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Abstract: Traditional reflective diffraction gratings working at 4.7 µm are fabricated by metal coatings.
Due to the absorption of the metal itself, the diffraction efficiency (DE) could not reach over 95%. In
this paper, we propose a 3 µm period multilayer grating design using hybrid multilayer dielectrics.
With a layer of 0.353 µm Si and a layer of 0.905 µm SiO2 forming the rectangular grating, the maximum
of larger than 99.99% and the overall first-order DE reached 97.88%. The usable spectrum width is
larger than 0.2 µm, more than four times larger than that of the pure Si rectangular grating. This
high DE multilayer grating is an ideal element for high-power laser systems with the spectrum beam
combining method.

Keywords: diffraction grating; multilayer dielectric grating; high diffraction efficiency

1. Introduction

High-power mid-infrared laser systems working at 4.7 µm are needed in spectral beam
combining systems, spectral detection systems and wavelength modulation systems [1].
The diffraction grating is the key element for spectrum beam combining in order to realize
the high-power high beam quality laser system [2]. The diffraction efficiency (DE) of the
grating in the high-power spectral beam combining system directly affects the usable energy
of the entire system [3]. Since the laser beams pass through the diffraction grating back and
forth, the reduction of the diffraction efficiency will greatly reduce the output energy of
the high-power system [4]. Thus, high DE will not only increase the laser system’s optical-
electrical efficiency but also increase the ultimate output power. Thus far, the diffraction
gratings working in this wavelength generally use Au-coating [5]. Due to the inherent
absorption characteristics of the metal layer, not only the highest DE is limited to lower
than 95%, but also the final output power is limited due to the low laser damage threshold
caused by the heat which the metal absorbed [6].

On the other hand, multilayer diffractive gratings (MDG) [7] have a higher peak DE of
over 99%, as well as higher laser damage threshold due to none material absorption [8]. In
recent years, many researchers have carried out design research on dielectric gratings with
high diffraction efficiency, as shown in Table 1. MDG is widely used in lenses [9], biosen-
sors [10], metamaterials [11] and filters [12]. Therefore, MDGs have attracted increasingly
more attention in recent years. Yet, most MDGs have limited working wavelength ranges.
The high DE for over 96% is always limited for less than a few tens of nanometers in the
spectrum [13]. This is inconvenient for usage if more laser elements are to be added in
spectrum beam combining system to further increase the output power.
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Table 1. Research on the design of dielectric gratings in recent years.

Researcher Grating Design

Qunyu Bi, et al. [14] RIRG etched into fused silica, first-order DE > 98%
range over 170 nm (λ0 = 800 nm)

Changxi Xue, et al. [15] First-order PIDE > 95% ZnSe/ZnS Microstrcture,
3–5 µm and 8–12 µm

V., et al. [16] First-order DE > 97% 160 nm range (λ0 = 800 nm),
8 pairs of TiO2/SiO2 + TiO2

Besides, there are very few reports about gratings working at the wavelength of 4.7 µm.
To our best knowledge, there is no report about the MDG at this wavelength.

Therefore, this paper proposes a design of MDG with high DE as well as wide working
spectrum range. We used a hybrid grating material in order to reach both high DE and
wide working spectrum range. The highest DE reached for over 99.99%. The wide working
spectrum range is simulated: from 4.6 µm to 4.8 µm, the overall first-order DE reached
larger than 96%. We analyze different grating parameters in detail, including incident
angle, filling factor and surface grating groove etching depth. This work not only can be
used to instruct the grating fabrication experiments in near further, but also offers a new
way to design new types of gratings with both high DE and wide working spectrum range.

2. Model Structure

MDG design is carried out according to a normal high DE grating structure [17]. The
2D simulation was carried out using COMSOL Multiphysics. The mesh was set with a
maximum size of less than 1/6th of the wavelength in the according material. The incident
beam along the x-axis was set to be the port boundary with periodic conditions. The
substrate was set to be the perfect matched layers. The periodic conditions were set at both
of the y directions. For high DE reflection gratings, usually, there are Distributed Bragg
Reflector (DBR) layers, phase match layers and the grating structure. In order to design a
realistic grating that can be fabricated, the grating grooves cannot be too deep. The grating
depth should be easily controlled too. For this consideration, an etch stop layer is added
into the MDG, between the grating and the phase match layer. Meanwhile, we limit the
etching depth so that only grating groove width depth ratios smaller than 1:1 are counted.

The material for each layer is then selected. At the wavelength of 4.7 µm, there are
very few film materials that could be used.

The substrate is selected to be JGS1, Si or CaF2. We take Si for the modeling. The
DBR composed of the high refractive index film material (selected as Si, refractive index
3.4699 [18]) and the low refractive index film material (selected as SiO2, refractive index
1.3576 [19]). The DBR film system design composed of these two materials is superior to
other materials in the total film thickness and the difficulty of process preparation.

The etch stop layer is selected as HfO2 film with a refractive index of 1.8600. The grat-
ing is composed of silicon-based material (Si and SiO2) for practical processing procedure,
which could be easily etched by the same Inductive Coupled Plasma (ICP) etching recipe.
These two layers of materials form an equivalent material with adjustable refractive index,
which gives additional dimension to adjust both the DE and the working spectrum range.
The total structure is demonstrated as shown in Figure 1.

Considering the limitation of i-line lithography and the high chromatic dispersion
required, a period of 3 µm is fixed, which is about 333.33 lines per centimeter. At a
wavelength of 4.7 µm, according to grating diffraction equation:

n∧ (sin θDiff ± sin θ0) = mλ

and when θDiff = θ0 = θLittrow:

2n∧ sin θLittrow = mλ



Micromachines 2022, 13, 632 3 of 14
Micromachines 2022, 13, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. Brief structure of the MDG. The reflective DBRs are on the substrate, with a layer of phase 
match SiO2 and a layer of etch stop HfO2 subsequently. The grating consists a hybrid layer of Si and 
SiO2. 

Considering the limitation of i-line lithography and the high chromatic dispersion 
required, a period of 3 μm is fixed, which is about 333.33 lines per centimeter. At a wave-
length of 4.7 μm, according to grating diffraction equation: n⋀ሺsinθୈ୧୤୤ േ sinθ଴ሻ = mλ 

and when θୈ୧୤୤ = θ଴ = θ୐୧୲୲୰୭୵: 

2n⋀sinθ୐୧୲୲୰୭୵ = mλ 

The Littrow diffraction angle θ is calculated to be 51.567°. 
Then, we fix the etch stop layer of HfO2 at 0.05 μm.  
The polarization is also fixed: only the TE polarization is considered, where the elec-

tric field is parallel to the grating grooves. The analysis is carried out using the parameters 
in Table 2. 

Table 2. Parameter of reflective grating. 

Spectral Range 4.6–4.8 μm 
Incident angle 51.567° 

Substrate Si 
Period 3 μm 

Etch stop layer 0.05 μm 

Having these materials and parameters fixed, the design went through the steps de-
tailed in the following section. 

3. Simulation Results and Discussion 
3.1. Multilayer Dielectric High-Reflection DBR on DE 

The first purpose of the reflective grating in this paper is to design a suitable DBR. 
Multilayer dielectric high-reflection films with a center wavelength of 4.7 μm on the sur-
face of the substrate using high and low refractive index dielectric materials with good 
refractive index matching are designed to deposit alternately. For 100% reflectivity, theo-
retically, the larger the coefficient of the reflective film stack, the higher the obtained re-
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Figure 1. Brief structure of the MDG. The reflective DBRs are on the substrate, with a layer of phase
match SiO2 and a layer of etch stop HfO2 subsequently. The grating consists a hybrid layer of Si
and SiO2.

The Littrow diffraction angle θ is calculated to be 51.567◦.
Then, we fix the etch stop layer of HfO2 at 0.05 µm.
The polarization is also fixed: only the TE polarization is considered, where the electric

field is parallel to the grating grooves. The analysis is carried out using the parameters
in Table 2.

Table 2. Parameter of reflective grating.

Spectral Range 4.6–4.8 µm

Incident angle 51.567◦

Substrate Si
Period 3 µm

Etch stop layer 0.05 µm

Having these materials and parameters fixed, the design went through the steps
detailed in the following section.

3. Simulation Results and Discussion
3.1. Multilayer Dielectric High-Reflection DBR on DE

The first purpose of the reflective grating in this paper is to design a suitable DBR.
Multilayer dielectric high-reflection films with a center wavelength of 4.7 µm on the surface
of the substrate using high and low refractive index dielectric materials with good refractive
index matching are designed to deposit alternately. For 100% reflectivity, theoretically,
the larger the coefficient of the reflective film stack, the higher the obtained reflectivity.
However, as the number of film layers increases, the accumulated stress inside the film
stack increases, and the device is more prone to physical damage, resulting in unstable
device usage. The film system design parameter requirements of this high-reflection film
are shown in Table 3.

Table 3. Parameter requirements for high-reflection film.

Spectral Range 4.6–4.8 µm

Reflectance 99.98%
Incident angle 51.567◦ in air

Substrate Si
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Different optical properties of materials, different application scopes, and the pro-
cess involved are also crucial, so for dielectric thin film materials, they should have the
characteristics shown in Table 4.

Table 4. Requirements for the characteristics of dielectric film materials.

Characteristic Requirment

Refrective index Uniform, repeatable
Reflectance High, k < 10−4

Scattering Little, 10−4 for λ/4
Stress Low

Adhesion High
Anti-Laser Radiation Capability As high as possible

structural defects As little as possible

The derivation of the admittance of single-layer films is extended to the case of
arbitrary multilayer films using the matrix method. After continuous linear transformation,
the matrix expression is obtained as:[

k× E0
H0

]
=

{
K

∏
j=1

[
cos δj

i
ηj

sin δj

iηjsin δj cos δj

]}[
k× Ek+1

Hk+1

]
(1)

where K = 7. The reflectance expression is:

R =

(
η0B−C
η0B + C

)(
η0B−C
η0B + C

)∗
(2)

From the optical admittance, the reflectance Formula (2) can be written as:

R =

1−
(

nH
nL

)2S
(

n2
H

ng

)
1 +

(
nH
nL

)2S
(

n2
H

ng

)
 (3)

From expression (3), it can be seen that the larger the ratio of high and low refractive
index materials, or the more layers of thin films, the higher the reflectivity and the wider
the reflection bandwidth. The reflection bandwidth is calculated in expression (4):

∆g =
2
π

arcsin
(

nH − nL

nL + nL

)
(4)

It can be seen from Figure 2 that the reflection bandwidth is sufficient to meet the
design requirements.

OptiChar is used to fit the refractive index of high and low refractive index film
materials in full spectrum, and in order to obtain the refractive index dispersion distribution
relationship [20]. Optilayer is used to design the reflective film; according to the design
requirements, the expression of the film stack is selected as the periodic film system (HL)s

H as the basic structure, and the central wavelength reflection characteristic is good, as
shown in Figure 2.

A large refractive index difference is used to highly reflect the light diffracted to the
substrate direction. The thickness of each layer in the DBR is a regular quarter-wavelength
thickness, that is, 0.353 µm of Si and 0.905 µm of SiO2. We use 10 pairs of Si/SiO2 DBR
layers to set up the simulation and modeling, using the mode expansion method. The
reflectivity of incident light with a wavelength of 4.7 µm reaches 99.9999%.
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Figure 2. Reflectance spectral curve.

3.2. High Reflective Diffraction Grating Based on Pure Si and SiO2

Let us first consider pure Si gratings, as shown in Figure 3. Our first issue is to
determine the phase match layer of SiO2, so that when DE reaches maximum at 4.7 µm,
the grating layer of Si could be minimum for easy fabrication. Parameters used in this
simulation is shown in Table 5.
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Figure 3. Brief structure demonstrating the pure silicon grating for comparation. The grating consists
only of silicon material.

Table 5. Parameter of reflective grating to determine the phase match layer of SiO2.

Spectral Range 4.6–4.8 µm

DBR pairs 10
Incident angle 51.567◦

Substrate Si
Period 3 µm

Filling Factor 0.5
Etch stop HfO2 0.05 µm

Phase match SiO2 2.2 µm
width depth ratio <1:1
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For pure silicon gratings, it is shown in Figure 4 that there are basically two sets of
solutions within the width depth ratio of less than 1:1. For both sets, the highest DE red
shifts with the increase of grating depth.
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(a) from 300 nm to 400 nm and (b) from 1160 nm to 1300 nm.

At around 4.7 µm, both 0.36 µm and 1.220 µm of pure Si gratings satisfy the highest
DE of more than 99.99%. At grating depth of 0.36 µm, the DE at 4.6 µm is 30.52%, the DE
at 4.8 µm is 81.58%. A range of 4.687–4.727 µm has a DE of more than 96%. At a grating
depth of 1.22 µm, the DE at 4.6 µm is 57.06% and the DE at 4.8 µm is 74.26%. A range
of 4.672–4.726 µm has a DE of more than 96%. Deeper grating depth has larger working
wavelength range, yet the etching condition becomes tougher.

3.3. Using Hybrid Materials Instead of Pure Si for the Grating

For pure Si grating, a range of 0.04 µm has the DE of more than 96%. Yet, this range
is not enough for high-power spectrum beam combining. In this case, we use the hybrid
material, that is, a layer of Si and a layer of SiO2 to form grating, so that this hybrid material
can adjust the effective refractive index of the grating to get a wide hide DE working
spectrum range. Figure 5 demonstrates the DE versus the height of different SiO2 h2 from
0.3 µm to 0.5 µm when the high of Si h1 changes from 0.08 µm to 0.25 µm, at an intervening
of 0.01 µm. We picked up the solutions that are with the minimum DE larger than 85%. It
can be seen that there are always some solutions that meet the high DE requirement when
h1 is altered, which means a comparatively high processing tolerance.

It is shown that, when h1 is fixed, the peak DE mainly red shifts when h2 increases.
The peak DE can always reach over 99.9% when total height of SiO2 and Si are within
0.57~0.58 µm. If h1 is less than 0.14 µm, the increase of h2 decrease the minimum DE at
4.8 µm. This is because the overall material index for the hybrid material is small when the
perfect phase of the grating matches the highest DE. The highest DE usually appears larger
than 4.7 µm. When h1 is more than 0.15 µm, the increase of h2 decrease the minimum DE
at 4.6 µm. This is because the overall material index for the hybrid material is larger when
the perfect phase of the grating matches the highest DE. The highest DE usually appears
smaller than 4.7 µm.

From these simulations, we picked up some lines when h1 is selected at 140 nm ± 10 nm
and h2 is selected at 440 nm ± 10 nm, as shown in Figure 6. It can be see that, when
the height of SiO2 h2 is selected at 140 nm ± 10 nm and the height of Si h1 is selected at
440 nm ± 10 nm, the highest DE around 4.7 µm reaches 99.99%, and the overall DE from
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4.6 µm to 4.8 µm can reach over 96%. Notice that this ± 10 nm fabrication error is large
enough that it can be easily controlled in experiment. Especially for conditions that are not
so close to the largest error, suppose the total height of SiO2 and Si are within 570~580 nm,
the overall DE from 4.6 µm to 4.8 µm can reach over 97%. Moreover, when h1 = 140 nm and
h2 = 440 nm, the overall DE from 4.6 µm to 4.8 µm can reach over 97.88%. In this condition,
the working spectrum (minimum DE > 96%) for high-power beam combining reaches for
over 200 nm, at least four times larger than that of a pure Si grating. This DE is also higher
than that of a metal grating, and since there is no absorption loss, the high-power laser
damage threshold would be better. Notice that the total etching depth for h1 + h2 ≤ 0.6 µm
is still smaller than half of the groove width (1.5 µm). This total height can be easily etched
by one procedure of ICP.
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four periods of the incident wavelength at 4.7 µm, 51.57◦ incident angle, at h1 = 140 nm and h2 = 440 nm.
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3.4. Influence of Grating Filling Factor

For actual fabrication, there are inevitable fabrication errors on the grooves’ width,
which mainly affect the filling factor, as well as the DE. The question is how much the
impact can be, and whether this impact can be eliminated. We fixed the h1 = 140 nm and
h2 = 440 nm. Simulation about different filling factors at different incident angles versus
wavelengths are carried out as shown in Figure 7.
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It can be seen that, if the filling factor is smaller than 0.5, there is always a certain
incident angle for the total spectrum to have a high DE for over 97%, and for 4.7 µm, there
is always an appropriate incident for the DE to be over 98.5%. There is always a certain
angle across the 4.6 µm to 4.8 µm to have the highest DE be larger than 99.9%. Yet, for the
filling factor larger than 0.5, the smallest DE at 4.6 µm drops dramatically. For wavelengths
smaller than 4.7 µm, it will be hard to have a DE larger than 98% again. These simulation
shows that the changes of the diffraction angle give a tougher processing tolerance, which
may be caused by overexposure or ICP etching.

4. Conclusions

In this paper, we numerically designed a high DE grating. By introducing a hybrid
material of one layer of SiO2 and one layer of Si, the maximum DE reached over 99.99% and
over all spectrum from 4.6 µm to 4.8 µm reached over 97.88%. This introduction of hybrid
material multilayer grating instead of metal-coated grating or pure Si grating not only
avoids the metal absorption, which further increases the DE and laser damage threshold,
but also increases the usable working spectrum for at least five times. Our proposed grating
design is suitable for high-power laser spectrum beam combining with a large processing
tolerance. Future work will be focused on the grating fabrication, the experiment tests as
well as the high-power laser spectrum beam combining systems.
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