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Abstract: A segmented primary mirror is very important for extra-large astronomical telescopes,
in order to detect the phase error between segmented mirrors. Traditional iterative algorithms are
hard to detect co−phasing aberrations in real time due to the long-time iterative process. Deep
learning has shown large potential in wavefront sensing, and it gradually focuses on detecting piston
error. However, the current methods based on deep learning are mainly applied to coarse phase
sensing, and only consider the detection of piston error with no tip/tilt errors, which is inconsistent
with reality. In this paper, by innovatively designing the form of pupil mask, and further updating
the OTF in the frequency domain, we obtain a new decoupled independent feature image that
can simultaneously detect the piston error and tilt/tilt error of all sub-mirrors, which is effectively
decoupled, and eliminates the dependence of the data set on the imaging object. Then, the Bi−GRU
network is used to recover phase error information with high accuracy from the feature image
proposed in this paper. The network’s detection accuracy ability is verified under single wavelength
and broadband spectrum in simulation. This paper demonstrates that co−phasing errors can be
accurately decoupled and extracted by the new feature image we proposed and will contribute to the
fine phasing accuracy and practicability of the extended scenes for the segmented telescopes.

Keywords: decoupled phase feature; deep learning wavefront sensing; optical image processing;
segmented mirrors fine phasing

1. Introduction

The future development trend of extra-large aperture space telescopes is determined
by segmented space telescopes [1,2]. The segmented primary mirrors can effectively
tackle many problems, such as large-scale monolithic mirror manufacturing and testing,
transportation and launch. However, the imaging quality of a segmented telescope depends
to a large extent on the alignment of the system, which includes the misalignment caused
by the relative piston and tip/tilt aberration of each sub-mirror [2]. To achieve superior
imaging quality, the phase RMS error between segmented sub-mirrors should be less than
λ/40. Therefore, a segmented co-phasing technique is worth researching.

Researchers have put a lot of effort into solving the misalignment of sub-mirrors, such
as the Hartmann wavefront sensor [3,4], curvature sensor [5], pyramid sensor [6], Zernike
phase contrast sensor [7] and Mach−Zehnder interferometer sensor [8]. The wavefront
state can be quickly analyzed by special sensors. However, sensors are inconvenient and
expensive to predict the co-phasing errors in real application. The image-based wavefront
sensing method gradually became popular and includes phase diversity (PD) [9–13] and
phase retrieval (PR) [14–16]. PR is only available for point target wavefront sensing. PD
is suitable for wavefront sensing of point targets and extended targets. It uses an optical
diffraction model and further utilizes an iterative algorithm to acquire the true co−phasing
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errors. The iterative process has the problem of a large amount of computation, being
time-consuming and low robustness (stagnation problem), especially when the object
is unknown [17]. A long-time on-orbit working environment is relatively complicated,
and it is affected by a variety of micro-vibration disturbances, which can cause serious
degradation of imaging quality as there may not be point targets (fixed star) with suitable
brightness in the field of view. Therefore, real-time detection of co-phasing errors of
extended sources is particularly important.

The wide applications of deep learning have shown potential in Fourier ptychog-
raphy [18–20], scattering medium imaging [21,22], phase unwrapping [23–26], image
restoration [27,28], etc. It has also been used in the co-phasing of segmented mirrors [29].
Compared with traditional PR or PD methods, deep learning has advantages, e.g., robust-
ness (no local optimal problem) and a fast real-time (no iterative process). Li et al., presented
a piston error sensing method based on CNN (only a rough detection) [30], to expand the
detection range of piston error. Hui et al., employed deep CNNs to detect the piston error
through a feature image supposing that the tip/tilt errors are corrected previously [31],
and the average RMSE between actual piston values and predicted piston values is about
0.06 waves. They both predict the piston error of each sub-mirror by designing multiple
deep CNN channels. Wang et al., proposed a multichannel left-subtract-right feature vector
piston error detection method based on a convolutional neural network [32]. Tang et al.,
use deep convolutional neural network to only diagnose the tip/tilt errors accurately with
fast calculation and compare detection accuracy of two different inputs of the network [33].
We can see that deep learning methods do not have a bad influence on co-phasing sensing.

However, for extended scenes, nearly all existing co-phasing methods based on deep
learning cannot simultaneously detect piston error and tip/tilt errors for all sub-mirrors,
because the coupling relationship between the two makes many methods invalid and the
detection accuracy is greatly reduced. Specifically, although the method of Li et al., can
surpass the fundamental limit of 2π by using multi-wavelength technology, they can just
correct piston error but cannot detect tip/tilt errors. Hui et al., can correct the piston error
from λ to 0.06 λ by using five CNN networks (complex), but the precondition is that there
is no tip/tilt errors. Moreover, whereas Tang et al., can analyze the characteristics of the
tip/tilt errors and successfully correct it, this method did not have the ability to correct
the piston error. Therefore, how to simultaneously detect piston error and tip/tilt errors
through deep learning is still an investigative problem.

In this paper, we obtain a new decoupled object-independent feature image by inno-
vatively designing the form of pupil mask and further updating the OTF in the frequency
domain, which can detect the piston error and tip/tilt errors of all sub-mirrors at the same
time. This feature image can effectively decouple piston error and tip/tilt errors, and
get rid of the dependence of the data set on the imaging object. This method does not
require additional optical diffractive component. Moreover, we only use a single network
(Bi−GRU network) to construct a specific relationship between the phase aberrations and
the extracted feature image, so that we achieve the sub-aperture fine phasing of the ex-
tended scenes. Furthermore, by comparing the four different feature images we proposed,
we determined the best feature extraction scheme. Simulations demonstrate that the new
feature image proposed in this paper is superior to the older co-phasing method of seg-
mented telescopes. We also quantitatively discuss the influence of the wavefront sensing
accuracy of our method under broad spectrum bandwidth.

The structure of this paper: Section 2 introduces a new feature image extraction
method for correcting piston error and tip/tilt errors at the same time. Section 3 introduces
Bi−GRU network, and explains how to employ Bi−GRU network to predict the co-phasing
process of segmented mirrors. Section 4 demonstrates the feasibility of our proposed
method and simulation to verify the superiority of our method. Section 5 presents some
discussion on the effect of incident light incoherency on co-phasing process accuracy and
compare co-phasing accuracy of four feature images. Section 6 summarizes this paper.
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2. Feature Extraction
2.1. Optical Imaging Model and the Formula of Feature Extraction

At present, hexagonal segments have been widely used, such as JWST. Therefore, we
use the hexagonal segment model to analyze the phase error problem. The structure is
shown in Figure 1.

Figure 1. Optical model of 6-segmented primary mirror.

The image plane intensity distribution can be expressed by the following equation:

id(x, y) = o(x, y) ∗ ps fd(x, y), (1)

where x, y are variables in the spatial domain. o(x, y) represents the distribution function
of the 2D object. id(x, y) represents the image intensity distribution on the defocus planes.
ps fd(x, y) represents the point spread function (PSF) on the defocus plane. According to
Fourier optics, the relationship in the frequency domain can be written as:

Id(u, v) = O(u, v) ·OTFd(u, v). (2)

The generalized pupil function can be expressed as:

P(x, y)

=
N
∑

j=1
Pj
(

xj, yj
){

circle
( x−xsj ,y−ysj

D/2

)
exp

[
i∆φj

(
xj, yj

)]}
,

where Pj
(
xj, yj

)
=

{
1, inside the jth hexagon
0, outside the jth hexagon

.

(3)

In the above equation, Pj
(

xj, yj
)

represents the pupil for each hexagon sub-mirror of the
segmented telescope. xj, yj represent each sub-mirrors’ pupil center coordinates.circle(·)
is the circular domain function and describes the shape of mask. xsj, ysj are the center
coordinates of each mask. A mask is used to change the shape of the pupil, and if a mask
is located at the exit-pupil plane, the shape of the pupil is determined by the non-opaque
portion of the mask. By changing the shape of the pupil, the information in the frequency
domain can be modulated to decouple the effects of piston error and tip/tilt errors.

∆φj
(

xj, yj
)

refers to the jth sub-mirror’s aberration and can be expressed as Zernike
polynomials. If we consider the piston error and tip/tilt error in both directions, it can be
written as:

∆φj
(
xj, yj

)
=

2π

λ

(
αj1Zj1 + αj2Zj2 + αj3Zj3

)
. (4)
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In the optical system, PSF is captured by inverse Fourier transform with generalized
pupil function:

ps f (x, y)= | Ft[P(x, y)]|2

= ps fsub(x, y)

∣∣∣∣∣ N

∑
s=1

exp
[
−i

2π

λ f
(xxs + yys)

] ∣∣∣∣∣
2

.
(5)

ps fsub(x, y) is the PSF of a single sub-aperture. Taking the 2D Fourier transform of
ps f (x, y) gives the complex OTF

(
fx, fy

)
.

OTF
(

fx, fy
)

= Ft[ps f (x, y)]

=
N
∑
1

OTFsub
(

fx, fy
)
+

OTFsub
(

fx, fy
)
·

N−1
∑

m=1

N
∑

n=m+1
δ
(

fx ± xsm−xsn
λ f , fy ± ysm−ysn

λ f

) (6)

where OTFsub denotes the side lobes of the OTF.
To eliminate the influence of unknown extended objects, some mathematical manipu-

lations are further needed, which is presented below:

F=
Id1(u, v)·I∗d2(u, v) + I∗d1(u, v)·Id2(u, v)
Id1(u, v)·I∗d1(u, v) + Id2(u, v)·I∗d2(u, v)

=
O(u, v)·OTFd1(u, v)·(O(u, v)·OTFd2(u, v))∗ + (O(u, v)·OTFd1(u, v))∗·O(u, v)·OTFd2(u, v)
O(u, v)·OTFd1(u, v)·(O(u, v)·OTFd1(u, v))∗ + O(u, v)·OTFd2(u, v)·(O(u, v)·OTFd2(u, v))∗

=
OTFd1(u, v)·OTF∗d2(u, v) + OTF∗d1(u, v)·OTFd2(u, v)
OTFd1(u, v)·OTF∗d1(u, v) + OTFd2(u, v)·OTF∗d2(u, v)

=
2Ad1·Ad2

A2
d1 + A2

d2
cos(θd1 − θd2),

(7)

where OTFd1 and OTFd2 are OTFs corresponding to two defocus PSF images, which are
captured by CCD at different defocus distances, and they contain co-phasing wavefront
aberrations. Ad1 and Ad2 are the amplitude of two defocus image spectrum, and θd1 and
θd2 are the argument angle of two defocus image spectrums.

We can see that F constructs a mathematic mapping between the wavefront aberrations
and extended scene images, which is independent of the unknown extended object (F
removes the effect of object O(u, v)). Compared to the previous work of other researchers
where no mask is used in the process of obtaining PSF images, we use a mask with a
special-designed form to decouple the influence of piston error and tip/tilt errors. In this
paper, we call F “new” feature images due to the usage of the masks.

2.2. Explanation and Necessity of New Feature Extraction Methods

The innovation of this paper is designing a special mask and combining the OTF
processing in the frequency domain (Equation (7)) to get a new feature image, which
successfully decouple the piston error and tip/tilt errors. At the same time, the unique
phase information of each sub-mirror is obtained and we can meanwhile revise the piston
error and tip/tilt errors by employing the network. Moreover, the new features are not
affected by the object target (object O(u, v) is eliminated in the frequency domain). In the
actual project, according to the different imaging object, the mathematical model for solving
a co-phasing error is also different, which poses a huge challenge to build an accurate
nonlinear mapping between the defocused image and the phase aberration. Therefore, it is
necessary that the new feature we proposed is not related to the imaging content.
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The mask is set on the exit-pupil plane to sample the wave reflected by the segmented
primary mirror, which is reflected on the entrance-pupil plane that the mask is equivalent to
physical mask super-imposed to the pupil, as shown in Figure 2. This beam path is used to
correct the aberration of the optical system and adjust the position of each sub-mirror. After
adjusting the optical system, the real imaging beam path is still imaged by the hexagonal
segmented primary mirror. The two beam paths can be easily separated with a beam
splitter.

Figure 2. Comparison between the old feature image and the new feature image. The mathematical
manipulations for old feature and the new feature are the same, whereas a specially designed mask is
used for obtaining the PSF for calculating the new feature image. In the old feature, the information
corresponding to different sub-apertures couples together. In the new feature, the information
corresponding to different sub-apertures are not overlapped and we can distinguish them.

As to why the new feature method we proposed is necessary, because the segmented
mirrors are mostly center-symmetric structures, multiple pairs of sub-apertures will lead to
the same spatial frequency peak, as shown on the left side of Figure 2. Specifically, the phase
information of each parallel sub-mirror pair with the same baseline distance is distributed
in the same pair of OTF side lobes. Two groups sub-aperture pairs are identified in Figure 2
for the convenience of readers. For example, the two and six sub-aperture pairs and the
three and five sub-aperture pairs have the same spatial frequency. The spatial frequencies
of the one and three sub-aperture pairs and the four and six sub-aperture pairs are also
the same. Other sub-apertures with the same spatial frequency are not listed one by one.
Therefore, we cannot identify each sub-mirror’s own phase distribution, which affects the
co-phasing sensing accuracy.

The new feature Image we proposed (the right side of Figure 2) can completely contain
the unique phase information corresponding to each sub-mirror, which can greatly improve
the co-phasing accuracy. In the co-phasing process of the segmented mirror, the coupling of
the piston error and the tip/tilt error is the fatal factor restricting the co-phasing accuracy.
In this paper, the OTF is further processed in the frequency domain to decouple the piston
error and the tip/tilt error, so that we can obtain the piston error and tip/tilt error separately
at the same time, and further improve the co-phasing accuracy. The following is a detailed
description. It is noted that the hardware requirement of our method is very small, and we
only need a simple mask and no additional diffractive optical elements.

(1) The relationship between mask position and aberration distribution

In order to obtain the phasing information of all sub-apertures at the same time, the
distribution of the mask position is very important, as shown in Figure 3. We require that
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the distance vector between each two pairs of sub-apertures cannot be the same in space,
no matter how you move each sub-aperture. As shown in Figure 3b, we add a mask at
the center of each sub-mirror. Since there are different sub-aperture pairs with the same
distance vector, the overlapping phenomenon of OTF side lobes will occur, that is to say,
the phase information distributions for the corresponding two pairs of sub-mirrors will
overlap, which will affect the phase error accuracy. For example, the spatial frequency
of one and two sub-aperture pairs and four and five sub-aperture pairs is the same, and
one and five, two and four/three and six/two and six, three and five/one and six, three
and four/one and three, four and six is also same, so the old feature image only shows
six pairs of OTF side lobes, and the aberration distribution corresponding to each sub-
mirror cannot be accurately obtained. We move one of the masks to break this symmetry.
As shown in Figure 3c, the phenomenon of fully overlapping OTF side lobes is reduced.
According to our mask design rules, six aperture masks should have 15 sub-aperture pairs,
one and two/one and three/one and four/one and five/one and six/two and three/two
and four/two and five/two and six/three and four/three and five/three and six/four and
five/four and six/five and six. As shown in Figure 3d, we can completely obtain the unique
OTF side lobes and the independent phase distribution corresponding to all sub-mirrors.

Figure 3. Influence of mask position on the feature of the 6 sub-mirrors. The dotted line indicates the
redundancy of the sub-aperture sidelobes. (a) shows feature without mask. (b) shows feature with
fully symmetrical mask and has 9 sub-aperture pairs. (c) shows feature with partially symmetrical
mask and has 13 sub-aperture pairs. (d) shows feature with asymmetric mask and has 15 sub-aperture
pairs.

(2) Relationship between mask size and aberration distribution

Besides the position of the mask, the size of the mask also restricts the accuracy of the
co-phasing error sensing. By controlling the size of the mask and cooperating with our
further processing of OTF in the frequency domain, it can effectively distinguish between
piston error and tip/tilt errors. Since the graphical representation of six sub-mirrors is too
complicated to label, to make it easier for readers to understand, we use two sub-mirrors
to clearly illustrate how feature images we proposed effectively distinguishes piston error
and tilt/tilt errors, as shown in Figure 3. If the mask is too small, the OTF side lobes are
independent individuals. Since the OTF spatial frequency of the piston error is only related
to itself and not affected by the defocus distance, through our processing of the frequency
domain OTF, the feature map will no longer contain the piston error feature, but only the
tip/tilt error (green circle), as shown in Figure 4a. This also shows from the side that the
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method we proposed in this paper can decouple piston error and tip/tilt error. When mask
size is set correctly, i.e., the OTF side lobes are partially independent, the feature image will
obtain both piston error and tilt/tilt errors information, where the overlapping part of the
OTF side lobes reflects the piston error distribution (red circle), as shown in Figure 4b. It is
noted that the distribution of piston error does not affect our acquisition of tip/tilt error
information through the new feature extraction method we proposed.

Figure 4. Influence of mask size on the decoupled phase information contained in the feature image.
(a) shows that when the mask is too small, the feature image will no longer contain the piston error.
(b) shows that when we have a suitable size mask, the feature image can clearly obtain piston error
information and tip/tilt error at the same time.

2.3. A Novel Use of the Mask Function in This Paper

Aperture masking (also called non-redundant mask, NRM) is widely used in astron-
omy. Please allow us to introduce the different functions of aperture masking in astronomy
first, which can be summarized as the following four types. The fourth one is closely related
to the research content of this paper and is introduced as a key point.

(a) Eliminate the influence of atmospheric turbulence

Sylvestre, Lacour et al., use aperture masking to eliminate the influence of atmospheric
turbulence combined with closure phase measurements [34]. It acts as a preprocessing
process for PSF images for subsequent wavefront recovery using adaptive optics (AO).

(b) Observing companion planets

For JWST [35–37], it is equipped with a 7−hole non−redundant mask on the Near IR
Imager and Slitless Spectrograph (NIRISS). The NRM image has a fine structure and can
well capture a faint companion around the star. NRM can provide good contrast for binary
systems at small inner-working angles to the bright host star. For Gemini Planet imager
(GPI) [38], it has a 10-hole NRM in its pupil. NRM is suitable for hot planet forming regions
imaging in circumstellar disks. Especially, NRM is a powerful detection of transition disks’
gaps that may hide many small planets.

(c) Instrument calibrations and diagnostics

Greenbaum et al., employed NRM to detect inherent wavefront in an optical system,
which was possibly caused by a non-common path of the AO optical system and imaging
detector [38]. Then, they use the closure phase to eliminate the wavefront inherent in the
optical system, so that they can achieve diagnostics and corrections to the instrument itself.

(d) Co-phasing detection
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For JWST [39,40], they use aperture mask data as a first estimate of the pupil phase
before the fine phasing process, because the aberration it measures is imprecise. They finally
use the GS algorithm to predict phase information and the input of the GS algorithm needs a
rough initial value of phase. Later, Jiang and Zhao et al., proposed to utilize a non-redundant
mask technique to achieve high-accuracy piston error measurement [41,42]. However, they
only achieved a wide range of piston error measurements, and their method fails when
tip/tilt error is present. Anthony et al., proposed Fizeau Interferometric Cophasing of Seg-
mented Mirrors (FICSM) [43], and they used non-redundant sparse aperture interferometry
to successfully predict the phase; however, they needed to first use a narrowband image to
remove tip/tilt errors and then they could use a broadband image to measure piston errors.
M. Deprez and C. Bellanger proposed piston and tilt interferometry, and used a holed mask
to create a lacunar wavefront, and then the wavefront needed to be directed onto a custom
hexagonal diffraction grating (additional necessary complex component) to obtain phase
information [44].

To sum up, (d) Co-phasing detection is related to the research direction of this paper
and we can see that the current co-phasing method based on aperture masking has the
following problems: (1) The detection accuracy of aberration is poor. (2) The piston error
and tilt error cannot be detected at the same time. (3) Additional complex optical diffractive
elements are required as an aid.

In this paper, by designing the form of the pupil mask and further updating the OTF
in the frequency domain, we obtain a new decoupled object-independent feature image
that can simultaneously detect piston error and tip/tilt errors of all sub-mirrors, and can
satisfy the needs of fine phasing accuracy. This new feature image can effectively decouple
the piston error and tip/tilt errors, and are unrelated to the imaging object. In other words,
the method proposed in this paper is suitable for both point targets and extended scenes,
and does not require any additional optical diffractive elements.

3. Decoupled Feature Images for Fine Phasing by Bi−GRU Network
3.1. Bi−GRU Network

GRU is an improved structure of the recurrent neural network (RNN). Compared with
conventional RNN, GRU tackles the gradient explosion and gradient vanishing challenges.
It mainly represents when the network structure is deep or the sequence input is long,
the interdependency between the sequence information of the previous and subsequent
declines or even vanishes, resulting in the network failing to extract the important preorder
information of the network layer. Compared with deep CNN, Bi−GRU does not have a
complex convolution structure, so that it has low requirements on computer performance,
which makes it more suitable for promotion.

As shown in Figure 5, the hidden layer of the GRU network comprises of a reset gate
r〈t〉 and an update gate z〈t〉. The GRU network is designed in the form:

ĥ〈t〉 = ψg

(
Whxx〈t〉 + Wh

(
r〈t〉 ∗ h〈t−1〉

)
+ bh

)
,

h〈t〉 =
(

1− z〈t〉
)
∗ h〈t−1〉 + z〈t〉 ∗ ĥ〈t〉,

(8)

Figure 5. Structure diagram of GRU network.
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The two gates are expressed as:

r〈t〉 = ψg

(
Wrxx〈t〉 + Wrhh〈t−1〉 + br

)
,

z〈t〉 = ψg

(
Wzxx〈t〉 + Wzhh〈t−1〉 + bz

)
,

(9)

where tanh refers to hyperbolic tangent function, σ represents sigmoid activation function,
⊗ represents element multiplication, x〈t〉 represents current cell’s input and h〈t−1〉 repre-
sents previous hidden state. Specifically, in this case, Whx is an n × m vector, Wh is an n × n
vector, and bh is an n × 1 vector. Then, the total parameters in the GRU are equal to 3 × (n2

+ nm + n). The activations of gates in GRU only depends on current input and previous
output.

The intensity of pixels has inherent relations and it is not independent for a specific
image pattern. When the image is split into a set of small blocks and regarded as a sequence,
GRU can take advantage of these correlations. To better contact the sequence, we use the
Bidirectional GRU (Bi−GRU) network. Bi−GRU consists of two opposite direction GRUs,
and has an additional hidden layer. Bi−GRU does not change any internal structure of
GRU itself, but only applies GRU twice with different directions, and then splices the
GRU results obtained twice as the final output. It is a very simple network structure, the
configuration of the computer is very low and it is suitable for promotion. Figure 6 provides
the Bi−GRU structure, which provides the output layer part with the previous and future
data of input sequence, so that it can better identify the image feature.

Figure 6. Structure diagram of Bi−GRU model.

In this paper, we choose Bi−GRU as a great mathematical tool to detect the wavefront
map of segmented mirrors. Actually, other deep learning networks can also be used in this
work. The reason why we use Bi−GRU is mainly because it has a simpler network structure,
higher accuracy than other networks and the convergence speed is faster. The widely used
CNN networks need to extract feature images through convolution operations and down-
sampling operation, which will lose much valuable real original phase information, and
will limit co-phasing sensing accuracy.

3.2. Fine-Phasing with Decoupled Feature Images by the Bi−GRU Network

The application procedure is shown in Figure 7. It illustrates the co-phasing process
by using the Bi−GRU network, where our extracted new feature images serve as the input
to the network. Specifically, for extended scenes, we first acquire a large number of pairs
of defocus images through a designed optical system. For each pair of defocus images,
we can extract a feature image. The extracted feature images and the obtained aberrated
wavefront map consist of the input datasets and output datasets, respectively. Then, using
these datasets, we train and devised the Bi−GRU network. After Bi−GRU is trained well,
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the optimal weight value, the bias value and structure of the network can be obtained to
detect co-phasing aberration in real extended scenes, even if the imaged object is unknown.
We add some Gaussian noise to defocus images to simulate real scenes. In this paper, we
propose a new feature image, which contains phase information for each sub-mirror, and
piston error and tip/tilt errors are decoupled. In Section 4, we compare the phase fitting
accuracy of old feature images and new feature images for the co-phasing process in more
detail.

Figure 7. Sketch map of decoupled object-independent fine phasing approach using Bi−GRU
network. First, we obtain the pairs of defocus images of the extended scenes, and extract new feature
images with Equations (6) and (7), which is sequentially decomposed into a series of split vectors.
These vectors comprise a sequence, which are regarded as input data of Bi−GRU. Finally, aberrated
wavefront map serves as output of Bi−GRU.

It is noted that the Bi−GRU network we designed is mainly utilized to handle se-
quences, and the captured features cannot be regarded as input data directly. Therefore, we
split the features into a battery of patches and they can be used as a sequence. To be specific,
we stitch an N × N feature image into an n-dimensional vector of n rows. The vectors can
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be thought of as n interconnected timing input data, which are input into Bi−GRU. Mean-
while, the output data of Bi−GRU is still a sequence. Then, it is regarded as a vector, which
is the input data of a FC layer, and the aberrated wavefront map can finally be obtained by
the Bi−GRU. We use an aberrated wavefront map predicted by our devised network to
reproduce the extended scenes images, and the residual root-mean-square errors (RMSEs)
between original phase and recovered phase are taken as assessment criteria.

4. Simulations and Results

In this part, according to Fourier optics, MATLAB and CODE V are utilized to model
imaging system. It is verified that the feature extraction method proposed in this paper can
effectively predict the co-phasing error and we compare the co-phasing sensing accuracy of
new feature images and old feature images. The fine phasing application procedure based
on deep learning is presented below:

(1) Definition of optical system parameters

Optical system parameters are critical for training Bi−GRU. In the paper, we set the
primary mirror’s aperture to 200 mm, focal length to 2 m, observation wavelength to
632.8 nm, PSF image size to 256 × 256 pixels, 5mm defocus distance between two PSF
images and CCD pixel size to 5.5 µm. Then, MATLAB is used to model the optical system.
For extended scenes, corresponding pairs of defocus PSFs can be obtained according to
Fourier optics principle.

(2) Feature image extraction as the network’s input

For each pair of defocus PSF images, a new feature image can be extracted that contains
both piston error and tip/tilt errors and is not related to the extended object, as shown
in Figure 8. In the presence of the same phase aberration, the schematic diagrams of the
extracted feature image of different objects are the same, as provided in Figure 8a,b, where
it can be seen obviously that the new feature image is completely independent of the object.
In the presence of different phase aberrations, the schematic diagrams of the extracted
feature are different, as shown in Figure 8a,c. The common co-phasing errors considered
here are piston error and tip/tilt errors corresponding to 1st~3rd Fringe Zernike coefficients,
which are produced ranging from −0.5λ to 0.5λ at random. According to the procedure
shown in Figure 7, we generated 10,000 sets of extracted feature images and corresponding
aberrated wavefront maps as input and output data sets.

(3) Training process of the Bi−GRU network

We set 10,000 data sets to train Bi−GRU, and network parameters are shown as follows:
The Adam algorithm is the optimization algorithm, the value of initial learning rate is
0.0003, the batch size is 150, the hidden layer number is 128 the loss function uses RMSE
(root mean square error between true value and output aberration value, and we add L2
regularization. CPU is Intel(R) Core(Tm) i7-8700, and the GPU is NVIDIA Quadro P2000.
The software version is Python 3.6 and Tensorflow version is tensorlow-gpu-1.14.1.

(4) Testing Bi−GRU’s effectiveness

To test effectiveness of method in this paper, we used optical software CODE V to
establish an actual optical system and collect ten thousand test datasets. The distribution
of aberrations between piston and tip/tilt errors are all randomly generated within the
range of [−0.5λ, 0.5λ]. In order to approximate the actual imaging environment, 50 dB
noise is randomly introduced into the simulated image (the evaluation standard is PSNR,
see below). In Figure 9, we plot absolute error between predicted phase and true phase
(average RMSE). Figure 9 shows that the accuracy of the phase error prediction of the new
feature image (Figure 9b) is one order of magnitude higher than that of the old feature
image (Figure 9a). The average RMSE is 0.09438 λ and 0.00661 λ, respectively. We fully
proved the superiority of the feature image proposed in this paper for co-phasing sensing
of segmented telescopes. The network works fine most of the time, and the success rate of
the network operation can reach more than 95%.
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Figure 8. Illustration of the new feature image containing both piston error and tip/tilt errors which
is not related to the extended object. (a,b) exhibit two extended scenes, pairs of defocus images (given
same phase aberration) and the acquired feature images (the same), respectively. (a,c) show that in
the same extended scenes, different phase aberrations correspond to different feature images.

Figure 9. Comparison of co-phasing RMSE distribution between old feature and new feature. In case
(a), we test the fine phasing accuracy for old feature images. In case (b), we test the fine phasing
accuracy for new feature images, and it can effectively improve fine phasing accuracy more than
old ones.
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To simulate noise, we model each image to have Gaussian CCD read noise with a
standard deviation of 15 e- and a dark current of 0.1 e-/s over a 1 s integration time. The
photon noise, which is dependent on intensity, follows a Poisson distribution. The peak
pixel signal-to-noise ratio (PSNR) is defined as:

PSNR = 20 log10

 Speak√
Speak + σ2

read + σ2
dark

, (10)

where Speak is the peak pixel value of the noise-free image, σ2
read and σ2

dark are the variances
associated with the readout noise and the dark current noise at each pixel, respectively.
The peak value of the PSF is set to 100,000 photons, which is limited to the number of fully
trapped electrons. Then, the final peak pixel PSNR is approximately equal to 50 dB.

Comparing two columns of Figure 9a,b, the new feature extraction method we pro-
posed can greatly improve the fine phasing accuracy (one order of magnitude). The
reason is that the new feature images can completely display the unique piston error and
tip/tilt error information corresponding to each sub-mirror, whereas phase information
corresponding to each sub-mirror in the old feature is coupled together.

To further validate the effectiveness of the presented new feature image, the trained
Bi−GRU network is robustly general to other simulated aberration extended scenes for
co-phasing process and image reconstruction. To be specific, a preloaded wavefront map
was randomly introduced, and according to Fourier optics Equation (1), we get pairs
of aberrated defocus scenes. Then, we extract the corresponding new feature image,
decompose the feature image into sequences and regard it as input data. After that, we get
the recovered phase. The preloaded aberrated wavefront map, the recovered aberrated
wavefront map and the residual wavefront map are shown in Figure 10, which shows a
high wavefront detection accuracy for unknown extended scenes.

Figure 10. The result of image reconstruction by recovered wavefront map. It can be seen that
resolution of recovered object can be availably boosted, which demonstrates recovered wavefront
accuracy from the side. By comparing the preloaded and restored wavefront, the residual wavefront
can visually demonstrate the accuracy of the restored wavefront.

Original extended scenes can be reconstructed by the recovered aberrated wavefront
map through the deconvolution operation, and Figure 10 shows the image reconstruction
results. By comparing the recovered object with aberrated ones and original ones, we
find that the resolution of reconstructed object is well enhanced, which can be infinitely
close to the original extended image. To quantitatively analyze the recovered images,



Remote Sens. 2022, 14, 4681 14 of 19

we make the structural similarity index metrics (SSIM) use an objective evaluation of the
recovered image quality. In this paper, the average SSIM between the recovered image and
the original image is 0.9881. The phenomenon proves accuracy of predicting co-phasing
errors indirectly.

5. Other Discussions
5.1. Influence of Incident Light Incoherency in Co-Phasing Accuracy

In this section, we will further discuss the influence of incident light incoherency
in co-phasing accuracy. In the aforementioned section, only a case of coherent light is
considered, i.e., we assume that incident light has an infinitely small spectral bandwidth.
In practice, however, incident light is generally incoherent, even if we utilize a filter to
limit bandwidth. In this condition, the feature image extraction we proposed, trained by
the Bi−GRU network, is still effective in recovering the co-phasing phase error, but the
accuracy will decrease slightly.

Specifically, we consider four cases: a battery of extended scenes with diverse spectral
bandwidths are generated. The bandwidths are 1 nm, 50 nm, 100 nm and 200 nm, respec-
tively. Meanwhile, in order to be close to the actual working conditions, we assume that
the spectral intensity is not uniformly distributed over the bandwidth. For each case, we
extract the corresponding feature image as the input data to Bi−GRU, and mean absolute
error between those true wavefront maps and the predicted values (output of the Bi−GRU
network) are employed to assess co-phasing accuracy for each bandwidth. Here, new
feature 3 is taken as an example to test the effect of spectral bandwidths on co-phasing
sensing accuracy, as shown in Figure 11.

Figure 11. Results of the incoherency of light on predicted phase accuracy by feature extraction.
(a–d) display RMSE of wavefront map which corresponds to 1nm, 50 nm, 100 nm and 200 nm
bandwidths, respectively. We can see that with the increase of bandwidth, the co-phasing accuracy is
slightly decreased, but it still meets the requirements of fine-phasing.
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The conclusions can be obtained from Figure 11 as follows:

(1) On one hand, we tested the broadband of 1 nm (Figure 11a), 50 nm (Figure 11b),
100 nm (Figure 11c) and 200 nm (Figure 11d), respectively, and the RMSE between
the predicted phase value of Bi−GRU and the real phase value is 0.00661λ, 0.00691λ,
0.00724λ and 0.00918λ, respectively. We can see that with the increase of bandwidth,
the co-phasing accuracy is slightly decreased.

(2) On the other hand, the accuracy is still <0.01λ when the spectral bandwidth is <200 nm,
which still meets the requirements of fine-phasing. In practice, as for a wider band,
a suitable filter can be used for filtering before wavefront sensing to guarantee the
co-phasing accuracy.

5.2. Comparison between Different Mathematical Model for Obtaining New Feature Images

In this section, we propose another three different mathematical models for obtaining
new feature images. Specifically, mathematical models are presented below:

F2=
I f (u, v)
Id(u, v)

=
OTFd1(u, v)
OTFd2(u, v)

=
Ad1
Ad2

exp{i(θd1 − θd2)}.

F3=
I f (u, v)·I∗d (u, v)− I∗

f
(u, v)·Id(u, v)

I f (u, v)·I∗f (u, v) + Id(u, v)·I∗d (u, v)

=
OTFd1(u, v)·OTF∗d2(u, v)−OTF∗d1(u, v)·OTFd2(u, v)
OTFd1(u, v)·OTF∗d1(u, v) + OTFd2(u, v)·OTF∗d2(u, v)

=
2iAd1·Ad2

A2
d1 + A2

d2
sin(θd1 − θd2).

F4=
I f (u, v)·I∗f (u, v)− I∗

d
(u, v)·Id(u, v)

I f (u, v)·I∗f (u, v) + Id(u, v)·I∗d (u, v)

=
OTFd1(u, v)·OTF∗d1(u, v)−OTF∗d2(u, v)·OTFd2(u, v)
OTFd1(u, v)·OTF∗d1(u, v) + OTFd2(u, v)·OTF∗d2(u, v)

=
A2

d1 − A2
d2

A2
d1 + A2

d2
.

(11)

The above three feature images also contain the phase information of each sub-mirrors
and they are independent of extended scenes. We will analyze the accuracy of the network
using the four new feature images (including the new feature image mentioned in Section 2,
which we called feature 1 here) for the co-phasing of segmented telescopes. The four feature
images are shown in Figure 12, corresponding to F, F2, F3 and F4 respectively.

Figure 12. Illustration of four kinds of new feature images, which can completely contain the unique
phase information corresponding to each sub-mirror. New feature 1 (corresponding to F) and
new feature 3 (corresponding to F3) contain more abundant phase information than new feature 2
(corresponding to F2) and new feature 4 (corresponding to F4).
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According to the processing of OTF in Equations (7) and (8), we can see from the
theoretical formula that if Ad2 of F2 is close to zero, the feature image may fail directly and
part of the phase information distribution will be lost. F and F3 are much more stable than
F2, and both contain amplitudes and phase shift information, which can completely display
the phase information distribution. The difference between F and F3 lies in molecular
addition and molecular subtraction, which is orthogonal. The co-phasing accuracy using F
and F3 is similar (F is a little better than F3). F4 only contains amplitudes information and
will also lose part of the phase information distribution. To sum up, the first new feature
image (corresponding to F) contains the most comprehensive phase information of each
sub-mirror and has the highest co-phasing accuracy.

Simulations verify the fine phasing accuracy of the segmented mirrors for new feature
1, new feature 2, new feature 3 and new feature 4. The training and test dataset numbers of
Bi−GRU are 10,000 groups. The other training conditions of Bi−GRU are also consistent.
Figure 13a–d show fine phasing accuracy of four new feature images we proposed, and
the average RMSE between the real phase and output phase of the Bi−GRU network are
0.00661λ, 0.07446λ, 0.00894λ and 0.01874λ, respectively. Consistent with our theoretical
expectations, the fine phasing accuracy of new feature 1 and new feature 3 is much better
than new feature 2 and new feature 4, and the fine phasing accuracy of new feature 1
(corresponding to F) is the best.

Figure 13. Comparison of co-phasing RMSE distribution between four kinds of new feature images.
The co-phasing accuracy of new feature is the best, which is consistent with the theory. (a) refers to
new feature 1, (b) refers to new feature 2, (c) refers to new feature 3 and (d) refers to new feature 4.



Remote Sens. 2022, 14, 4681 17 of 19

6. Conclusions

In summary, this paper proposes a new decoupled object-independent feature image,
which can obtain the phase information of all sub-mirrors at the same time, effectively
decouple piston error and tip/tilt errors and eliminate the dependence of the data set on
an imaging object. For hardware, the requirement is very small. It only needs a mask to
attach in a conjugate plane of the segmented primary mirror and does not require any other
additional optical diffractive elements. For Modeling, the OTF is further updated in the
frequency domain to decouple the aberrations. The new feature image extracted in this
way can efficiently and accurately predict the piston and tip/tilt errors and achieve fine
phasing of the segmented mirrors.

Some conclusions are presented below:

(1) The new feature images are only related to aberrated wavefront map, which are
decoupled and object-independent. There is a unique mapping relationship between
feature images and the aberrated wavefront map, which can achieve end-to-end
co-phasing for segmented telescopes.

(2) Four different new feature images are proposed, and we compared their phase predic-
tion accuracy for the fine phasing problem under the same conditions. Both theory
and simulation verify that the new feature has the highest accuracy. Moreover, the
new feature image can greatly improve the co-phasing accuracy compared to the old
feature image.

(3) Only use a single network (Bi−GRU) to establish an accurate nonlinear mapping
between the phase information and extracted feature images. The network we de-
signed is simple, requires low computer configuration and the method proposed in
this paper does not require a deep and complex network. The fine phasing method
based on deep learning does not require an iterative process and can predict the phase
much quickly, which fits the real-time correction.

(4) In the case of different spectral bandwidths (<200 nm), the feature image extraction we
proposed trained by the Bi−GRU network is still effective in recovering the co-phasing
phase error.

This work greatly improves the fine phasing sensing precision and practicability of
the extended scenes of the segmented telescopes. The implementation of my work is on
large astronomical telescopes to correct optical system aberrations, which can achieve high-
resolution remote sensing imaging and large-aperture telescope astronomical observations.
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