, space images can be synthesized and
annotated artificially. One hundred target blocks are clipped
and added to the image without any target. The requirement
for target selection is to select different targets detected from
the same detector at other times so that the network can learn
more target types as far as possible and avoid overfitting of
the network. The clipped target block is a rectangle two pixels
larger than the target to prevent the impact of noise and stray
light on the target. The method [32], [33] of adding simulation
targets to the image cannot perfectly simulate the target,
resulting in the overfitting phenomenon of high accuracy of
the training set and almost zero accuracies of the test set. The
process of adding a target is as follows:

[T (x,y) —min (T (x, y))]

F,y)=f@y+ k (€)

where F(x,y) is the image after adding the target, f(x,y)
is the image without any space target, T(x,y) is the tar-
get image block. k is a hyperparameter used to adjust the
SNR of the target, and it is uniformly distributed randomly,
ie., k ~ U(1,5). Another advantage of manually adding
space targets to generate a dataset is that various targets
with SNR can be added to the image so the network can
learn from fainter targets. Traditional annotation needs to pay
attention to the unclear target in the image acquisition and the
annotation, which is challenging to complete.

We introduce an index of space target weakness to weigh
the degree of faintness of the target in the image. The signal
to noise ratio (SNR) of the target is defined as follows:

SNR = Er BB )

Wy

where E, is the mean value of the target region, Ep is the mean
value of the background region, and §p is the standard devi-
ation of the background region. Generally, the background
region is three times the size of the target region. SNR of the
target is determined by the intensity and background of the
target signal. The larger the SNR is, the more prominent the
target is in the image, and the easier it is to be segmented
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(a) SNR=0.3 (b) SNR=0.5 (c) SNR=0.8 (d) SNR=1

(&) SNR=1.2  (f) SNR=1.6 (g) SNR=3

(h) SNR=10

(i) image (j) label

FIGURE 3. (a)-(h) shows targets with different SNR, respectively. (i) the
image is processed with image enhancement for better visual effect.
(j) segmentation mask.

and detected by the algorithm. Figure 3 shows the images of
space targets with different SNR and image pairs for training.
In the dataset, 5000 images were used as the training set,
1000 images were used as the verification set, and images
with different SNR were used as the test set with 100 images
of each type. The target block’s position is added to the image
and is retained in the test set for verifying the subsequently
connected component labeling and centroid extraction.

B. LEARNING DETAILS

Images are normalized before input to the network to enhance
the segmentation performance of the network. The network
task can be addressed as a binary-image classification prob-
lem. Different loss functions have a significant influence on
the training effect of the network. Focal Loss [34] is an
improvement of cross-entropy loss as one of the loss func-
tions. On the other hand, stars and targets differ in shape and
grayscale. Dice coefficient [35] is an index to evaluate image
overlap as another loss function in this paper. Focal Loss and
Dice loss are defined as follows:

= (e (1=3)" ylog (5)

+ (1 =)y’ —y)log(l — ) &)
2% vi- i

S+ T8

where y and y are the ground truth and predicted value of

the network, respectively. « and y are hyperparameters of
Focal Loss for different categories and different classification

LFacal_Ioss =

Dice = Lpice =1 —Dice (6)
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difficulties. There is a severe imbalance of positive and neg-
ative samples in the space target image. The background
occupies most of the image, while the targets only take up
dozens of pixels. To assess the distribution of targets and
background, the calculation of « is as follows:
NO
| N logp + (,)+N<,))
o=y @)

N (l)
i=1 log(p + N(z) N(z))

where p is the hyperparameter used to adjust the value of «,
and we set it as 1.10; N; and N, are the number of pixels
occupied by the target and background in the mask; N is the
total number of images used in the training set. The parameter
of this dataset is 0.13 after calculation. The value of y is 2, the
same as Lin [34]. The final loss function is shown as follows:

Ltotal = leFocal_loss + kZLDice (8)

where k; and k» are the hyperparameters used to adjust the
two loss function, which we set to 0.8 and 0.2. Focal Loss
is set larger because it allows the network to focus more
on classifying targets and the segmentation of challenging
targets at the pixel level.

There are various choices of optimizers. After experimen-
tal comparison, Adam can get training results faster, but the
final convergence effect is often not as good as the SGD
optimizer. To achieve a faster training effect and better con-
vergence result, we use the training strategy of Adam first
and then SGD. According to Keskar [36], switching between
two optimizers as early as possible can get better results.
We choose to train the network for 150 epochs with SGD after
50 epochs of training with Adam. The learning rate and decay
rate of the two optimizers are all 1 x 1073 and 2 x 1076.

C. COORDINATE CALCULATION

The binary mask is obtained after inference of the convo-
lutional neural network. However, we often want the result
to be the specific location of the target. A simple connected
component labeling method is used to extract the location of
the space target.

Firstly, the mask image is scanned line by line. A sequence
of continuous white pixels in each line is called run, which
records its starting and ending points. Give a new label to
arun in all rows except the first if it has no overlap with any
run in the previous row; If it has overlapped with only one
run in the previous row, it is assigned the label of that run in
the previous row; If it overlaps with more than two runs in the
previous row, the current run is assigned a minimum label of
the contiguous run, and the marks of these runs in the previous
row are written into equivalent pairs, indicating that they
belong to the same category. To convert an equivalent pair to
an equivalent sequence, each sequence needs to be given the
same label because they are all equivalent. Each equivalent
sequence is assigned a label starting at the first row. We iterate
over the label of the first run, find the equivalent sequences,
give them a new label and fill the label of each group into
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the label image. We can quickly get the pixel position of each
target after completing the mark of the connected component.
The median coordinate of each component is taken as the
specific coordinate of the target.

It was considered to add a predict head for regression coor-
dinates to the network’s back end. When the segmentation
mask is not ideal, such as incorrectly dividing noise into
targets, the extra network can get the correct segmentation
and achieve more accurate results. However, the results of the
semantic segmentation network can get accurate results.
The additional network structure will not only not improve
the detection accuracy but also lead to an increase in network
parameters. The above simple connected component labeling
method is sufficient to obtain the exact coordinates of the
target, and the additional network structure is unnecessary.

IV. EXPERIMENTS

We first introduce performance metrics in this section and
then present our experiments in detail. We discuss the influ-
ence of data pre-processing on the algorithm and verify the
robustness by enhancing the dataset. Several classical seman-
tic segmentation algorithms are compared with CSAU-Net
under the same training strategy to compare the segmen-
tation effectiveness of the network. Finally, CSAU-Net is
tested on real images and compared with traditional space
target detection methods, proving the algorithm’s feasibility.
Our experiments were conducted on a computer with 16-
GB random access memory, Intel Core i7 8700K, 3.6GHz
processor, and Nvidia 2080ti GPU. The network architecture
was implemented in Pytorch 1.7.

A. PERFORMANCE METRICS

In this paper, to verify the segmentation performance of
the convolutional neural network and the detection perfor-
mance of the algorithm, the following evaluation criteria are
introduced:

1) DICE COEFFICIENT AND MEAN INTERSECTION OVER
UNION (MIOU)

The calculation method of the Dice coefficient is shown
in (6). Dice will calculate the product of the corresponding
pixels of ground truth (GT) and the prediction mask. The
correct classification of non-zero pixels in GT, namely target
pixels, is the focus of the Dice coefficient, but pixels incor-
rectly classified as targets in the prediction mask are ignored.
Therefore, we introduce another evaluation standard, MIoU,
whose expression is:

k

1 Dii
MloU =
© k+1§

k k
j=0Dij + ijo Pji — Dii

©))

where k is the number of categories (including empty
classes), pii, pij, pji represent correctly classified pixels, false
positive and false negative, respectively. MIoU calculates
the classification effect of each category by calculating the
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confusion matrix, which evaluates the segmentation perfor-
mance of various categories globally.

2) DETECTION RATE AND FALSE ALARM

MlIoU and Dice coefficients jointly evaluate the segmentation
effect of semantic segmentation networks on images. We only
use them to compare various convolutional neural networks
in this paper. The target coordinates obtained through the
connected component labeling algorithm are the final results
we hope to get. Only the central coordinate as the location
of the target is needed since the space target is tiny in the
image. When the Euclidean distance between the coordinates
obtained by the algorithm and GT is less than 10, the target
is considered to have been detected successfully. To evaluate
the overall detection performance of the algorithm, detection
rate (Py) and false alarm (Py ) are introduced:

Ny Ny
= s Pf =
Nan ’ Nai + Ny
where Ny represents the number of correctly identified tar-

gets, Ny represents total targets, and Ny represents the num-
ber of stars or noise points wrongly identified as targets.

Py (10)

B. EXPERIMENT ON TRAINING METHODS
Convolutional neural networks often have different fitting
effects on the dataset with different data distributions, and
different training strategies have a specific influence on the
final convergence results of the network. The network is
evaluated according to the input data and training methods
and divided into the following four groups of experiments:

1. Input images with three kinds of resolutions (256 x 256,
512 x 512.1024 x 1024)

2. Two loss functions for training (Cross-Entropy and Focal
Loss 4 Dice loss)

3. Data pre-processing (Normalization and Standardiza-
tion)

4. The impact of the optimizer (Adam, SGD, RMSprop,
Adam+SGD).

1) DIFFERENT RESOLUTION OF THE INPUT IMAGE
Increasing the image’s resolution can improve the texture of
the target and other areas in the image so that the convo-
lutional neural network can learn more features. Reducing
image resolution can minimize computation costs and speed
up network reference and image segmentation. Images with
three resolutions were set as tests in this experiment. Images
with different resolutions will be uniformly resized to the
same size as original images after the network’s output to
ensure the fairness of subsequent detection.

As shown in figure 4 (a), the detection accuracy of halved
resolution is significantly reduced, especially for targets with
SNR lower than 0.8. The false alarm rate with half-resolution
is also more prominent than the original resolution. Although
the detection accuracy of the image after linear interpolation
is higher than or equal to the original image when the target
SNR is higher than 1, its performance is not ideal when the
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FIGURE 4. Results of different preprocessing or training methods. (a) the detection results of images with different resolutions input
by the network; (b) the comparison between Focal loss+Dice and CE as the loss function; (c) the comparison between the network
performance after normalization and standardization of input; (d) loss-epoch curve of the four optimizer training strategies.

TABLE 1. Inference time of different resolution.

. 1024 X

resolution 256 X256 512X512 1024

Inf@rence 2.7ms 2.8ms 3.4ms
time

SNR is extremely low. The detection accuracy is only 66%
when the SNR is 0.3. At the same time, its false alarm is
higher than the other two at each SNR. The reason for this
phenomenon may be that the image interpolation enhances
the characteristics of noise while enhancing the size of the
target, leading to the network wrongly classifying more noise
pixels as targets.

As shown in Table 1, the average network inference time
after halving the image is only 0.1 ms less than the original
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resolution, and the inference time after image interpolation
is 3.4 ms. The inference time of three resolutions can meet
the requirements of real-time segmentation and detection,
but considering various SNR targets, the segmentation and

detection performance of original image resolution is the best
choice.

2) DIFFERENT LOSS FUNCTION

Cross-Entropy(CE) loss has an excellent performance in
various algorithms as a classical loss function of semantic
segmentation [22]. Figure 4 (b) compares CE loss as loss
function and Focal Loss + Dice as loss function. The network
using CE loss as loss function has the same segmentation
effect on obvious targets as our method, but the segmentation
effect on targets with SNR lower than 1 is poor. When the
SNR of the target is 0.3, the detection rate of the algorithm is
only 32%, and when the SNR is 0.8, the detection rate of the
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algorithm is only 81%, far lower than the method used in this
paper.

CE loss does not focus on hard-to-segment cases in the
network’s training, and there are few target pixels in space
images, resulting in a severe imbalance of positive and nega-
tive samples. CE loss in the optimization of the network will
make the network pay more attention to the pixels that are
easy to classify, resulting in the network not generating many
false alarms during pixel classification in most cases.

3) DATA PRE-PROCESSING COMPARISON
Normalization and standardization are both necessary means
of data pre-processing in machine learning, as shown in the
following formula:

X Xx — mean (x)

Xsir = ——————— (11)

X,
nor max (x)

" max (x)
Figure 4 (c) shows the detection results of the two pre-
processing methods. The normalized dataset is still unevenly
distributed, which causes great difficulty to the convergence
of the network, and it is difficult to achieve the ideal effect
in the segmentation of space targets. In the image of various
target SNR, the standardized dataset is more conducive to
network fitting of data. The segmentation image detection
accuracy is higher; meanwhile, the false alarm rate is lower.

4) COMPARISON OF DIFFERENT OPTIMIZERS
The network is trained using RMSprop, Adam, and stochastic
gradient descent (SGD) alone as optimizers and a combina-
tion of the two. Under the condition that other factors are
equal, the number of training rounds is 200. Figure 4 (d)
shows the loss-epoch curves for the four optimizer strate-
gies. The network trained by Adam and RMSProp converges
quickly, but the convergence effect is not as good as the
method in this paper. The convergence rate of SGD is slow,
so the verification result of the final network is poorer than the
other two methods. Adam is used to optimize the parameters
to roughly achieve the fastest convergence speed. Finally,
SGD is used to fine-tune the parameters to obtain the optimal
solution satisfying the target segmentation. Compared with
Adam or SGD alone, combining the two optimizers makes
the network converge quickly and achieves high accuracy.
Different data pre-processing methods and training strate-
gies significantly impact network training. Although the
training method in this paper does not achieve the best seg-
mentation and detection results in some cases, the algorithm
in this paper can keep a low false alarm rate while ensuring a
high detection rate at each SNR.

C. ABLATION EXPERIMENTS

An ablation experiment is performed to verify the effect of
the attention mechanism on network segmentation results.
We compare six different network structures: (1) original
U-Net; (2) Remove U-Net of low-resolution feature maps
(modified U-Net); (3) SAM structure is added separately to
the modified U-Net; (4) CAM structure is added separately
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TABLE 2. Detection results of networks with different attention modules.

Description P, (%) P (%)
U-Net 90.5 7.6
Modified U-Net 88.6 12.3
Modified U-Net+SAM 96.5 5.8
Modified U-Net+CAM 98.6 3.6
U-Net+CAM+SAM 99.2 3.6
Modified U-NettCAM+SAM 99.2 2.1

in the modified U-Net; (5) CAM structure and SAM struc-
ture (CSAU-NET) are added to U-NET; (6) CAM structure
and SAM structure (CSAU-NET) are added to the modified
U-NET. The training details are the same as the training set
to ensure the fairness of the experiment. We only select the
image with a SNR of 1 as the test set because the target can
well represent the dark and weak target in practical detection.

It can be seen from the experiment that the segmentation
effect of the modified U-Net network is reduced due to the
removal of part of the network structure. After adding the
attention module, the network performance is improved to
different degrees. The network segmentation effect by adding
SAM attention module is better than that by adding CAM
module. The characteristics of space targets are weakened in
pooling, leading to a more significant effect on the spatial
weighting of different channels. After adding two attention
modules, the performance of the network is greatly improved.
Among hundreds of targets, only one target failed to be
segmented successfully.

D. ROBUSTNESS ANALYSIS

Space detectors are susceptible to various influences when
acquiring space images, like background noise, Photon count
errors, etc. To explore the robustness of the proposed method,
the network is tested by different images, including images
with additional Gaussian noise and shot noise.

Two different training sets are used for network training.
The training set without any noise is used to train the network
model firstly, and the model is used to segment the images
with different noises. Then we randomly add various noises
to the training set. Only the target with an SNR of 1 is taken
as the test set in this experiment to eliminate the influence
of different targets on the results. The peak signal-to-noise
ratio (PSNR) is used to evaluate the degradation degree of the
image after adding noise, as shown in the following formula:

1 m—1n—1
MSE — . ..
——— E E ) —K3ED] (12)
i=0 j=0
2552
PSNR = 10-log | ——= (13)
MSE

where I and K are the images before and after noise pollution,
respectively, m and n are the image size. PSNR is differ-
ent from the previously defined SNR. SNR expresses the
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FIGURE 5. Detection result of the algorithm on images with different
noises. (a) and (b) are respectively the detection rate and false alarm
under the influence of different noises. “none” and “exist” represent
whether the training set contains noise.

significance degree of spatial objects, while PSNR describes
the comparison of images before and after noise pollution.
The larger the value is, the lower the degradation degree of
the image is.

Figure 5 shows the image detection results of the network
model trained by two training sets. With the increase of
various noises, the detection rate of the network gradually
decreases, and the false alarm gradually increases. It is dif-
ficult for human eyes to distinguish space targets in degraded
images with PSNR less than 70 after adding Gaussian noise.
It can be seen from Figure 5 (a) that the network has a
significantly better generalization effect than Gaussian noise
on images added with shot noise. The detection rate of images
added with shot noise can reach above 0.9 when the PSNR
of the image is greater than 55dB. After adding noise to the
training set, the network can be well adapted to both kinds
of noise, especially to the image polluted by shot noise, and
the network can stably segment the target. Figure 5 (b) shows
the false alarm of different images detected by the proposed
method. The reduction of noise in the image will lead to
the reduction of false alarm. However, the network tends to
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classify all pixels of the image as background in the image
with severe Gaussian noise pollution, so the detection rate
is not ideal, and the false alarm is low. With the decrease of
Gaussian noise, the network will gradually misclassify some
pixels as targets, increasing the false alarm rate. Finally, the
network can correctly classify the pixels with the gradual
disappearance of noise. After adding noise to the training
set, the network segmentation effect improves, and a more
miniature false alarm is realized.

E. COMPARISON WITH DIFFERENT SEGMENTATION
NETWORKS

Many deep learning network models for semantic segmen-
tation, but not all networks are suitable for space object
segmentation. In most cases, the more complex the network
is, the better the result in traditional target detection and
semantic segmentation tasks. However, the effect of com-
plex backbone-based semantic segmentation methods such
as Deeplab v34 and Segnet are often poor in our study.
In the study of space target segmentation using backbone
like resnet-101 or vgg-16, the network tended to classify all
image pixels as the background. It could not complete the
segmentation task through experiments. There are two main
reasons for this phenomenon.

1) DOWNSAMPLING LAYERS

The images to be processed in the network are high-orbit
space target images obtained by ground-based telescopes,
so the target pixels in the picture are few, usually only a
few to dozens of pixels. The complex network can extract
complicated image features, but the space targets do not have
complex features or textures. The backbone structure can not
improve the segmentation accuracy and reduce the number
of pixels of the space target with too many pooling layers,
resulting in the target not being effectively segmented.

2) DATASET

Complex networks often need a large amount of data for
training to enhance generalization and reduce the problem of
network overfitting. The image features of this study are sim-
ple, and most observation situations can be covered without
a large number of datasets, so the possibility of overfitting is
greater.

FCN [21], U-Net [22], and ESP-Net [37] are chosen for
network comparison. The training strategy of U-Net and ESP-
Net is the same as that of this algorithm. FCN adopted in
this paper takes the last four layers of Resnet-34 as feature
extraction, so the weight trained on ImageNet is used as the
initialization parameter for network parameters. It is worth
noting that the feature extraction layer of FCN does not com-
pletely use the backbone to achieve good segmentation results
in this dataset. To verify the segmentation effectiveness of
the proposed method, we test images with different SNRs.
After training the same dataset, various networks are tested
using the common test set. The number of space targets in
each image varies from O to 3 to realize that the simulation
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FIGURE 6. The segmentation result of different networks. (a)—(d) are four space images with different SNR targets. The yellow rectangle
represents space target in image, the red part in the segmentation mask is the target segmented by the network.

dataset is closer to the real data, similar to the training sets’
distribution. Figure 6 shows the segmentation result of each
network. All the networks have perfect segmentation effec-
tiveness on the target with obvious high SNR. For example,
for the two targets in the group (a) experiment, most networks
achieved segmentation perfectly, except that ESP-Net mis-
takenly segments the part of the background as the target.
With the reduction of target SNR, the segmentation task
becomes more difficult. ESP-Net and FCN perform poorly
in the face of extremely low SNR. In the segmentation exper-
iment of the group (b) and (c), ESP-Net could not segment
the target normally, and the network classifies all pixels as
background. FCN also can only segment one target in the
group (c). Similarly, segmentation of U-Net is also not ideal,
and only CSAU-Net successfully segments targets. In group
(d) experiment, only CSAU-Net complete the segmentation
of space targets. When the target SNR is lower than 0.5, only
CSAU-Net can segment the target stably. U-Net can achieve
a good effect as a representative of the segmentation network.
Our modification on U-Net makes it easier to segment weak
space targets.

When the segmentation effect is poor, and the networks
classify most of the image area as targets, many false alarms
will be generated. In this case, the detection rate and false
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alarm rate have little significance as evaluation criteria, and
we adopt Dice and MIoU as evaluation criteria. The specific
segmentation data is shown in figure 7. To express the effect
of the algorithm more clearly, we annotate the result of
CSAU-Net. When the SNR of the target is more prominent
than 0.5, the two evaluation indexes of CSAU-Net achieve
a high effect, and networks perform accurate segmentation
of the target. Compared with other semantic segmentation
methods, the proposed method has more advantages in tar-
get segmentation when the SNR is less than 1.6. When the
SNR of the target is high and the target is obvious, multiple
segmentation methods can segment the target, but the result
of CSAU-Net is the most accurate.

The inference time of the algorithm is also an essential
evaluation of the algorithm. Inference time of ESP-Net and
FCN is 5.6 ms and 3.5 ms for the image with 512 x 512 res-
olution, respectively. CSAU-Net adds a small number of
parameters compared to traditional U-Net. Due to the addi-
tion of the attention module, the inference time of the network
is 0.4ms longer on the device we use, but this is tolerable
relative to the improvement in segmentation accuracy. The
exposure time of the detector observing the space target is
usually several seconds. The proposed algorithm can ulti-
mately realize the online segmentation of the target.
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FIGURE 7. Segmentation results of images with different SNRs by
different networks. (a) and (b) are Dice and mIOU of the proposed
method’s results respectively.

F. COMPARISON WITH OTHER TARGET DETECTION
METHODS

The images used in this experiment are space images obtained
by an optical telescope which has a 10° x 10° field of view
with a 5 s exposure time. The images are 16-bit gray images
with aresolution of 2048 x 2048. Images with different SNRs
(0-10) are selected as the test, and the data are cropped to the
image with a resolution of 512 x 512, with the number of
space targets in each image ranging from 0 to 10. Twenty
sequences of imagescontaining 100 images were tested to
compare various algorithms.

We test images containing natural space objects and study
the detection performance of the algorithm on real images.
The segmentation effect of the network on the actual image
is shown in Figure 8. The network trained only with the train-
ing set without noise can effectively segment space targets
with different degrees of faintness. The image contains space
targets with different SNRs. The SNR of the target (I) is 15,
while that of the target (II) is only 0.5 In Figure. 8 (c). The
traditional thresholding-based segmentation method often
divides the weak target into the background while the appar-
ent target is segmented, which reduces the detection rate. Our
approach can achieve stable segmentation of dark and dim
objects near bright objects.

The network classifies pixels based on the morphological
characteristics of the image. Hence, the network mistakenly
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() (d)

FIGURE 8. Network segmentation of images containing real space
objects. (a) and (c) are images containing space targets, (b) and (d) are
segmentation results. Green rectangles contain the real targets, and red
rectangles contain stars misclassified as targets in (a) and (c).

divides the stars into targets when two stars are linked
together and look like targets. It is the disadvantage of the
single-frame segmentation method. Using the multi-frame
association method can remove false alarms.

Some space target detection methods in recent years are
selected for comparison to verify the comparison between
the proposed method and traditional methods. The chosen
methods include multi-frame target detection method and
single-frame target detection method. Multistage hypothesis
testing (MHT) [38] is an algorithm to detect small moving
targets with unknown prior knowledge. DPSWM [33] is an
improved dynamic programming sliding window method to
detect space targets, achieving higher detection accuracy.
Among them, FLCR [30], Vittori [28], and FGBNN [29] are
based on deep learning methods.

The multi-frame detection method can further judge
whether there is a target in the image after processing the
image with the information of multiple frames. In contrast,
the single-frame method only detects the space target accord-
ing to the knowledge of a single frame. Table 3 shows the
detection results of each algorithm on the test data set. Com-
pared with the single-frame method, multi-framemethods
can use more information, thus achieving a higher detection
rate than the standard single-frame method. However, multi-
frame methods need to simultaneously judge the relationship
between frames, consuming a lot of time and computing
resources. The method proposed in this paper can guarantee
real-time detection and achieve a better detection effect.

V. DISCUSSION
The method proposed in this paper can train a robust network

model with fewer data. CSAU-Net can more accurately
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TABLE 3. Detection results of real images by different methods.

Methods P, (%) P (%)

MHT 88.5 14.7

. TS[9] 99.2 35
Multi-frame

DPSWM 98.3 53

FLCR 98.5 24

Vittori 92.8 4.6

FGBNN 88.6 1.9

Single-frame Vananti[16] 94.5 6.5

Nir[18] 93.6 5.7

Ours 98.5 1.6

segment targets with various SNR than other deep learning
methods. Unlike traditional single-frame space target
detection methods, the proposed method can achieve
high-precision detection even when the target is imaged as
a short target (length < 20 pixels) in the image. Other single-
frame detection methods often require a long target (length >
50 pixels). It is also why the traditional single frame detection
method has a low detection rate in comparison experiments.
As the method in this paper detects the target based on a
single frame image, it can achieve a faster detection speed.
However, when the target features are not apparent due to
the insufficient exposure time of the detector, the algorithm
cannot be applied at this time. Convolution neural network
needs feature extraction of characteristics. Sensors of star
mode can obtain the target of the image appearing as strips,
the network can effectively make use of target characteristics,
but the network is challenging to get the target characteristics
of the faint target in the staring mode of the detector so that
segmentation ability will be greatly reduced.

VI. CONCLUSION

In this study, we propose a single-frame space target detection
method. Firstly, we present an improved encoder-decoder
convolutional neural network to complete the feature extrac-
tion and segmentation of space images. The network adds
an attention module to the fusion of different feature map
information to better utilize the original feature layer. The
network architecture achieves end-to-end segmentation of
space targets without multiple steps of traditional methods.
At the same time, a small space image dataset is constructed
for segmentation and detection to complete the algorithm’s
training. The dataset contains images of space objects with
various SNRs, which improves the network’s generalization.
Finally, a connected component labeling method for centroid
extraction is applied, which realizes the extraction of the
specific location of the target from the mask after network
inference.

We complete multiple sets of experiments to verify the
performance of the algorithm. First, we compare different
dataset processing methods and network training strategies
and choose the most suitable loss function and optimizer for
this study. Then we add two different noises to the test set to
simulate the image degradation that the detector may cause
when acquiring images and verify the algorithm’s robustness.
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Finally, we compare different methods. The proposed method
can segment space targets better than other semantic segmen-
tation networks and quickly detect targets with multi-frame
detection accuracy.
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