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 Hyperspectral image classification has a low accuracy in the face of a small training set. To 

solve the problem, this paper proposes a combined spatial-spectral hyperspectral image 

classification approach based on adaptive guided filtering. From coarse to fine classification, 

the local binary pattern (LBP) histogram features were improved, the spatial contrast 

description was enhanced, and enhanced spatial-spectral features were prepared through 

Gabor transform of different scales and directions, combined with super pixel blocks. Then, 

the pre-classification was completed by the support vector machine (SVM) classifier. To 

reduce noise interference, the pre-classification results were filtered again by a guided filter 

based on the adaptive regularization factor. To verify its effectiveness, the proposed 

approach was compared with the state-of-the-arts approaches through repeated experiments. 

The comparison shows that our approach achieved a high classification accuracy, while 

suppressing noise interference. This research provides a new tool for hyperspectral image 

classification with a small training set.  

 

Keywords: 

combined spatial-spectral hyperspectral 

image classification, enhanced spatial-

spectral information, improved description 

of local binary pattern (LBP), adaptive 

guided filtering 

 

 

 
1. INTRODUCTION 

 

The hyperspectral remote sensing images contain hundreds 

of continuous bands, which provide a huge amount of spectral 

and spatial information. Despite this advantage, there are 

several defects with such images: the adjacent continuous 

bands are often redundant and overlapped; the massive amount 

of data makes it difficult to store or transmit on aircrafts or 

satellites; the images are too complex to be processed easily. 

Judging by the utilization of spatial information, the 

classification algorithms of hyperspectral remote sensing 

images can be divided into two categories: spectral 

information-based algorithms, and spatial-spectral 

information-based algorithms. The Gaussian maximum 

likelihood classifier is a classic spectral information-based 

algorithm for hyperspectral remote sensing images. However, 

the classifier is rather slow, due to the high dimensions of the 

spectrum in such images. To solve the problem, Vapnik et al. 

[1] proposed the support vector machine (SVM), which works 

well on small samples. The SVM has been widely applied to 

classify hyperspectral remote sensing images. 

The automatic extended attribute profiles (AEAP) [2] is an 

algorithm based on automatic extended attributes. Low-rank 

representations [3] and wavelet filters [4] are typical methods 

based on spatial features. The Markov model [5] is the first to 

adopt spatial feature extraction. By the Markov model, the 

spatial and contextual information are integrated into the 

classification framework, and successfully applied to classify 

hyperspectral images. Pesaresi and Benediktsson [6] 

introduced the opening and closing series of the reconstruction 

operator, and utilized the predefined and scale increasing 

structural element (SE) to construct the morphological profile 

(MP) of the original image. Myint et al. analyzed the texture 

of remote sensing images through wavelet transform, and 

demonstrated the effectiveness of the method [7]. 

The traditional remote sensing image classification 

algorithms only process the spatial information, failing to 

consider the spectral features or fully utilize the spectral 

information of the images. There is ample room to improve the 

performance of these algorithms. In fact, the traditional 

algorithms cannot be applied to process hyperspectral remote 

sensing images. Otherwise, different classes of objects may be 

attributed to the same spectrum, or the same class of objects 

may be assigned to different spectra; some noises would be 

generated during the processing; small pixels are often 

classified incorrectly. 

With the increase of spatial resolution, the hyperspectral 

images will witness a growth in within-class dispersion, and a 

decline in between-class dispersion, making the spectral 

information less discriminable. Therefore, many scholars 

started to mien the spatial information of hyperspectral images. 

Through image decomposition, Li et al. [8] divided the 

original image into a base layer containing largescale intensity 

change, and a detail layer that captures small details, and 

proposed a weighted average method based on guided filtering 

to fuse the two layers, using spatial consistency. Kang et al. [9] 

put forward an edge-preserving filter (EPF) for combined 

spatial-spectral hue-saturation-intensity (HSI) classification. 

The EPF classifies the original image with the SVM, sets up 

the initial probability map, and corrects the map with bilateral 

or guided filter, thereby enhancing the final classification 

accuracy. Liu et al. [10] presented an unsupervised 

dimensionality reduction method called super-pixelwise 

collaborative-representation graph embedding (SPCRGE). 

Kang et al. [11] developed the image fusion and recursive filter 

(IFRF) for HSI feature extraction. The IFRF splits the HSI 
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samples into multiple subsets, according to the adjacent 

hyperspectral bands, fuses each subset by the average method, 

extracts the features from each fused subset with the recursive 

filter, and finally adopts the SVM for classification. To 

improve classification accuracy, Li et al. [12] designed a 

reduced dimensional convolutional neural network (CNN) 

with a two-dimensional (2D) Gabor filter based on local 

similarity projection (LSP). Bhatti et al. [13] introduced a 

novel algorithm to classify hyperspectral images: the SVM 

with shape-adaptive reconstruction and smoothed total 

variation (SaR-SVM-STV). 

In recent years, deep learning has performed excellently on 

hyperspectral image classification. Compared with traditional 

supervised methods, deep learning can automatically learn 

data features, and classify the original data. As a result, deep 

learning is applicable to various tasks and scenes. The CNN, a 

typical model of deep learning, piques the interests of many 

hyperspectral image researchers, owing to its powerful ability 

of feature extraction [14-18]. For example, Haut et al. 

proposed a data enhancement strategy with random occlusions, 

and devised a 2D CNN for hyperspectral image classification 

based on spatial features [19]. 

Facing the lack of labeled HSI samples, many researchers 

resort to graph-based methods to realize semi-supervised 

classification of hyperspectral images [20]. Hong et al. [21] 

integrated the CNN and graph convolutional network (GCN) 

through addition, element-by-element multiplication, and 

serial connection, and tested the performance gain of the 

integrated approach. Ma et al. [22] proposed the multiscale 

random convolution broad learning system (MRC-BLS). With 

the spatial feature learning of adaptive weighted mean filter as 

the convolutional kernel, the MRC-BLS extracts local spatial 

features on the first layer, imports the multiscale feature maps 

obtained by random kernels of various sizes to the width 

learning classifier, and thus achieves a high performance in 

classifying HSI images. Zhou et al. [23] proposed a 

collaborative encoding model that perceives spatial peak 

information. 

To achieve a high classification accuracy, most deep 

learning methods need lots of labeled samples. The numerous 

layers and multiple parameters add to the time and labor costs 

of network training, and require high hardware configurations. 

Despite their high accuracy, deep networks alone cannot 

classify hyperspectral images rapidly and cost effectively. 

Hyperspectral image classification has a low accuracy in the 

face of a small training set. To solve the problem, this paper 

proposes a combined spatial-spectral hyperspectral image 

classification approach based on adaptive guided filtering. 

From coarse to fine classification, a combined spatial-spectral 

classification framework was established through the fusion of 

multiple features. The main contributions are as follows: 

(1) The local binary pattern (LBP) descriptor was improved, 

the spatial information description was enhanced, and the 

spatial-spectral information was reinforced, thus increasing 

the classification accuracy. A guided filter was developed 

based on the adaptive regularization factor, and applied to 

filter the initial classification results of the SVM again. The 

secondary filtering improves classification accuracy, and 

reduces noise interference. 

(2) The proposed method, which combines Gabor transform 

[24] and the spatial information of super pixel blocks, can 

achieve a high classification accuracy on small samples. 

The local binary pattern (LBP) histogram features were 

improved, the spatial contrast description was enhanced, and 

enhanced spatial-spectral features were prepared through 

Gabor transform of different scales and directions, combined 

with super pixel blocks. Then, the pre-classification was 

completed by the support vector machine (SVM) classifier. To 

reduce noise interference, the pre-classification results were 

filtered again by a guided filter based on the adaptive 

regularization factor. To verify its effectiveness, the proposed 

approach was compared with the state-of-the-arts approaches 

through repeated experiments. The comparison shows that our 

approach achieved a high classification accuracy, while 

suppressing noise interference. This research provides a new 

tool for hyperspectral image classification with a small 

training set. 

 

 

2. METHODOLOGY 

 

This paper proposes a coarse-to-fine classification method, 

which contains four steps: dimensionality reduction through 

principal component analysis (PCA) [25]; preprocessing of 

basic spatial-spectral data; initial classification by the SVM; 

secondary optimization of classification results by adaptive 

guided filter. Figure 1 shows the overall flow of our approach. 

 

 
 

Figure 1. Flow chart of spatial-spectral fusion hyperspectral 

classification based on guided filtering 

 

2.1 PCA dimensionality reduction  

 

Table 1. Principal components of hyperspectral images 

 

Principal component 
Indian 

Pines 

University of 

Pavia 

1 68.97% 56.78% 

2 24.19% 35.06% 

3 1.85% 4.49% 

4 0.87% 0.35% 

5 0.74% 0.26% 

6 0.57% 0.23% 

7 0.45% 0.17% 

8 0.41% 0.12% 

9 0.36% 0.10% 

10 0.34% 0.08% 

Sum of top 10 principal components 98.75% 97.64% 

 

Owing to the sheer volume of hyperspectral images, it is 

very slow to directly classify these images. The classification 

accuracy may be suppressed by the noises that appear during 

the classification process. To improve efficiency and reduce 

noise interference, this paper processes the principal 

components of the spectrum through the PCA. Specifically, 

the PCA was adopted to extract the principal components of 

two common datasets: Indian Pines and University of Pavia. 
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The statistics are shown in Table 1. It can be seen that most 

scene information can be preserved by extracting the spatial 

features of the top three principal components of the two 

scenes. 

 

2.2 Spatial-spectral data processing 

 

Our spatial-spectral data processing method combines 

spatial information with spectral information. There are three 

major steps of our method: Firstly, the Gabor filter is adopted 

to extract the texture information of images of different scales 

and directions. Next, the LBP histogram operator is improved 

to illustrate the spatial contrast of images. Finally, each pixel 

is subjected to super pixel operation, and the image 

information is better depicted with three different types of 

features. 

The Gabor filter can effectively extract the spatial features 

of ground objects, and enhance the classification accuracy of 

combined spatial-spectral information. In essence, the Gabor 

filter iteratively substitutes the pixel values after convolution. 

The filtering effect depends on the setting of the kernel 

function. The Gabor filter can be expressed as: 

 

2 2 2

2

( , ; , , , , )

exp *exp 2
2

g x y

x y x
i

    


 


  +   
= − +    

   

  (1) 

 

where, x and y are the coordinates of a pixel; 𝜆  is the 

wavelength, which is generally measured by the number of 

pixels, and no longer than 1/5 of the input image size; 𝜃=0 −
2𝜋 is the stripe direction; 𝜓=0 is the phase shift; 𝛾=0.5 is the 

spatial aspect ratio; 𝜎 is the Gaussian factor standard deviation 

of the Gabor function (its value is related to the previous 

parameters). The parameter values of the Gabor kernel 

function need to be adjusted, according to the classification 

needs. Different parameters lead to different spatial 

information. 

Apart from that, this paper proposes an adaptive LBP 

histogram feature descriptor for hyperspectral data. The LBP 

operator has been widely applied to texture feature analysis 

[26]. The thresholding of the LBP feature of the central pixel 

is implemented by comparing the gray value of each pixel with 

that of any other adjacent pixel. Then, the central pixel is 

encoded with a certain weight. The LBP operation can be 

expressed as:  

 
1

k,r p

0

LBP ( ) ( )2
k

p

c c

p

x s x x
−

=

= −   (2) 

 

where, xp and xc are the gray values of the neighborhood and 

the central pixel, respectively; k is the number of pixels in the 

neighborhood with xc as the center, and r as the radius. 

The original LBP only considers the relationship between 

the gray values of the central pixel and the adjacent pixels, 

without taking account of the contrast relationship. The 

original LBP is illustrated in Figure 2. In Figure 2(a), the 

central pixel has a very small contrast with the adjacent pixels. 

In Figure 2(a), that contrast is very high. The two pixel 

distributions differ significantly in contrast. But their original 

LBP values are the same. This is clearly unfavorable for image 

classification. 

51 51 51

30 50 51

49 46 48

 
(a) LBP: 00001111 

99 99 99

1 50 99

1 1 1

 
(b) LBP: 00001111 

 

Figure 2. Original LBP 

 

In response to the above problem, this paper proposes the 

modified LBP operator (MLBP), which automatically adapts 

to the contrast changes. The local contrast mapping between 

xp and xc is computed to find the maximum (maxC) and 

minimum (minC) of the contrast mapping. Then, the value 

range of maxC and minC is divided into L levels. Then, each 

contrast corresponds to a level. The MLBP operation can be 

expressed as: 

 

( ) min

(max min ) /

p c

p

g g C
l

C C L

 − −
 =

−  

  (3) 

 

where, maxC and minC are the maximum and minimum 

contrasts between the central pixel and its neighborhood, 

respectively; L is the number of layers (if the result is greater 

than L, then 𝑙𝑝 = 𝐿 ); 𝑔𝑝  and 𝑔𝑐  are the gray values of the 

neighborhood and the central pixel, respectively. 

Accordingly, the binary descriptor 𝑆𝑝  of the contrast 

adaptive MLBP can be expressed as:  

 

1,

0,

p

p

p

l L
S

l i

=
= 


  (4) 

 

To obtain rotation invariance, the binary descriptor is 

illustrated with the number of switches between zero and one. 

Finally, the rotation-invariant MLBP can be expressed as: 

 
1

0,

,  if ( ( ) 2)

1

P

pi
pP R

S U MLBP
MLBP

P

−

=


=

= 
 +


  (5) 

 

where, 𝑈(𝑀LBP) is the number of switches between zero and 

one in the n-digit binary data.  

Figure 3 gives an example of the MLBP description process, 

where zero and one are switched for four times. 

747



 
 

Figure 3. An example of MLBP description: (a) Original image, (b) Contrast diagram, (c) Contrast level calculation diagram, (d) 

Initial binary description 00000101 

 

  
(a) The first principal component (b) MLBP coding of the Indian Pines dataset 

 

Figure 4. The example of MBLP coding 

 

 
 

Figure 5. The example of MBLP feature extraction 

 

During MLBP description, a pixel can be selected as the 

center of a square or circle, and the value of another pixel in 

that area can be estimated through bilinear interpolation. By 

our approach, the binary descriptions of Figures 3(a) and 3(b) 

are 11101111 and 00001111, respectively, and the 

corresponding rotation-invariant MLBPs are 1 and 2, 

respectively. Obviously, the MLBP varies with the contrast 

distributions. 

Figure 4 presents the MLBP spatial features of Indian Pines. 

The first principal component obtained by PCA is given in 

Figure 4(a), and the texture description of the entire image 

obtained by the MLBP is displayed in Figure 4(b). 

Taking the MLBP histogram statistics as a spatial feature, 

the MLBP code of each pixel is solved by formula (5). Then, 

the MLBP histogram of the pixels is obtained through 

histogram statistics. After that, the frequency of occurrence of 

each MLBP is treated as a spatial feature. Figure 5 explains the 

MLBP feature extraction. 

To utilize neighborhood information, each pixel in the 

original image is subjected to patch operation. The 5×5 area 

centering on the pixel is composed into a super pixel block. 

These super pixel blocks form a new dataset. In the new 

dataset, each sample contains the neighborhood information of 

the original sample, thereby enhancing the spectral features. 

The specific algorithm is as follows: 

The original dataset is assumed as: 

 

(x, y), x nR   (6) 

 

The original spectral data go through PCA feature 

extraction, with x being the dimensionality of image spectrum. 

With n =200, and k =22, the dimensionally reduced sample 

data can be expressed as: 

 

( )1 1, , kx y x R   (7) 

 

where, x1 is the spectral dimensionality of the dimensionally 

reduced image. Each pixel goes through the patch operation to 

obtain a super pixel block. If the blocks exceed the image 

boundaries, the extra part is filled with the data of the current 

pixels. In this way, a new dataset is obtained with super pixel 

blocks as samples. The patch size is set to 5. In the new dataset, 

each sample corresponds to:  
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( ) s spatch ize patch ize k

2 2, ,x y x R
 

   (8) 

 

Then, 𝑥2 can be expended as a one-dimensional data along 

the third dimension:  

 

( ) ( )size size patch  patch 

3 3, ,
k

x y x R
 

   (9) 

 

With k1=22, the new dataset can be obtained by enhancing 

the extracted features:  

 

( ) 1

4 4, y ,
k

x x R   (10) 

 

2.3 Initial classification probability map 

 

Our coarse-to-fine classification approach firstly extracts 

the LBP histogram features, and combines them with three 

types of spatial-spectral features, including super pixel block, 

and Gabor transforms of different scales and directions. Then, 

the initial classification is completed with the SVM classifier. 

The penalty factor and Gaussian kernel parameter are 

determined through cross validation. 

The first classification result of the SVM is an n-

dimensional binary image, where n is the number of classes; 

p=(p1,p2,…,pn); pi∈[0,1]. For any pixel i, the pi value can be 

calculated by:  

 

1,

0,

i

i

i

c n
p

c n

=
= 

=
  (11) 

 

Figure 6 shows the distribution of the initial binary 

classification results for the University of Pavia. 

 

2.4 Optimization of probability map 

 

Without considering the spatial correlation between the 

scene and objects, general classification methods could lose 

some image information, and have salt and pepper noises in 

the classification results. To overcome the defect, this paper 

carries out fine classification of the initial probability map, 

using a guided filter based on the adaptive regularization factor. 

The fine classification is guided by a pseudo-color image. 

Improvement measures are implemented to solve the 

insufficient or excessive smoothing of some areas in the 

original guided filter. 

Firstly, the gradient map of the principal components is 

obtained, the weight factor Ti is calculated, and ε is replaced 

with Tiε to obtain the guided filter based on the adaptive 

regularization factor. The procedure from gradient calculation 

to factor modification is detailed as follows. 

 

 
 

Figure 6. The initial probability distribution map of 

university 

 
 

Figure 7. The example of gradient calculation 

 

The gradient information F of the guide Figure 7 can be 

calculated by:  

 

2 2| | | |X X

x yF g g=  +    (12) 

 

where, ∇gxX=Xhx; ∇gxX=Xhy. Note that  is the 

convolutional operation; hx and hy are the convolutional kernel: 

 

1 2 1 1 0 1

0 0 0 2 0 2

1 2 1 1 0 1

x yh h

− − − −   
   

= = −
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  (13) 

 

In the guide image, the weight factor Ti of each pixel i can 

be calculated by:  

 
2

1 1

2

1 1

2

2 1

2
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( )
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( )

( )

i

i

i
T

i

i
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
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  (14) 

 

where, δ2
θ1(i) and δ2

θ2(i) are the variances of areas A1 and A2, 

respectively; μ2θ1(i) and μ2
θ2(i) are the means of areas A1 and 

A2, respectively. Both A1 and A2 are centered on i. The size 

of A1 is 3×3, and that of A2 is shadowed. Both α1 and β1 are 

kept small (10-9) to avoid instable calculation. The ε value is 

set to 0.04. 

Through the above improvements, if a pixel falls on the 

contour, Ti is relatively small, which prevents excessive 

smoothing; otherwise, Ti is relatively large, which prevents 

insufficient smoothing. The regularization term Tiε replaces 

the original ε to avoid insufficient or excessive smoothing at 

the same time. 

The guide image can be decomposed to obtain the first 

principal component map through the PCA. This map is a gray 

image. In this paper, the spatial information of each 

hyperspectral image is preserved as much as possible, by 

building pseudo-color images for the top three principal 

components. 

As shown in Figure 8, the guided filter has two clear 

advantages. Comparing Figures 8(a) and 8(c), it can be seen 

that the guided filter can effectively smoothen the noise-like 

spots in the original image. After being optimized by the 

guided filter, the target contour in the probability map is more 

in line with the actual contour, which improves classification 

accuracy. Next, the initial probability map obtained by the 

original guided filter (Figure 8(b)) is compared with the 

optimized probability map obtained by the adaptive guided 

filter (Figure 8(c)). From the local images, it can be learned 

that our guided filter can prevent excessive smoothing, and 

produce highly clear contour information. 
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(a) Initial binary classification probability map 

 
(b) Probabilistic graph of original guided filtering 

optimization 

 
(c) Probabilistic diagram after optimization of adaptive 

guided filtering 

 

Figure 8. Diagram optimization based on adaptive guided 

filter probability 

 

2.5 Post processing 

 

After optimizing the probability map, the fine classification 

results can be obtained by:  

 

,c argmaxn i np =   (15) 

 

where, pi,n is the probability map after filtering. 

 

 

3. EXPERIMENTS AND RESULT ANALYSIS 

 

This section firstly analyzes the influence of parameters on 

classification results, and determines the optimal parameter 

combination. Then, the effects of different spatial features on 

spatial-spectral image classification were investigated, to 

verify the influence of extracted spatial features over 

classification accuracy. Afterwards, our approach was proved 

effective in contrast to other classic algorithms. The proposed 

combined spatial-spectral classification algorithm, which is 

based on guided filtering, was experimentally verified on two 

datasets, namely, University of Pavia, and Indian Pines. The 

classification accuracies of our approach and the state-of-the-

arts algorithms were compared through subjective judgement 

and index evaluation.  

3.1 Parameter analysis 

 

The classification accuracy of our approach was tested with 

different parameters. The main parameter is the window size 

2r+1 of the adaptive guided filter. The r value changes from 1 

to 13. From the hyperspectral image classification dataset, 

10% of the pixels were taken as training samples with class 

labels. Under different parameter settings, overall accuracy 

(OA) was adopted to evaluate the classification accuracy. 

Figure 9 shows the influence of filtering radius over 

classification accuracy, with pseudo-color images as the guide 

image. It can be seen that, for Indian Pines, the classification 

accuracy peaked at r=5, and no significantly difference in 

classification accuracy existed between r=4 and r=5; for 

University of Pavia, the classification accuracy was highly 

sensitive to the r value, peaking at r=4. Through overall 

consideration, r=4 was adopted to ensure the high 

classification accuracy on both datasets.  

Without changing the other parameters, different Gabor 

transform parameters were configured, and the classification 

accuracy was measured at each parameter combination. As 

shown in Table 2, the highest accuracy was achieved when θ 

and φ have four different values (Group 1), followed by when 

θ has four different values and φ has two direction values 

(Group 3). There was no marked accuracy difference between 

Groups 1 and 3. Considering algorithm efficiency, the 

parameters of Group 3 were selected to extract spatial features 

of different directions and scales through Gabor transform. 

In addition, the adaptive LBP neighborhood was set to 3×3, 

and the number of gray levels L for the neighborhood of the 

central pixel was set to 4. The radial basis function (RBF) was 

selected as the kernel function of the SVM binary classifier: 

𝐾(𝑥, 𝑥 ′) = 𝑒𝑥𝑝 (−‖𝑥 − 𝑥 ′‖
2
/𝜎2) , 𝜎 > 0. There are two key 

parameters of the RBF: the penalty factor c, and parameter σ. 

Through cross validation, c and σ were determined as 1 and 

0.7, respectively. 

 

 
 

Figure 9. The relationship between OA and different 

dimensions the radius of guided filter 
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Table 2. The influence of Gabor transform parameters on classification accuracy 

 

Group 
Gabor transform parameters OA 

Direction θ Scale φ Indian Pines University of Pavia 

1 [0, 
𝜋

4
, 
𝜋

2
, 
3𝜋

4
] [0, 

𝜋

4
, 
𝜋

2
, 
3𝜋

4
] 98.24 99.02 

2 [
𝜋

4
, 
𝜋

2
] [0, 

𝜋

4
, 
𝜋

2
, 
3𝜋

4
]  96.89 97.64 

3 [0, 
𝜋

4
, 
𝜋

2
, 
3𝜋

4
] [

𝜋

4
, 
𝜋

2
] 97.98 98.87 

4 [
𝜋

4
, 
𝜋

2
] [

𝜋

4
, 
𝜋

2
] 96.12 96.89 

 

3.2 Comparative analysis of different features 
 

Four contrastive experiments were carried out with different 

spatial features: 

(1) PCA 

Three principal components were obtained through the PCA, 

and directly classified by the SVM. 

(2) PCA_AF 

The features extracted by the PCA were combined with 

adaptive filtering (AF), and classified by the SVM. 

(3) PCA_SF 

The PCA results, the adaptive LBP histogram features, the 

Gabor transform features, and the super pixel blocks were 

composed into a multi-dimensional feature. 

(4) PCA_AFSF 

By our adaptive filter, the multi-dimensional feature was 

coarsely classified to obtain the initial probability map, and 

then finely classified to derive the final results. 

Figure 10 compares the experimental results on Indian Pines.  

The classification results show that the salt and pepper 

noises were obviously suppressed by the secondary classified 

using the adaptive guided filter. As shown in Table 3, the worst 

classification accuracy was achieved with PCA spectral 

features alone, where the OA and Kappa coefficient were 

66.53 and 74.54, respectively. The classification accuracy was 

partly enhanced by the PCA_AF, which is based on spatial 

features and guided filtering. Compared with these two groups, 

PCA_SF and PCA_AFSF enhanced the overall classification 

accuracy. In particular, PCA_AFSF increased the 

classification accuracy of ground objects like Soybeans-min 

till and Soybeans-clean by nearly 4-5%. Hence, the proposed 

spatial features are very effective and reasonable. 

To further analyze the performance of our approach with 

different features, a contrastive experiment was conducted on 

the Salinas dataset, using the same parameter settings as above. 

According to the experimental results (Figure 11), PCA_SF 

and PCA_AFSF far exceeded PCA and PCA_AF in 

classification accuracy, indicating that spatial information can 

significantly enhance the classification accuracy. The best 

classification effect was realized by PCA_AFSF. It can be 

seen from Table 4 that, the OA and Kappa coefficient of 

PCA_AFSF were 99.40 and 99.20, respectively. Therefore, 

the secondary classification with the guided filter can suppress 

noise interference, and improve classification accuracy. 

 

Table 3. The precision statistical of Indian Pines scene 
 

Classification 

Method 

PCA PCA_AF PCA_SF 
PCA_ 

AFSF 

Alfalfa 28.47 18.31 99.37 95.86 

Corn-notill 48.52 47.21 93.58 95.67 

Corn-mintill 73.00 76.95 94.34 99.82 

Corn-mintill 35.05 43.37 68.91 94.12 

Grass-pasture 30.42 52.82 98.58 99.56 

Grass-trees 96.21 99.33 98.38 99.96 

Grass-pasture-mowed 58.10 64.60 99.76 99.56 

Hay-windrowed 98.06 99.14 99.08 97.05 

Oats 0.64 0.60 99.14 98.74 

Soybean-notill 81.57 86.57 85.96 99.66 

Soybean-mintill 60.17 64.17 94.48 97.93 

Soybean-clean 23.42 27.15 90.64 95.61 

Wheat 98.58 98.06 99.09 99.13 

Woods 99.33 98.89 98.85 99.21 

Buildings-Grass-Trees-

Drives 
31.69 36.43 85.88 99.99 

Stone-Steel-Tower 96.70 99.63 96.94 97.79 

OA 66.53 70.00 95.96 97.98 

Kappa 74.54 67.32 94.88 97.91 

 

 
 

Figure 10. The results of Indian Pines scene classification by different methods 
 

 
 

Figure 11. The results of University of Pavia scene classification by different methods 
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Table 4. The precision statistical of University of Pavia 

scene 

 

Classification 
Method 

PCA PCA_AF PCA PCA_AFSF 

Alfalfa 70.88 98.06 97.96 98.38 

Corn-notill 73.34 99.43 99.62 99.73 

Corn-mintill 74.78 99.50 99.56 99.68 

Corn-mintill 88.45 99.33 99.36 99.66 

Grass-pasture  69.22 99.90 99.92 100.00 

Grass-trees 91.94 99.56 99.73 99.89 

Grass-pasture-

mowed 
65.03 99.95 99.81 100.00 

Hay-windrowed 97.14 99.96 99.99 100.00 

Oats 81.17 99.93 99.97 100.00 

Soybean-notill 77.04 99.35 99.40 99.74 

Soybean-mintill 86.03 99.71 99.77 100.00 

Soybean-clean  74.14 96.44 96.43 96.76 

Wheat 98.83 97.41 97.30 97.74 

Woods 94.75 99.80 99.81 100.00 

Buildings-Grass-

Trees-Drives 
80.69 99.99 99.91 100.00 

Stone-Steel-

Towers 
76.61 95.91 95.77 96.13 

OA 82.85 99.32 99.34 99.40 

Kappa 80.51 98.76 98.89 99.20 

 

3.3 Contrastive analysis of different algorithms 

 

To demonstrate its performance, our approach was 

compared with five state-of-the-arts combined spatial-spectral 

image classification algorithms, namely, 2D CNN, AEAP, 

MRC-BLS, GPWV [27], and low-rank and sparse matrix 

decomposition (LRaSMD) [28]. 

(1) Comparison on Indian Pines (Figure 12) 

As shown in Table 5, 2D CNN and AEAP failed to achieve 

the classification accuracy of 90%, and faced clearly wrong 

classifications. On the contrary, MRC-BLS classified 90% of 

the targets accurately. GPWV and LRaSMD achieved 100% 

classification accuracy on alfalfa, and oats. Overall, our 

algorithm achieved the best classification accuracy on most 

targets, and its OA and Kappa coefficient were about 97%. It 

can be seen that our approach not only improves the 

classification accuracy, but also effectively removes noises. 

(2) Comparison on University of Pavia (Figure 13) 

As shown in Table 6, the classification accuracies of all six 

approaches were above 90%. The last four methods had much 

higher Kappa coefficient and OA than the first two methods. 

The indices of MRC-BLS and PCA_AFSF were greater than 

those of 2D CNN and AEAP, indicating that the fusion of 

spatial information can improve the classification accuracy of 

ground objects more effectively than pixel-by-pixel 

classification. In addition, GPWV and LRaSMD classified all 

painted metal sheets accurately, leading our algorithm by 

0.48% in classification accuracy. However, our algorithm led 

the other methods in overall OA and Kappa coefficients 

(>98%). 

 

 

 
 

Figure 12. The results of Indian Pines scene classification by 

different methods 

 

 
 

Figure 13. The results of University of Pavia scene 

classification by different methods 

 

Table 5. The precision statistical of Indian Pines scene 
 

Classification 2D CNN 
Method 

AEAP MRC-BLS GPWV LRaSMD PCA_AFSF 

Alfalfa 94.15 99.99 89.97 100 100 95.86 

Corn-notill 88.36 81.95 88.54 94.6 85.95 95.67 

Corn-mintill 82.15 77.55 89.96 94.6 94.13 99.82 

Corn-mintill 79.95 63.74 99.29 74.4 100 94.12 

Grass-pasture  83.93 84.90 98.34 97.8 97.57 99.16 

Grass-trees 95.48 95.21 99.59 99.5 99.7 99.96 

Grass-pasture-mowed 36.74 60.75 99.04 100 92.86 99.56 

Hay-windrowed 98.62 99.14 99.98 100 100 97.05 

Oats 76.00 55.40 99.49 100 100 98.74 

Soybean-notill 82.80 79.84 87.48 88.1 96.3 99.46 

Soybean-mintill 87.83 92.56 83.95 98.3 94.67 97.93 

Soybean-clean 85.34 84.40 98.01 94.7 98.66 95.61 

Wheat 99.02 98.10 99.69 100 100 99.13 

Woods 98.24 97.88 91.09 99.5 98.64 99.21 

Buildings-Grass-Trees-Drives 97.17 75.34 98.51 87.5 98.11 99.39 

tone-Steel-Towers 97.82 90.37 99.68 90.4 100 97.79 

OA 89.16 86.85 91.13 95.41 97.29 97.98 

Kappa 87.24 85.67 89.31 94.96 95.32 97.91 
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Table 6. The precision statistical of University of Pavia scene 

 

Classification 2D CNN 
Method 

AEAP MRC-BLS GPWV LRaSMD PCA_AFSF 

Asphalt 96.03 93.37 97.30 90.84 94.8 99.21 

Meadows 97.38 97.17 98.52 91.90 99.00 99.27 

ravel 76.12 87.25 97.62 94.53 90.1 98.68 

Trees 86.73 97.91 97.85 96.97 98.81 96.83 

Painted metal sheets 97.22 99.43 98.74 100 100 99.52 

Bare Soil 77.77 99.30 94.49 91.24 98.50 99.33 

Bitumen 66.22 97.16 96.99 100 98.90 99.32 

Self-Blocking Bricks 85.72 93.64 93.51 96.12 94.71 97.80 

Shadows 99.41 99.34 97.76 100 99.20 93.94 

OA 90.61 93.21 97.22 95.28 97.54 98.87 

Kappa 87.19 92.97 96.79 95.60 97.12 98.83 

 

3.4 Contrastive analysis of sample size 

 

Our approach intends to achieve ideal classification results 

on a small training set. Therefore, it is necessary to analyze the 

influence of sample size on algorithm performance. On Indian 

Pines, the approaches with and without secondary 

classification were tested. Both approaches are hyperspectral 

image classification methods that combine spatial information 

with spectral information. The only difference lies in whether 

secondary filtering is implemented using the guided filter. 

Figure 14 shows the classification accuracy of each approach, 

as the proportion of training samples expands from 1% to 12%. 

When the training samples take up less than 9% of all samples, 

the approach without secondary classification was far less 

accurate than our algorithm. When the proportion was 7%, the 

approach without secondary classification was merely 84%, 

while our approach achieved a classification accuracy of 89%, 

with an edge of 5%. When the proportion of training samples 

surpassed 10%, both approaches can accurately classify more 

than 95% of samples. Thus, our approach can adapt to the 

insufficient training samples in some scenes. 

Finally, the time efficiency of our algorithm was tested by 

comparing the approaches with and without secondary 

classification in the following environment: Intel Core i7-

8565U CPU @1.80GHz, 8GB RAM; C++; OpenCV functions. 

The model training time was not counted. The total time of 

spatial feature extraction and model classification was 

calculated. On Indian Pines, the approaches with and without 

secondary classification consumed 2.6s and 3.1s, respectively. 

Both approaches are established on the SVM. Compared with 

the approach without secondary classification, our algorithm 

consumes a similar time, which is mainly spent on the adaptive 

guided filtering. Hence, different algorithms can be adopted to 

meet different demands. 

 

 
 

Figure 14. Comparison results of Indian Pines scene under 

different training samples 

4. CONCLUSIONS  

 

Based on adaptive guided filtering, this paper proposes a 

combined spatial-spectral hyperspectral image classification 

approach. By fusing multiple features, a coarse-to-fine 

framework was established for combined spatial-spectral 

hyperspectral image classification. The time complexity was 

reduced through the PCA. In addition, an improved LBP 

descriptor was designed to illustrate image contrast more 

accurately. Then, a guided filter was presented based on the 

adaptive regularization factor. The filter further enhances 

classification accuracy and reduces noise interference by 

preventing excessive or insufficient smoothing of target 

contours in the classification results. Experimental results 

show that our approach can achieve a high classification 

accuracy in the presence of a small training set.  
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