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Abstract: Automatic extraction of cerebral vessels and cranial nerves has important clinical value
in the treatment of trigeminal neuralgia (TGN) and hemifacial spasm (HFS). However, because of
the great similarity between different cerebral vessels and between different cranial nerves, it is
challenging to segment cerebral vessels and cranial nerves in real time on the basis of true-color
microvascular decompression (MVD) images. In this paper, we propose a lightweight, fast semantic
segmentation Microvascular Decompression Network (MVDNet) for MVD scenarios which achieves
a good trade-off between segmentation accuracy and speed. Specifically, we designed a Light
Asymmetric Bottleneck (LAB) module in the encoder to encode context features. A Feature Fusion
Module (FFM) was introduced into the decoder to effectively combine high-level semantic features
and underlying spatial details. The proposed network has no pretrained model, fewer parameters,
and a fast inference speed. Specifically, MVDNet achieved 76.59% mIoU on the MVD test set, has
0.72 M parameters, and has a 137 FPS speed using a single GTX 2080Ti card.

Keywords: microvascular decompression; real-time semantic segmentation; encoder–decoder

1. Introduction

Trigeminal neuralgia (TGN) and hemifacial spasm (HFS) are the most common brain
diseases. TGN is mainly manifested as short-term pain similar to an electric shock in the
trigeminal nerve distribution area. A slight touch can induce TGN, seriously affecting the
patient’s life quality [1]. HFS is characterized by unilateral facial muscle painless and repet-
itive involuntary convulsions [2], there are increasingly younger trend [3]. Microvascular
decompression (MVD) is the most commonly used surgical method for the treatment of
TGN [4,5] and HFS [6,7] because of its minor operative injury and obvious therapeutic
effect. In 1959, Gardner and Miklo [8] first reported the successful treatment of TGN by
separating the arteries that compress the trigeminal nerve during surgery. In the 1960s,
Jannetta [9] reported for the first time that MVD was performed by microscope and pro-
posed the concept of MVD. MVD is used to remove cerebral vessels from the compressed
nerve by a microscopic operation and relieves the pressure of blood vessels on the nerve to
achieve therapeutic purposes. When the conservative treatment effect is poor, MVD is the
preferred surgical method as long as conditions permit [10]. With the progress of surgery
and anesthesia technology, MVD has no clear age limit. As long as the general situation is
fine, elderly patients can tolerate general anesthesia and undergo MVD treatment [11].

With the development of endoscopic technology, there is no significant difference in the
efficacy of endoscopic MVD for TGN compared with MVD under a traditional microscope,
but it can shorten the operation time and effectively reduce the incidence of postoperative
complications [12]. Broggi et al. [13] reported that in the case of unclear neurovascular
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presentation under the microscope, the problem was solved by endoscopy. Endoscopy has
a good light source, its wide-angle imaging can basically cover dead angles of vision, and
the local amplification of endoscopy can clearly identify the responsible vessels. Endoscopy
can extend the lens into the microvascular decompression area, which is not limited by
the surrounding anatomical structure, and can provide a broader and clearer surgical
vision image [14]. At the same time, the lens can choose multiple different angles (0◦, 30◦,
45◦) [15]. In the operation, the lens selects the appropriate angle and the surgeons can
fully explore the responsible vessels in the case of zero damage [16]. Under the condition
of visualization, the location of nerve and vessel interactions can be determined and it
can be ensured that the responsible vessels are sufficiently identified without stretching
the brain and nerves. Then, the microscopic operation is performed to effectively reduce
the incidence of tissue damage and complications. However, after successful insertion
of Teflon filaments, endoscopy can be used to further observe the position between the
filaments, nerves, and responsible vessels in multiple directions and without dead angles
and effectively identify whether the decompression is sufficient [12] so as to accurately
evaluate the surgical effect. Based on the above advantages of endoscopy, endoscopy can
be used throughout MVD [17].

The responsible vessels are mostly the superior cerebellar artery, the anterior inferior
cerebellar artery and its branches, the basilar artery, etc. Simple venous compression, arach-
noid adhesion, and hypertrophy are also important factors in the pathogenesis. Attention
should be paid to protecting the petrosal vein and its branches during the operation to
prevent injury or tear-bleeding caused by excessive traction. The corresponding decom-
pression method can be selected according to the thickness, elasticity, and length of the
blood vessels. As shown in Figure 1, after clarifying the distribution and compression of
the responsible vessels, they can then be explored with a microscope. The filler consists of
Teflon filaments, which isolate the facial nerve from the responsible blood vessels so that
the compression of the facial nerve is relieved. Subsequently, the filaments are observed by
means of a neuro endoscope and sutured layer by layer after it has been checked that there
are no actively bleeding or missing blood vessels.

Cells 2022, 11, x FOR PEER REVIEW 2 of 18 
 

 

microscope, but it can shorten the operation time and effectively reduce the incidence of 
postoperative complications [12]. Broggi et al. [13] reported that in the case of unclear 
neurovascular presentation under the microscope, the problem was solved by endoscopy. 
Endoscopy has a good light source, its wide-angle imaging can basically cover dead an-
gles of vision, and the local amplification of endoscopy can clearly identify the responsible 
vessels. Endoscopy can extend the lens into the microvascular decompression area, which 
is not limited by the surrounding anatomical structure, and can provide a broader and 
clearer surgical vision image [14]. At the same time, the lens can choose multiple different 
angles (0°, 30°, 45°) [15]. In the operation, the lens selects the appropriate angle and the 
surgeons can fully explore the responsible vessels in the case of zero damage [16]. Under 
the condition of visualization, the location of nerve and vessel interactions can be deter-
mined and it can be ensured that the responsible vessels are sufficiently identified without 
stretching the brain and nerves. Then, the microscopic operation is performed to effec-
tively reduce the incidence of tissue damage and complications. However, after successful 
insertion of Teflon filaments, endoscopy can be used to further observe the position be-
tween the filaments, nerves, and responsible vessels in multiple directions and without 
dead angles and effectively identify whether the decompression is sufficient [12] so as to 
accurately evaluate the surgical effect. Based on the above advantages of endoscopy, en-
doscopy can be used throughout MVD [17]. 

The responsible vessels are mostly the superior cerebellar artery, the anterior inferior 
cerebellar artery and its branches, the basilar artery, etc. Simple venous compression, 
arachnoid adhesion, and hypertrophy are also important factors in the pathogenesis. At-
tention should be paid to protecting the petrosal vein and its branches during the opera-
tion to prevent injury or tear-bleeding caused by excessive traction. The corresponding 
decompression method can be selected according to the thickness, elasticity, and length 
of the blood vessels. As shown in Figure 1, after clarifying the distribution and compres-
sion of the responsible vessels, they can then be explored with a microscope. The filler 
consists of Teflon filaments, which isolate the facial nerve from the responsible blood ves-
sels so that the compression of the facial nerve is relieved. Subsequently, the filaments are 
observed by means of a neuro endoscope and sutured layer by layer after it has been 
checked that there are no actively bleeding or missing blood vessels. 

  
(a) (b) 

Figure 1. Relationship observed between the facial nerve and the responsible vessel during an op-
eration. (a) The anterior inferior cerebellar artery crosses the facial nerve, resulting in compression. 
(b) Teflon filaments are inserted between the facial nerve and the anterior inferior cerebellar artery 
to relieve compression. 

Computer tomography angiography (CTA) is insufficient and there are risks of radi-
ation, contrast-induced nephropathy, and life-threatening allergic reactions. The potential 
benefits of emergency CTA must be carefully weighed [18]. It should be noted that the 
soft-tissue resolution of CTA images is not high, which affects the diagnostic accuracy of 

Figure 1. Relationship observed between the facial nerve and the responsible vessel during an
operation. (a) The anterior inferior cerebellar artery crosses the facial nerve, resulting in compression.
(b) Teflon filaments are inserted between the facial nerve and the anterior inferior cerebellar artery to
relieve compression.

Computer tomography angiography (CTA) is insufficient and there are risks of radia-
tion, contrast-induced nephropathy, and life-threatening allergic reactions. The potential
benefits of emergency CTA must be carefully weighed [18]. It should be noted that the
soft-tissue resolution of CTA images is not high, which affects the diagnostic accuracy of
some cerebrovascular diseases. Digital subtraction angiography (DSA) is the gold standard
for the diagnosis of vascular abnormalities. However, DSA is expensive and traumatic [19]
and there are various defects, such as radiation exposure, complex operation, and its
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time-consuming nature, which render it unsuitable for primary screening and census pur-
poses [20]. Magnetic resonance angiography (MRA) is a non-invasive vascular imaging
technique which does not require intubation or a contrast medium. With the continuous
progress and development of inspection equipment and post-processing methods, the ac-
curacy and sensitivity of detection are also increasing [19]. During and after the operation,
MRA has the advantages of good soft-tissue resolution, multi-parameter imaging, multi-
planar scanning, and multi-mode reconstruction. MRA can clearly show the anatomical
relation between cranial nerves and responsible vessels, which is an important method
for screening etiology. MRA is of great significance in the etiological diagnosis of TGN.
It can accurately display the relationship between TGN and peripheral blood vessels in
patients with primary trigeminal neuralgia and provide detailed anatomical details for
MVD surgery. Compared with traditional CTA, DSA, MRA, and other methods used
to obtain cerebral vessel images, it is simpler and more convenient to obtain true-color
medical images through endoscopy, and the processing of true-color MVD images has
greater development prospects.

In this paper, we propose a new real-time semantic segmentation network based on
deep learning, MVDNet, which could directly identify the location of cerebral vessels
and cranial nerves in MVD images quickly and accurately. MVDNet can rapidly identify
cerebral vessels and cranial nerves during operations, which saves a lot of time and
reduces the workloads of surgeons. Because the intra-class of cerebral vessels is too similar
and the boundary between cerebral vessels and other brain tissues is not obvious, these
make cerebral vessels segmentation difficult. So is the cranial nerves. These make the
segmentation of cerebral vessels and nerves difficult. Therefore, we propose a more efficient
encoder and a more sophisticated decoder. To train and evaluate our proposed MVDNet
network, we collaborated with the First Hospital of Jilin University. We built a dataset
containing 3,087 MVD images with well-annotated ground truth. MVDNet can provide
real-time inferences for the segmentation and location of cerebral vessels and cranial nerves.
For less experienced doctors, it helps to simplify the complexity of intraoperative operations
and reduce the number of intraoperative errors. This real-time and accurate segmentation
further helps doctors to obtain the best position of cerebral vessels and cranial nerves,
which can assist doctors to quickly diagnose and reach the level of professional doctors
even beyond professional doctors. The proposed method is compared with several other
advanced methods. Experimental results show that our method has achieved the best
performance.

In summary, the main contributions of this paper are as follows:

• We created a dataset consisting of 3,087 true-color MVD images and this dataset was
used for the segmentation and localization of cerebral vessels and cranial nerves
during MVD.

• We propose a new end-to-end network, MVDNet—a lightweight U-shaped model
composed of an encoder and a decoder.

• We designed a Light Asymmetric Bottleneck (LAB) module and Feature Fusion Mod-
ule (FFM) to further improve accuracy at an acceptable cost.

• Extensive experiments were conducted by comparing several of the latest methods
with our proposed MVDNet and the experimental results showed that MVDNet was
superior to other networks.

2. Related Work

Traditional Methods: Due to the complexity of the vascular structure, the early vessel
segmentation algorithm is mainly based on intensity pattern recognition. For example, the
threshold segmentation method mainly depends on the threshold value and the image
is divided into different regions by a specific threshold value. Wang et al. [21] extracted
foreground and background areas from MRA images through the Ostu threshold method,
and divided the foreground area. This method is simple in structure and fast. It may be
difficult to obtain robust and accurate segmentation results due to factors such as image
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noise and uneven contrast of the image. Region-growing segmentation is another com-
monly used vessel segmentation method. Starting from the seed points in the vessels, this
method gradually adds the pixels satisfying the growth conditions in the field to a set
and then realizes the vessel segmentation [22]. This method is highly dependent on the
correctness of seed points and is difficult to use in automatic diagnosis systems. Some
studies have used different filters for vessel enhancement, including Hessian enhance-
ment [23], Frangi enhancement [24], Satori [25], Erdt [26], Jerman [27], matched filter [28],
Gabor wavelet [29], etc. These filter methods are sensitive to noise. In addition, methods
based on active contour models are also commonly used vessel segmentation methods.
Cheng et al. [30] used the Snake model to complete the fundus vessel segmentation task,
which improved the robustness of processing lesion data to a certain extent. Lee et al. [31]
proposed a parameter active contour segmentation method based on the Kalman filter,
which automatically initialized the contour curve and greatly reduced computational cost.
Wang et al. [32] proposed a level set method based on adaptive thresholding by combining
global and local threshold information to extract cerebral vessels from MRA data, which
enhanced the extraction of small vessels.

Deep Learning-Based Methods: Most start-of-the-art semantic segmentation net-
works are based on fully convolutional neural networks (FCNs) [33]. This type of network
builds a fully convolutional neural network model using convolutional layers instead of
final fully connected layers, without limiting the size of the input image. The output is
fused with shallow feature maps by skip connection to compensate for the detail informa-
tion of the feature maps. Commonly used cerebrovascular segmentation networks include
U-Net [34], ResNet [35], FCN [33], DenseNet [36], etc. Livne et al. [37] segmented the cere-
bral artery in TOF-MRA images by half of the number of channels in each layer of U-Net.
However, this method of reducing the number of channels has limitations in detecting
small blood vessels around the skull. Hilbert et al. [38] identified small vessels in TOF-MRA
images by integrating 3D U-Net, multi-scale, and depth-supervised methods. This method
guides the network middle layer to better generate discriminative features, avoids the
problem of gradient explosion and gradient disappearance, and improves the convergence
of the model. Wang et al. [39] proposed the MCANet network for the segmentation of the
fetal middle cerebral artery (MCA) in ultrasound images. The network removes artifacts
caused by dilated convolution through residual connection and improves the accuracy
of segmentation. Wang et al. [40,41] extracted and visualized 3D cerebrovascular struc-
tures from highly sparse and noisy MRA images based on deep learning. The learned 2D
multi-view slice feature vector is projected into 3D space to extract small blood vessels
and improve vascular connectivity. Zhang et al. [42] introduced the reverse edge attention
network to find missing cerebrovascular edge features and details, and, furthermore, im-
proved the segmentation effect of small blood vessels. Nazir et al. [43] proposed an efficient
fusion network for automatic segmentation of cerebral vessels from CTA images and used
residual mapping to solve the problems of network convergence.

3. Method

In this section, we first introduce the light asymmetric bottleneck (LAB) module and
the feature fusion module (FFM) in detail. In addition, we describe the effectiveness of
these two modules. Finally, we describe the complete network architecture.

3.1. Light Asymmetric Bottleneck Module

In semantic segmentation tasks, some methods are implemented by maintaining
the resolution of the input images to ensure sufficient spatial information [44–47]. The
receptive field is also an important factor affecting segmentation. The existing methods
include pyramid pooling or atrous spatial pyramid pooling to obtain large receptive
fields [44,45,47,48]. Especially for real-time semantic segmentation, in order to improve the
speed of the network while ensuring segmentation accuracy, it is necessary to use small
input images or lightweight basic models. In this paper, we designed the light asymmetric
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bottleneck module (see Figure 2c) by observing the bottleneck design in ResNet [35] (see
Figure 2a) and the factorized convolutions in ERFNet [49] (see Figure 2b). The LAB module
has the advantages of both the bottleneck design and the factorized convolutions.
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In the LAB module, we also used the bottleneck module. The LAB module is composed
of 1× 1 convolution, 3× 1 depthwise convolution, 1× 3 depthwise convolution, and the
final 1× 1 pointwise convolution. The residual connection is used where the number of
input channels is the same as that of the output channels. The number of channels is
reduced to half of the original when passing the first 1× 1 convolution and the number of
channels remains unchanged through 3× 1 and 1× 3 depthwise convolution. Finally, the
original channel is restored by 1× 1 pointwise convolution.

We used a 1× 1 convolution at the beginning of each LAB module. For the 1× 3
convolution used at the beginning of the ERFNet [49] non-bottleneck-1D module, the
parameters of 1× 1 convolution are far less than 1× 3 convolution, which reduces the
runtime and memory requirements of the network model and improves the inference speed.
After the first convolution, we reduced the number of channels by half. Compared with the
thousands of channels in ResNet [35], the maximum number of channels in our model is
only 128, which effectively saves a lot of spatial information.

In order to further reduce the number of parameters, we referred to the non-bottleneck-
1D module of ERFNet [49]. Convolutional decomposition is applied to depthwise convolu-
tion to obtain a more lightweight structure. Alvarez et al. [50] proposed that the standard
convolution layer can be decomposed by 1D filters. Let W ∈ RC×dh×dv×F denote the
weights of the typical 2D convolution layer, C be the number of input feature maps, F the
number of output feature maps, and dh × dv the kernel size of each feature map (usually
dh = dv ≡ d). Let b ∈ RF be the vector representing the bias term for each filter. The i-th
output of a decomposition layer a1

i can be expressed as a function of its input a0
∗ in the

following way:

a1
i = ϕ

(
bh

i +
L

∑
l=1

h
T
il ∗
[

ϕ(bv
l ) +

C

∑
c=1

vlc ∗ a0
c

])
(1)

where L denotes the number of filters in the middle layer and ϕ(·) is implemented by
PReLU [51]. That is to say, the standard n × n depthwise convolution is replaced by
n× 1 depthwise convolution and 1× n depthwise convolution. For a kernel of N × N,
asymmetric convolution reduces the computational complexity of each pixel from O(N2)
to O(N). At the same time, in order to extract more abundant contextual information, we
introduce the dilation rates in depthwise convolution. The depthwise convolution of 3× 1
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and 1× 3 is improved to depthwise dilated convolution, which increases the receptive field
and captures more complex features without reducing the resolution of the feature maps.

Considering the shallow network models, PReLU [51] performance is slightly better
than ReLU [52]. Therefore, PReLU [51] was selected as a nonlinear function in our LAB
module and the pre-activation scheme was adopted [53]. Normalization is used before each
nonlinear function [54]. It should be noted that the use of nonlinear layers in bottlenecks
affects performance [55]. Accordingly, the nonlinear layer is eliminated after the final 1× 1
pointwise convolution.

3.2. Feature Fusion Module

A general semantic segmentation model can be considered as a synthesis of a front-
end encoder and a back-end decoder network [56]. The encoder is composed of multiple
convolutional layers to obtain the overall and local features of the image. The convolu-
tional layers and pooling layers can gradually reduce the spatial dimensions of inputted
data and the feature dimensions. The decoder is composed of multiple deconvolution
layers or unpooling layers and gradually restores the details and spatial dimensions of
the target. The discriminable features, which are lower resolution and learned by the
encoder, are semantically mapped to pixel spaces of higher resolution for pixel classifi-
cation. Some decoders are simply composed of bilinear upsampling or several simple
convolutions [47,57,58]. These decoders ignore low-level information, resulting in rough
segmentation and low segmentation accuracy. Some decoders aggregate different stage fea-
tures through complex modules and use low-level features to refine boundaries [48,59,60].
However, these decoders inevitably have the disadvantages of large calculation, high
memory consumption, and slow rate.

High-level features contain semantic information. Low-level features contain rich
spatial details. Due to the differences in semantic levels and spatial details, simple low-level
features and high-level features are difficult to effectively integrate. Zhang et al. [58] found
that introducing semantic information into low-level features and introducing spatial details
into high-level features can enhance feature fusion. In this paper, we embed low-level
features with rich spatial information into high-level features.

The FFM uses a U-shape style to fuse low-level features with spatial information
and high-level features with semantic information, as shown in Figure 3. Firstly, the low-
level features are processed by 1× 1 convolution and batch normalization to balance the
scale of features. Then, low-level features are squeezed by an average pooling operation
along the channel axis. Next, a sigmoid activation function is applied to generate a single-
channel attention map. Afterwards, it is multiplied by the high-level features after 3× 3
convolution. In the initial FFM, it should be noted that the high-level features are not
upsampled but multiplied directly by a single-channel attention map. The subsequent two
Feature Fusion Modules (FFMs) need to upsample the high-level features and multiply
them with the single-channel attention map. Ultimately, the high-level features are fused
with the weighted features by element addition. In short, when FL ∈ RCL×HL×WL and
FH ∈ RCH×HH×WH are inputted as low-level and high-level features into the FFM, the final
output of the FFM is computed as:

F = ϕ
(

BN
(

σ
((

AvgPool
(

BN
(

f 1×1(FL)
))))

⊗ f 3×3(FH) + f 3×3(FH)
))

(2)

where ϕ(·) is realized by PReLU [51], σ represents the sigmoid function, AvgPool implies
the average pooling operation, BN is the batch normalization, f 1×1 denotes a convolution
operation with the filter size of 1× 1, f 3×3 indicates a convolution operation with a filter
size of 3 × 3, ⊗ implies element-wise multiplication, + is element-wise addition, and
F ∈ RCL×HL×WL represents the final output feature maps.
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The spatial attention map generated by low-level features reflects the importance of
each pixel, which contains abundant spatial information, guides feature learning, and uses
spatial details to refine boundaries. FFM extracts a spatial attention map and fuses it with
high-level features containing rich semantic information effectively.

3.3. Network Architecture

Based on the LAB module and FFM, we have designed the NVDNet architecture of
the encoder–decoder model, as shown in Figure 4. In this section, we discuss our aim to
produce a network model with fast inference speed and a high Intersection-over-Union
(mIoU) metric and that is also lightweight. We analyze the optimal design of MVDNet. The
detailed architecture of MVDNet is set out in Table 1.

Cells 2022, 11, x FOR PEER REVIEW 8 of 18 
 

 

  
Figure 4. Architecture of the proposed MVDNet. C: concatenation; dashed lines indicate average 
pooling operations. 

Encoder: In the MVDNet, the encoder is composed of 3 3×  convolution layers and 
LAB blocks. In the encoder, the 3 3×  convolution with a step size of 2 constitutes the 
downsampling block. The downsampling operation reduces the size of the feature maps, 
expands the receptive field, and extracts more contextual information. However, it is dif-
ficult to obtain accurate segmentation results because the low resolution of feature maps 
leads to information loss. Therefore, in order to retain sufficient spatial information, we 
performed three downsampling operations on the original image to obtain 1 2 , 1 4 , and 
1 8  feature map resolutions, respectively. Subsequently, we built a long-range shortcut 
connection between the input image and each LAB block, which facilitates feature reuse 
and compensates information loss. 

We designed three LAB blocks in the MVDNet, which included several consecutive 
LAB modules for dense feature extraction. The first, the second, and the third LAB blocks 
consist of n , m , and l  LAB modules, respectively. In order to strengthen the spatial rela-
tionship and feature propagation, inter-module concatenation was introduced, which re-
alizes the fusion of high-level features and low-level features. As mentioned in Section 
3.1, we applied dilated convolution in LAB modules to obtain larger receptive fields and 
more complex features. Finally, the input of the LAB block and the output of the LAB 
block are fused with the original image after downsampling, which effectively improves 
the feature extraction. 

Table 1. Architecture details of the proposed MVDNet. 

Layer Operator Mode Channel Output size 
1 3 3× Conv Stride 2 32 256 256×  
2 3 3× Conv Stride 1 32 256 256×  
3 3 3× Conv Stride 1 32 256 256×  

4–5 n×LAB module Dilated 2 32 256 256×  
6 3 3× Conv Stride 2 64 128 128×  

7–8 m× LAB module Dilated 4 64 128 128×  
9 3 3× Conv Stride 2 128 64 64×  

10–12 l ×LAB module Dilated 8 128 64 64×  
13 1× FFM module - 128 64 64×  
14 1× FFM module - 64 128 128×  
15 1× FFM module - 32 256 256×  
16 1 1× Conv Stride 1 10 256 256×  
17 Bilinear interpolation 2×  10 512 512×  

Figure 4. Architecture of the proposed MVDNet. C: concatenation; dashed lines indicate average
pooling operations.
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Table 1. Architecture details of the proposed MVDNet.

Layer Operator Mode Channel Output size

1 3× 3 Conv Stride 2 32 256× 256
2 3× 3 Conv Stride 1 32 256× 256
3 3× 3 Conv Stride 1 32 256× 256

4–5 n×LAB module Dilated 2 32 256× 256

6 3× 3 Conv Stride 2 64 128× 128
7–8 m× LAB module Dilated 4 64 128× 128

9 3× 3 Conv Stride 2 128 64× 64
10–12 l× LAB module Dilated 8 128 64× 64

13 1× FFM module - 128 64× 64

14 1× FFM module - 64 128× 128

15 1× FFM module - 32 256× 256

16 1× 1 Conv Stride 1 10 256× 256

17 Bilinear
interpolation ×2 10 512× 512

Encoder: In the MVDNet, the encoder is composed of 3× 3 convolution layers and
LAB blocks. In the encoder, the 3× 3 convolution with a step size of 2 constitutes the
downsampling block. The downsampling operation reduces the size of the feature maps,
expands the receptive field, and extracts more contextual information. However, it is
difficult to obtain accurate segmentation results because the low resolution of feature maps
leads to information loss. Therefore, in order to retain sufficient spatial information, we
performed three downsampling operations on the original image to obtain 1/2, 1/4, and
1/8 feature map resolutions, respectively. Subsequently, we built a long-range shortcut
connection between the input image and each LAB block, which facilitates feature reuse
and compensates information loss.

We designed three LAB blocks in the MVDNet, which included several consecutive
LAB modules for dense feature extraction. The first, the second, and the third LAB blocks
consist of n, m, and l LAB modules, respectively. In order to strengthen the spatial relation-
ship and feature propagation, inter-module concatenation was introduced, which realizes
the fusion of high-level features and low-level features. As mentioned in Section 3.1, we
applied dilated convolution in LAB modules to obtain larger receptive fields and more
complex features. Finally, the input of the LAB block and the output of the LAB block are
fused with the original image after downsampling, which effectively improves the feature
extraction.

Decoder: For the decoders, we applied three feature fusion modules to aggregate
low-level features and high-level features and gradually restore resolution. Next, 1× 1 con-
volution and two-times upsampling were used to complete the segmentation. Compared
to the decoder used in most semantic segmentation networks, the segmentation prediction
is generally obtained by four-times [57] or eight-times [61,62] upsampling. The two-times
upsampling, which we adopted, can retain more feature information as well as make the
boundary information more complete and the semantic information clearer.

Our model belongs to an end-to-end deep learning architecture and does not depend
on any backbone. It is noteworthy that the capacity of MVDNet is seriously low and that
we use less than 0.72 million parameters.

4. Experiments

In this section, we evaluate our proposed network on the MVD dataset, which was
provided by the First Hospital of Jilin University. Firstly, we introduce the MVD dataset
and the preprocessing and implementation protocol. Then, we describe the experiments
conducted on the validation set of the MVD dataset to prove the effectiveness of our
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network. Finally, we report the accuracy and speed results for the MVD dataset and
compare them with other real-time semantic segmentation networks.

4.1. Data

In the medical field, medical images generally have the characteristics of simple
semantics, fewer data, and being difficult to obtain. Moreover, medical image segmentation
based on deep learning requires professional annotation by doctors. Here, we cooperated
with the First Hospital of Jilin University. The study involved 60 patients, 23 males and
37 females, aged 40–70. MVD data were collected with an OPMI@ VARIO 700 operation
microscope produced by the manufacturer ZEISS. During the period from cerebrospinal
fluid release to dura suture, 3,087 MVD images were obtained and manually labeled
by experts. Then, we referred to the PASVOL VOC 2012 dataset format. Finally, the
MVD dataset for semantic segmentation network training was obtained. The dataset
has 9 categories (10 categories when adding background). The category names and their
corresponding colors are presented in Figure 5. Abbreviations of relevant medical terms
are listed in Table 2.
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Table 2. Abbreviations of medical terms.

Abbreviation Full Name in English

cn5 Trigeminal nerve
cn7 Facial nerve
cn9 Glossopharyngeal nerve

cn10 Vagus nerve
aica Anterior inferior cerebellar artery
pica Posterior inferior cerebellar artery

aica + cn7 Anterior inferior cerebellar artery and facial
nerve

pica + cn7 Posterior inferior cerebellar artery and facial
nerve

pv Petrosal vein

4.2. Experimental Settings

MVD dataset: The MVD dataset was provided by the First Hospital of Jilin University.
It is an intraoperative scene dataset of microvascular decompression, including 3,087 finely
annotated MVD images. We randomly selected 1,806 for training, 973 for verification, and
308 for testing. The resolution of these images was 768× 576 and there were 9 categories.

Implementation protocol: All experiments were performed with two 2080Ti GPU
cards and CUDA 10.1 and cuDNN 7.6 on the Pytorch platform. The evaluation of runtime
was performed on a single 2080Ti card. Mini-batch stochastic gradient descent (SGD), with
a batch size of 8, a momentum of 0.9, and a weight decay of 0.0001, was used to train the
networks. We applied the “poly” learning rate policy [31], and the initial learning rate was
0.16 with power 0.9. For data augmentation, we employed random horizontal flip, random
Gaussian blur, and standardization strategies. During training, we randomly cropped the
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input image to 512× 512 and set the number of epochs to 100. The mIoU metric was used to
measure accuracy. The mean of cross-entropy error over all pixels was applied as the loss.

4.3. Ablation Studies

In this section, we describe a series of experiments designed to prove the effectiveness
of our network. These ablation studies were based on the training set of the MVD dataset
and intended to evaluate our network on the validation set of the MVD dataset to observe
the influence of each component in MVDNet.

Ablation on dilation rates: We adopted three LAB blocks with different dilation rates,
LAB block 1, LAB block 2, and LAB block 3. The encoder of our network is composed of
these three LAB blocks. As shown in Table 3, we set different dilation rates, 2, 4, and 8 and
4, 8, and 16. Selecting the appropriate receptive field can learn better multi-scale features.
If the receptive field is too large, this will lead to the loss of small targets. For MVD images,
it is more effective when the dilation rate is 2, 4, and 8.

Table 3. Results of the LAB encoder with different combinations of dilation rates.

Name Dilation Rates mIoU (%)

LAB_N2M2L4 2,4,8 73.49
LAB_N2M2L4 4,8,16 73.07

Ablation on downsampling of the original images: In the encoder, we downsampled
the original images by 1/2, 1/4, and 1/8 and fused them into the encoder. In Table 4, after
adding the downsampling operation, the accuracy was increased from 73.49% to 73.71%.
This improvement effectively preserves spatial information and details and also extracts
more contextual information.

Table 4. Results of the LAB encoder with different settings. n = 2, m = 2, l = 4.

Downsampling Concatenation mIoU (%)

73.49
X 73.71

X 73.76
X X 73.83

Ablation on concatenation: We concatenated the input features and output features
of the LAB blocks. As listed in Table 4, the accuracy increased by 0.27% after adding
a concatenation operation in the LAB blocks. If both downsampling and concatenation
operations are introduced into the network, the accuracy reaches 73.83%. Concatenation
operation is applied to the encoder, effectively increasing information flow.

Ablation on encoder depth: We used different numbers of LAB modules for LAB
block 1, LAB block 2, and LAB block 3 to change the depth of the encoder. The paraments,
FLOPs, and mIoU values of different configurations are shown in Table 5. We can see
that the values of m and l have a greater impact on accuracy than n, and fine segmen-
tation results can be obtained when m and l are superimposed with four LAB modules,
respectively. When m and l increase to 8, the parameters and FLOPs increase significantly
and the improvement in accuracy is minor. We made a trade-off between accuracy and
computational complexity, eventually setting n to 2, m to 4, and l to 4.
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Table 5. Results of MVDNet with different depths; the number of parameters and FLOPs are
estimated for a 512× 512 input.

n m l Params(M) FLOPs (G) mIoU (%)

2 2 2 0.56 4.24 72.89
2 2 4 0.59 4.38 73.83
2 4 4 0.60 4.54 74.59
4 4 4 0.60 4.71 74.63
2 8 8 0.69 5.13 74.76

Ablation on the decoder: In MVDNet, we used a LAB block to extract features and
chose a FFM to aggregate features. We applied the average pooling operation along the
channel axis in the FFM to test the performance, as shown in Table 6. The average pooling
operation along the channel axis can improve accuracy and ensure effective access to spatial
details. This shows that embedding spatial details into high-level features through FFMs
can effectively improve accuracy and obtain better pixel-level prediction.

Table 6. Results of the FFM module with different components. n = 2 , m = 4, l = 4.

FFM Average Pooling mIoU (%)

w/o - 74.59
w 77.02
w X 77.45

mIoU performance: In order to explore the influence of dilated convolution on mIoU
performance, we designed two comparative experiments. In the first experiment, we
removed all the dilated convolutions in MVDNet. In the other experiment, we set the first
3× 3 standard convolution of the LAB block to dilated convolutions with a dilation rate of
2. As shown in Table 7, we removed all dilated convolutions and there was a significant
decrease in mIoU, from 77.45% to 75.59%. When we applied dilated convolutions with a
dilation rate of 2 for standard convolution, the values of mIoU also decreased (range: 77.45%
to 76.76%). The experimental results show that the dilated convolution has a significant
effect on mIoU performance.

Table 7. Dilation of MVDNet effect on mIoU.

Model mIoU (%) Params (M)

MVDNet 77.45 0.72
MVDNet_w/o dilation 75.59 0.72

MVDNet_First 3× 3 conv (r = 2 ) 76.76 0.72

4.4. Comparison with the State of the Art

In this section, based on the study of ablation, we combined the LAB blocks and the
FFMs to build a complete network and experimented with it on the MVD dataset. Firstly,
all networks completed 100 epochs of training under the MVD dataset, the cross-entropy
loss function, and mini-batch SGD (batch size: 8, momentum: 0.9, weight decay: 0.0001).
Then, we conducted experiments to estimate the inference speed at a resolution of 768× 576
and compared the results with those of other methods. For fair comparison, we did not
adopt multi-scale or multi-crop tests.

As shown in Table 8, MVDNet has 0.72 million parameters and the number of pa-
rameters is close to those of EDANet [63] and DABNet [62]. Nevertheless, the accuracy is
2.1% and 0.3% higher at the same input size. MVDNet is significantly superior to most
real-time semantic segmentation methods in terms of accuracy. ESPNet [64], one of the
fastest real-time networks and slightly faster than our network, only achieves 57.71% mIoU,
which is 18.8% less than MVDNet. Speed comparison shows that MVDNet has a fast
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inference speed given the condition of ensuring accuracy. At the same time, to facilitate
observation, we intercept the training loss of all networks in 10–100 epochs, as illustrated
in Figure 6. From the loss curve, it can be seen that MVDNet has faster and smoother loss
attenuation than the other networks after 66 epochs.

Table 8. Speed and accuracy comparison of MVDNet on the MVD test set.

Method Params (M) Time (ms) Speed (fps) mIoU (%)

ENet [65] 0.36 12.7 78.5 51.69
ESPNet [64] 0.19 6.4 156.4 57.71
FSSNet [66] 0.17 7.6 131.7 61.27
CGNet [67] 0.49 11.4 87.4 71.35

EDANet [63] 0.69 8 125 74.49
ContextNet [68] 0.88 6.1 163.3 75.62

DABNet [62] 0.75 7.7 129.1 76.29

MVDNet (Ours) 0.72 7.3 137.6 76.59
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It can be seen from Figure 7, in the first row, that only our MVDNet accurately could
accurately locate the segmentation boundary of “aica” and that the object contour is clear. In
the second and third rows, ENet [65] has an error segmentation and fails to segment “cn10”.
ESPNet [64] and FSSNet [66] have obvious multi-pixel mixing problems. CGNet [67],
EDANet [63], ContextNet [68], and DABNet [62] do not accurately locate the segmentation
boundary of “cn10”, showing obvious loss of target contour segmentation. In the third
row, only our MVDNet segments “aica” and the segmentation of “cn5” are complete.
The proposed method has higher segmentation performance and contains more feature
information.
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Figure 7. Visual comparison on MVD validation set. From top to bottom: input images, segmentation
outputs from ENet [65], ESPNet [64], FSSNet [66], CGNet [67], EDANet [63], ContextNet [68],
DABNet [62], our MVDNet, and ground truth.

With the test set, results were compared for patients with different background infor-
mation (age and gender). According to the different age groups, there were 107 images
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for the 40–50-year-old group, 117 images for the 50–60 group, and 84 images for the
60–70 group. By gender, there were 124 images for males and 184 images for females.

It can be seen from Tables 9 and 10 that the operation of MVD is mostly concentrated in
“pica + cn7”, that the main responsible vessel is “pica”, and that the segmentation accuracy
of cerebral vessels is less than that of cranial nerves. In Table 9, with increasing age, the
segmentation accuracy of cerebral vessels is significantly reduced due to the more tortuous
cerebral vessel arrangements characteristic of the elderly. In Table 10, there is a small gap
between male and female mIoU values. Comparing Table 9 with Table 10, it can be found
that the segmentation accuracy of cerebral vessels is mainly affected by age. Age has a
greater impact on final segmentation results than gender.

Table 9. Accuracy comparison for different age groups on the MVD test set.

Age mIoU (%) cn5 cn7 cn9 cn10 aica + cn7 pica + cn7 pica aica pv

40–50 76.87 82.51 82.52 74.12 76.93 77.46 88.43 74.08 71.43 64.35
50–60 77.11 82.62 84.41 79.39 81.37 73.55 87.89 73.69 70.4 60.64
60–70 76.25 84.05 87.29 75.08 81.29 79.41 88.12 70.33 68.43 52.37

Table 10. Accuracy comparison for gender on the MVD test set.

Gender mIoU(%) cn5 cn7 cn9 cn10 aica + cn7 pica + cn7 pica aica pv

Male 76.4 83.18 84.23 77.22 80.12 71.6 88.71 73.68 68.62 60.21
Female 76.29 85.19 85.19 73.06 74.41 78.88 87.93 72.38 71.74 60.14

5. Discussion

In previous studies, there have been few real-time and accurate segmentations of
cerebral vessels and cranial nerves in microvascular decompression. In this study, a new
encoder–decoder structure was adopted which has the characteristics of accuracy and
speed and can accurately and quickly complete the segmentation of cerebral vessels and
cranial nerves in microvascular decompression. Compared with previous studies, the
encoder has a simpler structure and fewer convolutional layers, yet it can obtain more
contextual information. The decoder more effectively integrates high-level and low-level
features.

During microvascular decompression, the surgeon usually judges the cerebral vessels
and cranial nerves according to the treatment group and experience. However, the bone
flap diameter is only 2.5 cm, and the operation space is small. There will also be a small
amount of bleeding and cerebrospinal fluid present at any time during the operation, which
will affect the operation of the surgeon and cause a lot of inconvenience, leading to many
uncertainties and risks during the operation. The proposed method realizes the rapid and
accurate segmentation of cerebral vessels and cranial nerves, reduces mental pressure on
the surgeon, and provides a basis for rapid decision-making and judgment on the part of
the surgeon. It is beneficial to reduce the release of cerebrospinal fluid during the operation,
avoid excessive traction of nerves and blood vessels, effectively reduce surgical trauma,
and reduce the occurrence of postoperative complications. However, the limitation of this
paper is that we only used data obtained by a single medical institution (the First Hospital
of Jilin University) to train, validate, and test the proposed network. The generalization
performance of our approach needs to be further improved in the future.

6. Conclusions

For MVD images, in order to improve the speed and accuracy of real-time semantic
segmentation, this paper presents the Microvascular Decompression Network (MVDNet).
We have proposed a new Light Asymmetric Bottleneck (LAB) module to extract contextual
information and designed an encoder based on this module. The decoder applied a
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Feature Fusion Module (FFM) to aggregate different features. The ablation experiments
showed that the LAB blocks effectively extracted the contextual features and that the
Feature Fusion Modules (FFMs) integrated the deep contextual features and shallow spatial
features efficiently. We achieved a result of 76.59 % mIoU on the MVD test set at 137 FPS.
Compared with other real-time methods, our network has significant improvements in
terms of accuracy and speed.
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