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Abstract: Laser-induced damage threshold (LIDT) is an essential factor in measuring the anti-laser
damage of optical films. The damage threshold and morphology of the Ta2O5/SiO2 multilayer film
prepared by electron beam evaporation were studied by femtosecond (50 fs) and picosecond (30 ps)
laser irradiations. The results showed that the LIDT of the film was 1.7 J·cm−2 under the femtosecond
laser. The damage morphology developed from surface damage to a clear layered structure, and the
outline has become more transparent and regular with an increase in the laser fluence. Under the
picosecond laser irradiation, the LIDT of the film was 2.0 J·cm−2. The damage morphology developed
from small range to thin film layer separation, and the outline changed from blurry to clear with
an increase in laser fluence. Therefore, the LIDT of the film decreased with a decrease in the laser
pulse width.

Keywords: laser-induced damage threshold; multilayer film; femtosecond laser; picosecond laser

1. Introduction

In high-energy laser systems, there are a large number of optical film components,
and the ability of these components to resist laser damage seriously affects the operation of
the laser system. With the development of high-energy laser systems, the requirements for
the ability of optical film to resist laser damage have become higher. Therefore, the laser-
induced damage threshold (LIDT) of the film has become an essential basis for designing
laser systems and an essential factor for selecting optical film [1–4]. As a result, obtaining a
high LIDT is a hot issue.

The LIDT of the optical film depends on many factors, such as the intrinsic physical
properties of the film, preparation technology, etc. In addition to the above factors, the
output parameters of pulsed laser have a significant influence on the LIDT [5–8]. Therefore,
the damage of the optical film is a complex process that is extremely accidental and affected
by many factors.

The pulse laser is usually divided into three types: Ultrashort pulse lasers with
femtosecond/picosecond pulse width on the order of magnitude; short pulse lasers with
nanosecond pulse width on the order of magnitude; and long pulse lasers with microsecond
pulse width on the order of magnitude. The research on the damage of these three typical
pulse width lasers to optical thin film components is of great significance. These studies can
provide a theoretical and experimental basis for the rational use of different laser sources
and further explore the application prospects of lasers. For this reason, the laser pulse width
is an essential factor that can influence the LIDT of the optical film. Laurence et al. used
laser pulses with a wavelength of 1053 nm and a pulse width of 1–60 ps to study the role
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of defects in laser-induced damage of fused silica and of silica films produced by e-beam
and plasma-ion assisted deposition processes [9]. Kozlov et al. investigated the physical
mechanism and consequent material modification associated with laser-induced damage
of multilayer dielectric high reflectors at 0.6 and 100 ps pulses [10]. Yao et al. investigated
the damage thresholds of TiO2 single layers and TiO2/SiO2 high reflectors at different
pulse widths, and explored the relationship between film damage mechanism and laser
pulse width [11]. Wang et al. investigated the damage thresholds of silicon in millisecond,
nanosecond, and picosecond lasers [12]. Zhou et al. studied the damage thresholds of
K9 glass and UBK7 glass optical components at different pulse widths, then analyzed
the pulse-width dependence of damage threshold [13]. Matsukawa et al. studied the
pump-beam-induced optical damage depending on the pulse width in 4-dimethylamino-
N′-methyl-4′-stilbazolium tosylate crystal [14]. At present, the damage theory of optical
thin films with different pulse widths has been formed.

At present, there are many materials used to prepare optical films, such as TiO2, HfO2,
ZrO2, Ta2O5, Nb2O5, SiO2, Al2O3, ZnS, etc. Herein, Ta2O5 and SiO2, as high and low
refractive index materials, are the two most commonly used optical film materials in visible
and near infrared bands. This is due to the fact that the Ta2O5 film has a low absorption rate,
high refractive index, wide spectral transmission range (300–10 µm), high dielectric constant
(30–35), chemical stability, thermal stability, and good mechanical properties [15–18]. The
SiO2 film has the characteristics of high hardness, high light transmittance, good wear
resistance, strong erosion resistance, good insulation, good thermal stability, and good
dielectric properties [19]. Based on the excellent properties of Ta2O5/SiO2 film, many
researchers have studied the Ta2O5/SiO2 film. Lv et al. prepared Ta2O5 films of different
thicknesses by ion beam sputtering and studied the effect of annealing on the stress of Ta2O5
films [20]. Kumar et al. investigated the LIDT of Ta2O5 and Ta2O5/SiO2 films at 532 and
1064 nm [21]. Aydogdu et al. systematically studied the effect of electric field distribution
and heat treatment on laser damage performance of multilayer Ta2O5/SiO2 films deposited
on glass substrates by ion beam sputtering [22]. However, the damage threshold and
morphology of optical films irradiated by femtosecond and picosecond lasers are still
lacking. For this reason, we investigated the damage threshold and damage morphology of
Ta2O5/SiO2 multilayer film irradiated by femtosecond and picosecond lasers.

In this paper, the main purpose is to compare the damage of femtosecond and picosec-
ond lasers to the film and discuss the damage mechanism. The LIDT of the Ta2O5/SiO2
multilayer film by electron beam evaporation using fused silica as the substrate under
femtosecond and picosecond lasers by one-on-one measurement was investigated. In
addition, we observed the damage morphology of multilayer film by microscopy, and then
analyzed the pulse-width dependence of the damage threshold. Finally, we discussed the
damage mechanism of multilayer film under femtosecond and picosecond lasers.

2. Experimental Details
2.1. Sample Customization

To enhance the application of anti-laser damage of thin films in laser systems, suitable
all-dielectric multilayer reflective films are often designed according to actual needs. The
Ta2O5/SiO2 multilayer film used in the experiment is constructed by electron beam evap-
oration using fused silica as the substrate. The multilayer film is made of high and low
refractive index (Ta2O5 and SiO2) materials with different optical thicknesses. This structure
can form a high reflection for a specific band. Figure 1 shows the reflection spectrum curve
of the multilayer film, and the spectral range is from 350 to 850 nm.
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800 nm and 50 fs, respectively. The wavelength and pulse width of picosecond laser were 
1064 nm and 30 ps, respectively. A plane-convex focusing lens (focal length is 25 cm) was 
used to focus femtosecond and picosecond laser pulses vertically onto the surface of the 
multilayer film. The spot diameter of femtosecond and picosecond lasers at this position 
was measured by the blade method as 30 μm. The multilayer film to be tested was fixed 
on a computer-controlled electric three-dimensional translation stage (PT3/M-Z8, accu-
racy ±1.5 μm, Thorlabs, Newton, NJ, USA), and the minimum movement step of the trans-
lation was 1.0 μm. A microscope and camera were used to observe the experimental pro-
cess of the damage of femtosecond and picosecond lasers to the multilayer film in real-
time. After the experiment, a more sophisticated microscope was used to observe laser 
damage morphology. 
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dielectric film itself absorbs very little laser energy, the various defects have a strong ab-
sorption of the laser. The introduction of defects causes the damage of the dielectric film 
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the international standard ISO11254 “1-on-1” mode [23]. During the investigation, the 

Figure 1. Reflection spectrum curve of multilayer film.

2.2. Experimental Device

Figure 2 shows the experimental setup diagram for the damage of femtosecond and
picosecond lasers to the multilayer film. In the experiment, a Ti:sapphire pulse amplifica-
tion system was used to output a femtosecond laser. Its wavelength and duration were
800 nm and 50 fs, respectively. The wavelength and pulse width of picosecond laser were
1064 nm and 30 ps, respectively. A plane-convex focusing lens (focal length is 25 cm)
was used to focus femtosecond and picosecond laser pulses vertically onto the surface
of the multilayer film. The spot diameter of femtosecond and picosecond lasers at this
position was measured by the blade method as 30 µm. The multilayer film to be tested was
fixed on a computer-controlled electric three-dimensional translation stage (PT3/M-Z8,
accuracy ±1.5 µm, Thorlabs, Newton, NJ, USA), and the minimum movement step of the
translation was 1.0 µm. A microscope and camera were used to observe the experimental
process of the damage of femtosecond and picosecond lasers to the multilayer film in
real-time. After the experiment, a more sophisticated microscope was used to observe laser
damage morphology.
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2.3. Laser Damage Threshold Test

The laser damage threshold is a characteristic of calibrating optical films. Since the
dielectric film itself absorbs very little laser energy, the various defects have a strong
absorption of the laser. The introduction of defects causes the damage of the dielectric
film to be random. For the determination of the dielectric film threshold, the experiment
used the international standard ISO11254 “1-on-1” mode [23]. During the investigation,
the pulse fluence was gradually reduced until the sample was not damaged. Thirty points
were sampled at each pulse fluence, and the distance between the two pulse irradiation
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points on the sample surface was 200 µm. The proportion of damaged test points to all
of the test points under each pulse fluence was recorded successively. When the damage
probability was zero in the process of reducing the laser fluence, it was the corresponding
LIDT [24]. In addition, the ISO 11,254 provides a reference for the LIDT [23]. The file uses a
typical nanosecond laser. For the nanosecond pulse width, the main mechanism is defect
damage. Under the presupposition, the so-determined damage threshold is only useful
under the following conditions:

A. The mean distance of essential defects is small compared to the spot size.
B. Most of the defects trigger damage at an identical laser fluence.

Otherwise, the LIDT becomes strongly dependent on the laser spot, and/or the spread
becomes very big [23], in which the purpose of the large spot size is to cover enough
defects. In the current experiment, the laser spot with 30 µm diameter can cover many
defect damage points, in which the mean distance of essential defects is small compared to
the spot size (30 µm). For femtosecond laser, the surface damage to the film is intrinsic, in
which the defect has almost no effect on the damage of the femtosecond laser. Therefore, a
small spot size (30 µm) is reasonable.

3. Results and Discussion

The difference in damage characteristics or damage mechanism of different pulse
width lasers on optical films mainly includes the difference in damage threshold and
damage morphology. For this reason, the effect of femtosecond and picosecond lasers on
damage threshold and damage morphology of multilayer film was discussed. Figure 3
shows the damage probability distribution of multilayer film irradiated by femtosecond
and picosecond lasers. The results show that the LIDTs of the multilayer film are 1.7 and
2.0 J·cm−2 under femtosecond and picosecond lasers. In addition, the LIDT under the
picosecond laser is higher than under the femtosecond laser. The LIDT difference between
the femtosecond and picosecond lasers is mainly due to the different damage mechanisms.
The damage of multilayer films by femtosecond laser can be affected by free electron density
and critical energy deposition. When the femtosecond laser radiates the optical film, the
absorption of the optical film body causes the ionization of electrons. When the electron
density reaches a certain value, the ionizing breakdown damage occurs. However, the
damage of picosecond laser to the multilayer film is mainly caused by the thermal effect,
which is caused by the absorption of laser energy by defects in the film. To verify this
conclusion, a microscope was used to observe the damage morphology of the multilayer
film irradiated by femtosecond and picosecond lasers.
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Figures 4 and 5 show the damage morphology of the multilayer film irradiated by
femtosecond and nanosecond lasers with different laser fluences. There are clear differences
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in the damage morphology under femtosecond and nanosecond laser irradiations. When
the femtosecond laser fluence is near the threshold, the damaged area is a small piece and
relatively fuzzy, and there is no discrete damage point at the edge of the damaged area,
as shown in Figure 4a. This indicates that the surface damage of the femtosecond laser to
the multilayer film is intrinsic, in which the defect has almost no effect on the damage of
the femtosecond laser. In addition, the surface damage caused by its nature developed
into an evident delamination with an increase in the laser fluence, and the outline was
more transparent and regular, as shown in Figure 4b–d. However, when the picosecond
laser fluence is near the threshold, the damaged area is not “clean” and “tidy”. Still, it is
composed of many tiny damage points, which indicates that there are many minor defects
with high absorption of laser energy in the laser-irradiated area, thus causing damage to
the film. At this time, the size of damage points is relatively regular and dense, and most
of the size is less than 2.0 µm, as shown in Figure 5a. The shallow cracks appear at the
edge of the damaged area with an increase in picosecond laser fluence, the outline of the
whole damage area is clear, and very dense damage points appear inside the damaged area.
At this time, the size of the damaged area is about 15 µm, as shown in Figure 5b. As the
picosecond laser fluence continues to increase, the outline of the damaged area becomes
clearer and more regular, and there is a trend of surrounding diffusion. The ablation traces
of the surface by thermal melting are more clear, and there is a small-scale separation of the
film in the center and surrounding edges of the damaged area. At this time, the size of the
damaged area is also about 15 µm, as shown in Figure 5c.
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Laser fluences are 2.11 J·cm−2 (a), 2.19 J·cm−2 (b), 2.40 J·cm−2 (c), and 2.71 J·cm−2 (d).

The optical thin films have different damage characteristics under femtosecond and
picosecond laser irradiations, and the various damage characteristics also reflect different
damage mechanisms. A widely accepted view is that when the pulse width is longer than
10.0 ps, the laser’s thermal breakdown of thin films is dominant, and when the pulse width
is shorter than 10.0 ps, the optical breakdown of thin films by the laser is dominant [25].
Since the pulse width of the femtosecond laser used in our experiment is 50 fs, the optical
breakdown has a dominant effect on the multilayer film. In addition, since the instantaneous
peak power of femtosecond laser is very high, the electric field intensity is very high. The
nonlinear multiphoton ionization, impact ionization, and tunneling ionization are the
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primary mechanisms for the damage of the multilayer film. In contrast, the non-intrinsic
absorption mechanism caused by impurities and defects is clearly weakened and can be
ignored entirely [26]. It is generally believed that nonlinear multiphoton ionization and
collision ionization work together when the pulse width of the femtosecond laser is long.
When the pulse width is short, multiphoton ionization is enough to damage the film. The
main mechanism is the tunneling ionization when the pulse width is very short [27,28].
The pulse width used in our experiment is 50 fs, and thus we only consider the damage
effect of multiphoton ionization on the optical film. The initial conduction electrons are
generated by multiphoton ionization, and then the conduction electrons rapidly absorb
laser energy. When their energy is greater than the bandgap energy of the material, they
will collide with valence electrons and generate another electron, thus forming an electron
avalanche effect. When its concentration reaches 1021 cm−3, it will cause damage to the
thin film [26,28].

However, since the pulse width of the picosecond laser used in our experiment is 30 ps,
the thermal breakdown has a dominant effect on the multilayer film. For the picosecond
laser, since the intrinsic absorption of multilayer film to the laser is very small, the intrinsic
absorption alone is not enough to directly cause the damage of multilayer film. The laser
damage to the multilayer film is mainly completed by extrinsic absorption. Therefore,
the LIDT of multilayer film depends on the purity of the material or the defects and
impurities in the material. The currently recognized defect damage model is the thermal
damage model [29]. The defects are regarded as the source of damage, and part of the laser
penetrates the defect, which will focus on the inside of the defect to produce an electric field
enhancement. The absorption characteristic of the defect itself allows for the laser energy
to be absorbed. Since the boundary between the defect and the primary material of the
film is discontinuous, the heat flow inside the defect is hindered. A temperature gradient
is generated between the defect and the primary material of the film, thereby forming
a thermal stress field. When the temperature field and the stress field reach a specific
critical value, the mechanical instability of the defect itself makes the position of the defect
preferentially undergo thermal damage, thereby causing damage to the film. Therefore,
under the current experimental conditions, the damage mechanism of the femtosecond laser
to the multilayer film is mainly the ionization effect. In contrast, the damage mechanism of
the picosecond laser to the multilayer film is mainly a thermal effect.

4. Conclusions

This paper measured the damage threshold of Ta2O5/SiO2 multilayer film by fem-
tosecond and picosecond lasers. It was found that the LIDTs of multilayer film are 1.7 and
2.0 J·cm−2 under femtosecond and picosecond lasers, respectively. This is due to the fact
that the damage mechanism of the femtosecond laser to the multilayer film is mainly the
ionization effect. In contrast, the damage mechanism of the picosecond laser to the multi-
layer film is mainly a thermal effect. In addition, the damage morphology was observed by
a microscope. It was found that under femtosecond laser irradiation, the damage caused by
its nature develops into an evident delamination with an increase in the laser fluence. The
outline was more transparent and regular. However, under picosecond laser irradiation,
the point damage caused by the defect developed to the separation of the film layer with
an increase in the laser fluence, and the outline changed from blurry to clear.
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