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Abstract: The application of 3D scenes has gradually expanded in recent years. A 3D point cloud is
unreliable when it is acquired because of the performance of the sensor. Therefore, it causes difficulties
in utilization. Point cloud completion can reconstruct and restore sparse and incomplete point clouds
to a more realistic shape. We propose a cyclic global guiding network structure and apply it to point
cloud completion tasks. While learning the local details of the whole cloud, our network structure can
play a guiding role and will not ignore the overall characteristics of the whole cloud. Based on global
guidance, we propose a variety of fitting planes and layered folding attention modules to strengthen
the local effect. We use the relationship between the point and the plane to increase the compatibility
between the network learning and the original sparse point cloud. We use the attention mechanism
of the layer overlay to strengthen the local effect between the encode and decode. Therefore, point
clouds are more accurate. Our experiments indicate the effectiveness of our method on the ShapeNet,
KITTI, and MVP datasets and are superior to other networks.

Keywords: point cloud completion; lidar data; deep learning; point cloud processing

1. Introduction

Point cloud data obtained directly by radar are the most direct, effective, and conve-
nient representation of 3D data. Each point in the point cloud represents a measured value
in the 3D space, including the coordinate value x, y, and depth value z of the ordinary 2D
image [1–3]. It can represent a collection of massive points in the same spatial reference
system. It expresses the spatial distribution and surface features of the target. However,
the sparsity of point clouds has always been a serious problem for radar perception [4,5].
How to make sparse point clouds dense and complete is the focus of research [6,7]. Scene-
based completion is difficult because of the extreme uncertainty of object and position.
Therefore, researchers commence with the individual object and conduct direct completion
studies on the point clouds of targets. In addition, current point cloud completion studies
only focus on sparse and incomplete point clouds without occlusion interference.

Through the research work GR-Net [8], 3D grids are introduced as intermediate
representations to regularize unordered point clouds and to supply the loss of details.
It uses a 3D convolution in the point cloud completion network as a feature extraction
and has achieved good results. This leads to inadequate learning of structure and context.
The regularization of disordered point clouds leads to a deviation of each point [9], which
is low but not negligible in accumulation. It reduces some of the unevenness and, in some
shapes, causes the overall effect to deviate [10]. However, the accuracy of the overall
structure is also vital.

Sometimes, we request high requirements for detail point clouds. However, there are
other times when the overall structure of a point cloud is more vital. For example, for out-
door driving, intelligent vehicles request to judge the object and position of surrounding
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objects according to Lidar. At this point, the tightness and structural accuracy of the point
clouds are vital for safe driving.

To solve this pivotal problem and ensure the accuracy of local details and the global
structure, we implement cyclic global guidance for the whole network structure in this
paper. As we all know, low resolution blurs details. However, at the same time, it costs a
degree of global construction at a relatively low cost. On the one hand, we use a double-
branch structure in the mesh part, which will retain a complete low-resolution global shape,
and reduce the loss of resolution reduction in guiding 3D convolution continuous sampling.
On the other hand, we still use the overall global structure to guide the process of gradual
up-sampling. These features maintain structural features to enhance the effectiveness of
the network.

In addition, Folding-Net [11] proposed a new decoding operation called folding and
showed that it is theoretically universal in point cloud reconstruction. However, the 2D
grid points of the folding operation are randomly generated and are usually independent
of the actual point clouds. Therefore, to reflect the overall features of the point clouds,
we use the multiple fitting planes to generate a 2D grid with global features. To improve
the quality of the reconstructed point clouds effectively, we fold them into point cloud
features between up-sampling and down-sampling. The attention mechanism can select
the focusing position to produce a more discriminative feature representation. We integrate
folding operation and attention module and use grid points to conduct feature analysis of
point cloud information layer by layer to achieve a better point cloud completion effect.
It works better through cyclic guidance of up-sampling and down-sampling.

In addition, 3D convolution and 2D convolution have similarities and universalities.
With the continuous development of convolution compared with other point cloud comple-
tion methods, our network is more promising for the application. Point cloud completion
methods mainly include traditional methods and methods of deep learning [12]. Traditional
methods include geometry-based methods and allocation-based methods. However, they
both require the use of geometric attributes and shapes of objects or complete databases.
Due to the high requirements for original information, it does not apply to realistic scenes
and cannot complete most of the missing point clouds. The geometric order of the points
does not affect its representation of the overall shape in space because the point clouds are
disorderly. Therefore, using a neural network to process point clouds directly faces serious
challenges. Many basic frameworks for point cloud processing networks have emerged in
recent years.

MLP-based: Point-Net [13,14] overcame the influence of the disorder and rotation
of point clouds on neural network input and constructed the backbone framework of
the point cloud processing network based on MLP (multilayer perceptron), which makes
it possible to deal directly with point clouds and avoids the intermediate processing of
original data. Since then, people have begun to study it. Folding-Net [11] proposed a novel
folding-based decoder and deformed a canonical 2D grid onto the underlying 3D object
surface of a point cloud. It can achieve low reconstruction errors, even for objects with
delicate structures. PCN [15] operated on the original point cloud directly without any
structural assumptions or comments on the underlying shapes. Through the design of the
decoder, dense and complete point clouds are generated in the missing area of the input
with varying degrees of incompleteness and noise to complete the realistic construction.
3D point capsule networks [16] designed an auto-encoder to deploy the dynamic routing
scheme and the peculiar 2D latent space. MSN [17] merged coarse-grained prediction with
input point clouds using a novel sampling algorithm. Top-Net [18] generated the structured
point cloud without assuming any specific construction or topology on the underlying
point set. PMP-Net [19] mimicked the behavior of an earthmover and predicted a unique
point moving path for each point according to the constraint of point moving distances
to improve the quality of the predicted complete shape. MLP has a poor understanding
of context. It requests the addition of additional content to the network that enriches
semantic information.
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GAN-based: The two networks of GAN (generator and discriminator) are trained and
compete in minimization maxima algorithms [20]. Achlioptas et al. [21] trained the deep
Auto Encoder (AE) to learn a latent representation first and then train a generative model in
that fixed latent space to distinguish synthesized from realistic samples. RL-GAN-Net [22]
converted noisy partial point clouds into a high-fidelity completed shape by controlling the
GAN. Based on PCN [15], PF-Net [23] estimated the missing point cloud hierarchically by
utilizing a feature-points-based multi-scale generating network and used the reinforcement
learning agent to control GAN to reduce the prediction time of point cloud completion.
Spare-Net [24] regarded the shape feature as a style code that modulates the normalization
layers during folding, which considerably enhances its capability. However, compared
with the other models, GAN exists in two different networks, not in a single end-to-end
network. Sometimes, the training process is erratic.

Graph-based: The point clouds inherently lack topological information. Designing
a recover topology-based graph CNN (convolutional neural networks) can enrich the
representation power of point clouds [25]. DGCNN [26] proposed a new neural network
module, dubbed Edge-Conv, which can be stacked and applied to learn global shape prop-
erties. Edge-Conv constructed a local graph explicitly and learned the embeddings for
the edges. In multi-layer systems, affinity in feature space captures semantic features over
potentially long distances in the original embedding. Song et al. [27] processed the category
nodes through a graph convolutional network to generate the global priors adapted to
point clouds, and used them for point cloud segmentation. LDGCNN [28] eliminated the
transformation network from DGCNN [26] and connected hierarchical features from differ-
ent dynamic graphs to calculate informative edge vectors and avoid vanishing gradient
problems. However, the feature extraction effect of the graph convolution structure may
not be as good as that of convolution, and the learning ability of the point cloud may be
insufficient. It is possible to increase feasibility by adding branching and deep optimization.

3D Conv-based: 3D convolution is developing in various fields related to point clouds.
There will be broader room for progress in the future. 3D convolution can extract point
cloud features after regularization. Point-Cnov [29] proposed a density convolution that
can fully approximate 3D continuous convolution on any set of 3D points. Hua et al. [30]
presented a convolutional neural network for semantic segmentation and object recognition
with 3D point clouds. Lei et al. [31] proposed an octree-guided neural network architecture
and spherical convolutional kernel for machine learning from arbitrary 3D point clouds.
The network architecture capitalizes on the sparse nature of irregular point clouds and
hierarchically coarsens the data representation with space partitioning. GR-Net [8] in-
troduced 3D grids as intermediate representations to regularize unordered point clouds
and convert between point clouds and 3D grids without losing structural information.
Although the method achieves relatively accurate results, the detailed features are still lost
after quantization. Therefore, it is necessary to have a good grasp of the details and overall
features by learning about global and local features circularly.

Transformer-based: With the transformer becoming more widely used in natural
language processing and vision [32], PT [33] and PCT [34] have applied the transformer
to point clouds. It is inherently permutation invariant for processing a sequence of points;
therefore, it is well suited for point cloud learning. By representing the point cloud as a
set of unordered groups of points with position embeddings, PoinTr [35] converted the
point cloud to a sequence of point proxies and adopted a transformer encoder–decoder
architecture for point cloud completion. However, the transformer is costly in construction
and poor in universality. It may be improved through lightweight research of transformers
in the future.

Others: Sun et al. [36] proposed a new representation method for point clouds that
learns a set of quadratic terms based on static and global reference surfaces to describe 3D
shapes. However, it is not applicable to point cloud completion because the point clouds
are incomplete.
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In summary, frameworks for point cloud processing are branching out. However, with
the improvement of 2D information processing, many innovative ideas about convolution
have been put forward. 3D convolution is similar to 2D convolution, and many methods
are applicable. Therefore, we believe that a framework based on 3D convolution has rosy
prospects for development. In general, we designed corresponding modules specifically
to improve the effect of local details and global structure and to strengthen the final
completion effect.

We propose a network with cyclic global guidance for point cloud completion. Our
main contributions to the paper are summarized as follows:

1. We designed the global guided down-sampling and up-sampling constructions.
The complete and dense point clouds are reconstructed by combining overall con-
struction with contextual semantic information.

2. We integrated the traditional fitting plane of point clouds adapted to point cloud
features into the deep learning network, which uses the original features of point
clouds to reduce uncertainty.

3. We combine a folding operation with an attention mechanism to complete the point
cloud by stratification for focusing position creatively.

2. Methods

In this section, we introduce the overall structure of our CGG-Net. As shown in
Figure 1, our network consists of one main route and several sub-routes. We use 3D
convolution as a feature extraction framework, which refers to the idea of GR-Net [11].
The overall shape is an innovatively guided optimization that considers global influence
from various aspects and perspectives.
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Figure 1. Construction of our network. The input point clouds are initially gridding into two scales
with different resolutions. High resolution is the backbone. Low resolution acts on stacked 3D
convolution for global guided sampling. The attention module is layered and folded to increase the
learning effort of the network. At the same time, the multiple fitting planes are obtained from the
input point clouds integrated into the results as a vital branch. We also do global bootstrapping in
up-sampling. Finally, the point clouds are complete by gridding reverse and feature sampling.

From the perspective of the cascade, our circular construction network includes a
global guided down-sampling module, layered folded attention module, multiple fitting
plane module, and global guided up-sampling module. They are interlinked and dis-
tributed in various parts of the network construction to work together cyclically to guide
the learning of the whole in the correct direction. In addition, the modules also work on
the network in parallel. For the basic framework, we carried out global guided sampling
to improve the learning effect of the network on the overall construction in the process of
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convolution of meshed point clouds. At the same time, we always pay attention to global
structural integrity in our network architecture through folding and attention modules
based on overall construction.

2.1. Global Guided Sampling

The global guided sampling module is the backbone framework of our network.
By considering the whole and the details of the point clouds, the network can produce
better results. Zhang et al. [37] designed a feature-expansion module. It can learn local and
global point features via a down-feature operator and an up-feature operator. Furthermore,
we do not handle both the global and the local in one way. We propose integrating global-
based guidance into two samplings. A new global guided branch connects to the main
route. It plays a role in reducing the loss of the overall construction and gathering dispersed
points. After each convolution, the whole will be aggregated through this branch to prevent
the loss of global construction. In the process of convolution, the branch will constantly
supervise and correct the learning direction of convolution and integrate the original point
cloud information to obtain a compact internal representation.

In addition, the original 3D convolution sampling will result in a loss due to the scale
drop. We use the parallel structure of the main and branch in convolution. The global
guided sampling network can not only guarantee the effect of the global structure in the
process of convolution but also reduce the loss of most resolution because of the dense
fusion of the main path and the branch path. As the main network, the guided network
is also multi-resolution, which can be targeted to compensate for the loss of different
resolutions. We still use a global bootstrap to reduce losses once again when upsampling.

The output of the layer ω can be defined as

(Γω) 1
2 θ = Ψ(F(Γω−1)θ , F(Γω−1

ji
)

θ
) (1)

F(·) is the convolution. Γω−1 is the main output of the ω − 1 layer. The global
guide branch Γω−1

ji
∈ <(i = 1, . . . , n) is the lead range of each branch. j is the number

of branches and i is the serial number of the branches. θ is the resolution of the feature.
Ψ(·) is the way of connecting branches. We discovered that connecting worked better
than superposing. Connections can preserve more differences between branches instead of
merging information, which would lose the original features. In addition, the connection
parameter is for the number of channels, not the resolution size.

Hourglass 3D convolution stacked for feature extraction. There is a loss of global
features. We designed an auxiliary global branch to guide sampling at each step. As de-
picted in Figure 2, our network gradually refines and filters shapes through the overall
structure. At the same time, the resolution of our overall construction also changes to
accommodate different stages of sampling. The aircraft point clouds are refined gradually
by cyclic sampling. Step by step, it becomes denser and has less edge noise.

Then, we interpolate the low-resolution features back to the high resolution. The branch-
ing construction is similar to the subsampling mentioned above. Features are extracted
gradually through stacking of 3D convolutions, which is necessary for details.

The output of the layer ω can be defined as

(Γ′ω)2θ = Ψ(F(Γ′ω−1)θ , F(Γ′ω−1
ji

)
θ
) (2)

The construction can fabricate the absence of global features in the sampling process
through a cyclic global guide. The network grasps the overall direction of feature learning.
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2.2. Multiple Fitting Planes

Folding 2D grids into incomplete points has been proven to work [10]. However,
the randomly generated grid loses its connection to its construction. A multiple fitting
plane module is proposed to establish this global relation. Based on the idea of the virtual
point method, VR-NET [38] learns a new virtual point to form a pair of consistent point
clouds. In point cloud completion, we can form corresponding virtual relationships for
each or multiple point clouds. The corresponding relationship is then used as the basic
parameter of point cloud completion to generate features.

Point clouds have disorder and rotation. Most feature representation methods com-
monly used by other data forms are not applicable to point clouds [39]. However, the nor-
mal vector, the distance to the center of gravity point, and the average distance of the
neighbor node parameters are the best choices for the representative features of point cloud
information. Because of this information, point cloud translation, rotation, and noise points
cannot cost a lot of change. The fitting plane is the projection of the 3D point cloud to 2D
and represents the traditional features of the sub-point set. We proposed multiple fitting
planes to integrate the traditional point cloud representation method into a deep learning
network. It can learn the overall construction of the point clouds better.

The fitting plane is precomputed before learning. For a point cloud P = {pi(xi, yi, zi)|i =
1, . . . , N}, the nearest neighbor point of the point pi can be defined as

P′ =
{

pij(xij, yij, zij)
∣∣j = 1, . . . , k

}
(3)

where N is the size of the point cloud, k is the number of neighbor points.
Neighborhood centers Oi can be obtained as

Oi =
1
k

k

∑
j=1

pij (4)

Then, the normal vector of the point can be obtained by solving the covariance matrix
of the point Ti. λ3 is the minimum eigenvalue of the solution.

Ti =


pi1 −Oi
pi2 −Oi
· · ·

pik −Oi


T

pi1 −Oi
pi2 −Oi
· · ·

pik −Oi

 (5)
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Therefore, λ3 is the normal vector in which the point fits into the plane. In the
representation of vectors, the normal vector of the point is obtained after uniformization as

N(λ3) = (a, b, c) (6)

In the representation of a plane, the fitting plane of pi(xi, yi, zi) is calculated as

Ci : a(X− xi) + b(Y− yi) + c(Z− zi) = 0 (7)

Folding-Net [11] used two consecutive three-layer perceptions to wrap a constant 2D
mesh into the shape of an input point cloud. Because the network incorporates mapping
from lower dimensions, it increases the possibility of more points. However, 2D meshes are
always random. The randomness of point clouds for different objects is the same. Therefore,
we propose that the fitting plane be used as a feature to construct the mesh to guide the
folding effect. For different sparse point clouds, the constructed grid is closely related to
itself and irreplaceable, which can improve the folding effect.

The set of fitting planes of each point in the point cloud T = {Ci|i = 1, . . . , N} can
represent the features of the whole point clouds. The planes computed by different sub-
points are discontinuous. The normal vectors are discrete. 2D grids are constructed
by discrete normal vectors according to the quadrants of the coordinate system, with
the normal vectors of the surface making the 2D features correspond to 3D. In this way,
the global features can make the most of guiding the folding.

As shown in Figure 3, we have fully integrated the traditional optimal plane of the
point cloud with the folding method of deep learning. This helps to improve the density and
compactness of the point clouds. Learning is in close contact with the original construction.
It can output better reconstruction point clouds.
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according to quadrants. We receive globally targeted data features and finally map them to the initial
values of a two-dimensional grid for the subsequent step of folding.
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2.3. Layered Folding Attention

We still pay special attention to global construction in the layered folding attention
module. We integrated the attention mechanism into the network in layers. Every layer
must be combined with the last result to ensure the accuracy of the learning direction.

Zhang et al. [40] proposed a network combining multi-scale hierarchical feature fusion
to gradually and adaptively improve network performance in image defogging. The layered
approach can reduce feature redundancy and learn from compact internal representations.
The attention mechanism is widely used in neural network architecture. Its essence is
to assign different attention to the input weights to maximize context and better results.
However, it operates on the features themselves or on residual constructions [41]. We put
forward the idea of adding folding points to the network through attention in Figure 1.
The attention is no longer limited to its feature extraction but becomes a better way to
fusion and obtain more effective information. We designed a layered attention mechanism
and used it for further context fusion of features and enhanced information association
layer by layer.

The outlier noise point of the point cloud is also a problem for the point cloud comple-
tion task. We believe that outlier noise points are caused by insufficient context processing
of the local details of point clouds. Therefore, our layered folding attention module is
used in the intermediate step with feature extraction. It can perform contextual fusion and
processing of features in convolution layer by layer, which can eliminate deviation points
and error points.

As shown in Figure 1, point cloud features are layered first. Then, they are fused layer
by layer in our network, starting with the features of the grid and the top layer and working
down. We integrate the grid into the network rather than fold it directly.

The output Ωn can be regarded as follows:{
Ωn = Ψ(F(G), Ωn−1) n = 1

Ωn = Ψ(Pn−1, F(Ωn−1)) n > 2
(8)

where n is the number of layers, G is the grid to be folded, F(·) is the variable convolution,
P is the slice of the input feature, and Ψ(·) is a connection method of computing.

2.4. Others

Our network references the GR-Net [8] backbone framework. 3D convolution is
applied to feature extraction of the point cloud by gridding and gridding reverse. We obtained
the final point clouds after feature sampling. In this section, we introduce the basic modules
from GR-Net [8].

2.4.1. Gridding and Gridding Reverse

To preserve the spatial layout and further processing, the point cloud pi(xi, yi, zi),
i = 1, . . . , n with n points is represented as a regular 3D grid T with N resolution consisting
of two parts V and W.

T = 〈V, W〉 (9)

where V = {vi}, i = 1, . . . , n represents eight neighbor coordinates vertices in each cell.
W = {wi}, i = 1, . . . , n is the point of the cell.

vi is defined as:

vi ∈
{
(−N

2
,−N

2
,−N

2
), . . . , (

N
2
− 1,

N
2
− 1,

N
2
− 1)

}
(10)

According to GR-Net [8], wi is defined aswi = ∑
p∈N(vi)

ω(vi ,p)
|N(vi)|

|N(vi)| 6= 0

wi = 0 |N(vi)| = 0
(11)
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ω(vi, p) = (1− |xi − x|)(1− |yi − y|)(1− |zi − z|) (12)

where |N(vi)| is the number of neighboring points of vi.
Conversely, a grid inverse operation is required to recover each of the eight neighbor-

hood points Θi, i = 1, . . . , 8 of each cell grid at the end of the network, which is defined as{
pc

i =
∑ wθ

′vθ
∑ wθ

′ ∑ wθ
′ 6= 0

ignore ∑ wθ
′ = 0

, θ ∈ Θi (13)

wθ
′ and vθ still represent the coordinates and the values of the eight vertices.

2.4.2. Feature Sampling

Max-pooling may cause the loss of local context information and affect the recovery
effect of details. Therefore, feature sampling replaces it according to GR-Net [8]. We con-
nected eight neighbor points in the cell grid in series as a feature of this point. Points are
extracted from the coarse point cloud to form a complete point cloud.

2.5. Loss Function

We take the Chamfer Distance (CD) as the loss function [2]. For point clouds S1 and S2,
the CD is defined as

dCD(S1, S2) = ∑
x∈S1

min
y∈S2
‖x− y‖2

2 + ∑
y∈S2

min
x∈S1
‖x− y‖2

2 (14)

CD measures the average distance between each point in a point and the nearest point
in another point clouds [42]. It is also the most extensive way to judge the completion effect.

3. Results and Discussion

We implemented the network using Pytorch and used the Adam optimizer with
β1 = 0.9 and β2 = 0.999 during training. The initial learning rate is set to 10−4 and is
decayed by 0.1 at 100 and 150 epochs. We train the network for 200 epochs with 32 batch
sizes on one GeForce RTX 2080 Ti GPU. It takes about 8 min per epoch on ShapeNet.

We use the CD and the F-Score (FS) to measure the effectiveness of the network [43].
The CD is defined in the loss function section and is more computationally efficient and
widely used. The FS is defined as follows:

FS =
2P(d)R(d)

P(d) + R(d)
(15)

where P is precision. It calculated the percentage of corresponding points in the recon-
structed point clouds within a certain threshold distance from the ground truth value. R is
the recall rate. It calculated the percentage of the ground-truth value corresponding to the
correct point within a certain threshold with the reconstructed point cloud distance.

We use Uniformity from PU-GAN [20] to test the integrity of the point clouds. This
can better show the effect of the global completion we pursue. Uniformity includes global
and local measures. It is defined as follows:

Uni f ormity(P) =
1
N

n

∑
i=1

Uimbalance(Si)Uclutter(Si) (16)

Uimbalance(Si) =
(|Si|−n̂) 2

n̂
(17)

Uclutter(Si) =
1
|Si|

|Si |

∑
j=1

(di,j − d̂)
2

d̂
(18)
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where Si is a subset of point clouds P. It was calculated using the farthest sampling and the
ball query of radius. And n̂ is the expected number of points in Si, di,j is the distance to the
nearest neighbor for the j− th point.

If Si has a uniform distribution, d̂ is defined as

d̂ =

√√√√ 2πP∣∣∣Si

∣∣∣√3
(19)

3.1. Results of Comparative Experiments
3.1.1. ShapeNet

The ShapeNet from PCN [14] includes eight categories, such as aircraft, automobiles,
etc. There are 30,974 models of ground truth extracted from the categories. This makes the
input distribution more similar to the sensor data in the real world. The 16,384 sampling
points of the object were back-projected to 3D through 2.5D depth images to generate
partial point clouds rather than a subset of complete point clouds [44]. The number of
sparse point clouds for each object is not fixed. Most of them are in the range of 500 to 2000.
Through a deep learning network, we complete the number of a point cloud of the object
to 16,384 points and compare them with the ground truth.

A comparison of our network effects is shown in Table 1. The CD of most categories
is significantly lower than that of other networks. The overall CD of our network is
approximately 0.04 less than that of GR-Net [8] (using the same loss function and the same
training parameters). At the same time, our CD results are much better than those of
other networks.

Table 1. The results of the experiment using chamfer distance ×103 with L2 norm on ShapeNet
(lower is better). The bold numbers are the best.

Model F-Net Top-Net MSN GR-Net Spare-Net CGG-Net

Airplane 0.62 0.22 0.25 0.29 0.18 0.27
Cabinet 1.61 0.56 0.97 0.63 0.66 0.59

Car 0.62 0.35 0.45 0.32 0.36 0.31
Chair 1.55 0.63 0.77 0.55 0.62 0.54
Lamp 2.03 0.75 0.93 0.58 0.63 0.38
Sofa 1.54 0.69 1.15 0.69 0.79 0.76
Table 1.53 0.48 0.67 0.48 0.50 0.41

Watercraft 0.91 0.44 0.49 0.31 0.38 0.29
Overall 1.30 0.52 0.71 0.48 0.52 0.44

Our point cloud completion results on ShapeNet [24] are shown in Figure 4. Our CGG-
Net completes the missing shape well and makes it close to the ground truth with less noise.

The time of the network is also vital. It can ensure real-time performance and wide
application. As shown in Table 2, our network has the best CD value. Although Spare-
Net [24] has the best FS value, it uses GAN construction. In addition, although the FS of
our network is only about 0.035 less than Spare-Net [24], the time is almost 100 times better.
Although our network time is only about 0.002s longer than GR-Net [8], the FS improves
by about 0.01. This proves that our network has an advantage in effect and time.

Table 2. Results of comparative experiments on ShapeNet. The bold numbers are the best.

Model GAN CD FS Time

Spare-Net
√

0.52 0.6607 1.055
GR-Net × 0.48 0.6179 0.020

CGG-Net × 0.44 0.6266 0.022
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3.1.2. KITTI

KITTI without ground truth is also from PCN [15]. PCN [15] extracts the point clouds
according to the points in the object surrounding the box of the car, which generates
2483 partial point clouds. Finally, each point cloud is converted to a world coordinate
system [45]. Each car has a smaller number of points, with most having fewer than
500 points. For unity, we still reconstruct it to 16,384 points.

We show the completion effect in Figure 5. The shape of the car is completed nicely
through our network. By training the vehicle model on ShapeNet, the effective network
parameters for point clouds are obtained to reconstruct KITTI. As shown in Table 3, we
use Uniformity to measure the effect of point clouds. Our network is significantly better
at recreating the car. In all the percentages calculated, our vehicle construction as a whole
receives the best completion.

Table 3. The uniformity results of comparative experiments on ShapeNet-car and KITTI (lower is
better). The bold numbers are the best.

Datasets Percentage Atlas-Net PCN F-Net Top-Net MSN GR-Net CGG-Net

ShapeNet-Car

0.6% - - - - - 0.23 0.12
0.8% - - - - - 0.14 0.11
1.0% - - - - - 0.08 0.07
1.2% - - - - - 0.05 0.04

KITTI

0.6% 1.01 5.81 1.30 1.32 0.68 0.27 0.27
0.8% 0.87 7.71 1.26 1.22 0.52 0.20 0.19
1.0% 0.76 9.33 1.16 1.07 0.46 0.15 0.13
1.2% 0.69 10.82 1.06 0.95 0.38 0.12 0.10
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Figure 5. The result of point cloud completion on KITTI. The point clouds are missing at different
angles due to the performance of the lidar and noise. The green realistic world original point clouds
are very sparse and uncertain. The point clouds are missing at different angles due to the angle and
performance of the lidar. The results of GR-Net [11] are shown in blue. The results of the CGG-Net
are in red. As shown, the red car silhouette is more realistic. We can clearly obtain the position of the
wheels with less noise.

3.1.3. MVP

The MVP is a high-quality, multi-view partial point cloud dataset [6]. Besides the
conventional 8 categories in existing datasets on ShapeNet, MVP allows the evaluation
of 8 additional categories. It consists of over 100,000 high-quality incomplete and com-
plete point clouds. The number of sparse point clouds is about 1000 points. Similarly,
we completed 16,384 points for comparison.

Top-Net [18] selection tree-shaped mlp focuses on the overall structure. GR-Net [8]
uses the same 3D convolution structure as our network. Therefore, we chose them for
comparison with our network experiment on MVP to display global performance. Our re-
sults on the MVP using CD × 102 and FS are shown in Table 4. The category of MVP is
similar to ShapeNet. Therefore, we chose the overall comparison results. Our network
is built based on 3D convolution, so we compared it with GR-Net [8] based on the same
foundation. In addition, we chose two other MLP-based networks for the experiment.
CD_t and CD_p are two different CD calculation methods. Even with a little more time,
our network achieved better results.

CD_t = mean(CD1) + mean(CD2) (20)

CD_p = 0.5(mean(
√

CD1) + mean(
√

CD2)) (21)

where CD1 is the chamfering distance from the completion point cloud to the ground
truth. In contrast, CD2 is the chamfering distance from the ground truth to the completion
point cloud.

Table 4. Results of comparative experiments on MVP. The bold numbers are the best.

Model CD_t CD_p FS

MLP tree-based TOP-Net 1.915 0.120 0.299

3D Conv-based
GR-Net 1.871 0.172 0.377

CGG-Net 1.718 0.143 0.398
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3.2. Results of Ablation Experiments
3.2.1. Global Guided Sampling

As shown in Table 5, the CD is about 0.03 lower after global guided sampling. The FS is
about 0.01 higher than before. Overall, more categories receive better results using our module.

Table 5. Ablation experiment of global guided sampling. The bold numbers are the best.

Categories/Model Air-Plane Cabinet Car Chair Lamp Sofa Table Water-Craft Overall

CD
(Lower is better)

None 0.28 0.60 0.33 0.49 0.51 0.98 0.45 0.32 0.50
Add 0.27 0.58 0.35 0.56 0.41 0.84 0.43 0.30 0.47

FS
(Higher is better)

None 0.77 0.51 0.60 0.58 0.69 0.48 0.64 0.69 0.61
Add 0.78 0.51 0.60 0.58 0.69 0.49 0.65 0.70 0.62

It is vital to control the overall shape of the point clouds continuously. As shown
in Figures 6 and 7, the point cloud completion effect is improved significantly through
the global sampling module. The wing and fuselage sections of the aircraft have better
shape completion and structural details, as shown in Figure 6. In Figure 7, global guided
sampling makes the overall surface of the lamp smooth. The shape of the lamp cap was
complete. At the same time, the surface of the lamp post becomes smooth after using the
module because of the reduction of noise.
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Figure 6. Global guided sampling completes the detailed shape of the aircraft. The point clouds of
different colors in the two rows and four columns on the left of the picture are partial, ground truth,
the complete point clouds without any processing, and complete point clouds using our module.
The details of the point clouds are on the right.
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3.2.2. Multiple Fitting Planes

As shown in Table 6, the multiple fitting planes module has a significant impact on
reducing CD. We reduce more than 0.04 in CD after adding the module. The advantages
of the modules are also shown in Figure 8. The point clouds are denser than before with
the use of modules. At the same time, the shape and contour of the point cloud object are
better completed.
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Figure 8. The effects of multiple fitting planes module. In the first line, we use the red curve to draw
the shape of the point clouds after completion. The sofa has a clearer profile and is closer to the
ground truth. In the second line, we used red dots to indicate the points that are not part of the point
cloud shape. Our module effectively reduces outlier noise points. In the last line, we enhanced the
contrast of the framed details.
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Table 6. Ablation experiment of multiple fitting planes. The bold numbers are the best.

Categories CD (Lower Is Better)

None Add
Airplane 0.27 0.29
Cabinet 0.58 0.63

Car 0.35 0.32
Chair 0.56 0.53
Lamp 0.42 0.42
Sofa 0.84 0.65
Table 0.43 0.46

Watercraft 0.30 0.30
Overall 0.47 0.46

3.2.3. Layered Folding Attention

We conduct grouping experiments with different parameters for layered folding
attention modules. The experimental results are shown in Table 7. The best effect can
be obtained using a 2D grid with a length of 32 sides. The CD is more than 0.05 lower
than before. The FS is about 0.02 higher. Figure 9 shows the point cloud completion effect
visually after layered folding.
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Figure 9. The effects using layered folding attention. a, b, and c are three groups of different clouds.
The first line (X1_X) is the point cloud completion result without adding modules, the second line
(X2_X) is the point cloud completion result that adds our attention to layering folding, and the third
line (X3_X) is the ground truth value. (XX_2) is the result of discoloration and contrast stretching
from (XX_1). It is better to display the contrast results. Our module works well with denseness and
restores shape effectively.
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Table 7. Ablation experiment of layered folding attention. The bold numbers are the best.

Categories/Model Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

CD
(Lower is better)

None 0.29 0.63 0.32 0.53 0.42 0.65 0.46 0.30 0.46
16 0.29 0.56 0.35 0.51 0.41 0.78 0.48 0.29 0.46
32 0.27 0.59 0.31 0.54 0.38 0.76 0.41 0.29 0.44
64 0.24 0.55 0.32 0.55 0.39 0.78 0.57 0.30 0.46

FS
(Higher is better)

None 0.78 0.52 0.60 0.59 0.70 0.49 0.65 0.70 0.62
16 0.77 0.51 0.60 0.58 0.69 0.48 0.64 0.69 0.62
32 0.79 0.53 0.61 0.59 0.70 0.50 0.66 0.70 0.64
64 0.78 0.52 0.60 0.58 0.70 0.49 0.65 0.69 0.63

3.2.4. Summary of the Experiment

The results of our progressive ablation experiment are shown in Table 8. Our final
selections are displayed in bold. The weights and times of our network only slightly
increase. However, the CD and FS are gradually better than in the previous step. At the
same time, we found that the size of the grid dot was not the larger the better. For this, we
think that the folded grid needs to maintain a certain kind of fitting and the suitability of
the point cloud object.

Table 8. Ablation experiment of cyclic global guiding network. The bold numbers are the best.

Model CD FS Weights (M) Time (s)

Original 0.50 0.61 306.8 0.019
Original+GGS 0.47 0.62 307.0 0.020

Original+GGS+MFP 0.46 0.62 321.5 0.020
Original+GGS+MFP+LFA-16 0.46 0.62 338.3 0.022

Original+GGS+MFP+LFA-32 0.44 0.64 338.3 0.022
Original+GGS+MFP+LFA-64 0.46 0.63 338.3 0.022

The CD of the test dataset varies with the number of training epochs as shown in
Figure 10. We took a multiple of 25 from 25 to 200 in the experiment. All of our ideas have
had beneficial effects. Our CGG-Net training curve is gentler and more difficult to overfit.
The expression ability is better than that of others.
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4. Conclusions

In this paper, we propose a new CGG-Net for sparse and partial point cloud completion
that pays more attention to the control of the whole construction completion. In network
construction, the whole construction of the point clouds is effectively taken into account
through cyclic global guidance. In addition, we propose a folding method of multiple
fitting planes to integrate traditional feature representations into deep learning. Finally,
the point cloud is carefully completed step-by-step through layered folding attention. We
proved the effectiveness of the network in the experiment. The superiority of the network
is shown by comparison with other methods on ShapeNet, KITTI, and MVP.
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