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Abstract: A channeled spectropolarimeter can simultaneously obtain intensity, spectral, and
polarization information. In the traditional model, the retarders must be oriented at specific
angles. However, misalignments of the retarders are inevitable during assembly, and the status of
the retarders is sensitive to environmental perturbations, which affects the performance of the
channeled spectropolarimeter. In this study, a general channeled spectropolarimeter model was
derived, in which the retarder orientations can be arbitrary and unknown. Meanwhile, the system
is unaffected by environmental perturbation because it can self-calibrate to avoid fluctuations in
the retarder orientations and phase retardations. The effectiveness and robustness of the model
were verified through simulations and experiments.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Spectropolarimetry quantifies both the polarization state and spectral content of light, which is
significance in many fields, such as remote sensing [1–3], biomedicine [4–6], and environmental
monitoring [7]. Among the various spectropolarimeter instruments developed in the past,
channeled spectropolarimetry (CSP), proposed by Oka et al. [8] and Iannarilli et al. [9], is
a powerful snapshot technique. It utilizes two high-order retarders and a linear polarizer to
achieve polarimetric spectral intensity modulation (PSIM) in the wavenumber domain. The
Stokes parameters are separated in the optical path difference (OPD) domain channels, which
can be reconstructed using Fourier transform and frequency-filtering techniques. Furthermore, it
has a simple optical system with no mechanically movable components. Therefore, it has great
potential for practical applications.

Conventional CSP system requires the fast axes of the two retarders to be oriented at 0° and 45°.
However, alignment errors are inevitable during the assembly [10]. Different combinations of
alignment errors result in different errors in the reconstructed Stokes parameters. In addition, the
phase retardations of the two retarders may differ from those calibrated in the laboratory owing
to environmental perturbations, such as temperature fluctuations [11], causing the reconstructed
Stokes parameters to deviate from their true values. Furthermore, the performance of the CSP
system will also degrade if it is used on a vibration platform [12–15], such as in spaceborne and
airborne applications, and it is quite difficult to recalibrate it for spaceborne systems because of
its high cost.

Mu et al. [10] used two linearly polarized beams oriented at 22.5° and 45° to calibrate the
orientation errors of the fast axes of high-order retarders with different signs. Yang et al. [16]
used an additional high-order retarder to determine the alignment errors and compensate for
them. Ju et al. [17] proposed a modified reference beam calibration technique that employ the
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amplitude terms and simplifies the calibration process [18]. Sabatke et al. [19,20] modeled
the CSP as a linear operator for calibration, and Zhou et al. [21] significantly reduced the
measurement times. These methods solve alignment errors that may occur during assembly and
adjustment in the laboratory. For the phase fluctuations of high-order retarders caused by the
environmental perturbations, Taniguchi and Oka [22] proposed a self-calibration method when
there are no alignment errors, while Xing et al. [23] considered both environmental perturbations
and alignment errors. However, these methods are based on specific retarder orientations, which
limits the potential of CSP.

We eliminated the requirement for specific retarder orientations. The retarder orientations can
be arbitrary and unknown, according to the principle of CSP; from this perspective, there is no
alignment errors. Furthermore, we found that the CSP has the potential for self-calibration in all
cases and can be immune to retarder orientations and retardation changes caused by platform
vibrations and environmental perturbations. By using the new model, the limitations of the CSP
can be significantly reduced, and tolerance requirements during assembly can be greatly relaxed.

The remainder of this paper is organized as follows: Section 2 provides the principle of the
general CSP with arbitrary retarder orientations. The simulation and experimental verification
are presented in Sections 3 and 4, respectively. Finally, Section 5 concludes the study.

2. Theory

In this section, we derive a model for arbitrary retarder orientation settings of the CSP system.
The retardations and orientations of the retarders were determined using two methods: laboratory
calibration and self-calibration.

2.1. Principle of the general channeled spectropolarimetry

An optical schematic of the CSP is shown in [ Fig. 1]. It was composed of two thick retarders (R1
and R2) and a polarizer (A). The fast axes of R1 and R2 form angles α and β, respectively, with
the transmission direction of A. Given that A is the benchmark for the system to work with the
spectrometer, we set it to 0° for simplicity. Note that α= β, α= β+ 90°, β= 0°, and β= 90° are
not allowed due to the principle of CSP.

 

Fig. 1. Schematic of the general channeled spectropolarimeter.
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The Muller matrices of R1, R2, and A are

MR1 (α, ϕ1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 b2 + a2 cos ϕ1 ab(1 − cos ϕ1) −a sin ϕ1

0 ab(1 − cos ϕ1) a2 + b2 cos ϕ1 b sin ϕ1

0 a sin ϕ1 −b sin ϕ1 cos ϕ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

MR2 (β, ϕ2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 d2 + c2 cos ϕ2 cd(1 − cos ϕ2) −c sin ϕ2

0 cd(1 − cos ϕ2) c2 + d2 cos ϕ2 d sin ϕ2

0 c sin ϕ2 −d sin ϕ2 cos ϕ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

MA(0◦) =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where a = sin(2α), b = cos(2α), c = sin(2β), and d = cos(2β). ϕ1 and ϕ2 represent the phase
retardations of R1 and R2, respectively. The spectrum obtained by the spectrometer is expressed
as

I(σ) = MA(0◦) · MR2 (β,φ2) · MR1 (α,φ1) · Sin

=
1
2
[S0 + b2d2S1 + abcdS1 + abd2S2 + a2cdS2]

+
1
4
[b2c2S1 − abcdS1 + abc2S2 − a2cdS2] exp(iφ2)

+
1
4
[b2c2S1 − abcdS1 + abc2S2 − a2cdS2] exp(−iφ2)

+
1
8
[a2c2S1 + abcdS1 − acS1 − abc2S2 − b2cdS2 + bcS2 + iac2S3 + ibcdS3 − icS3] exp[i(φ1 − φ2)]

+
1
8
[a2c2S1 + abcdS1 − acS1 − abc2S2 − b2cdS2 + bcS2 + iac2S3 − ibcdS3 + icS3] exp[−i(φ1 − φ2)]

+
1
4
[a2d2S1 − abcdS1 − abd2S2 + b2cdS2 + iad2S3 − ibcdS3] exp(iφ1)

+
1
4
[a2d2S1 − abcdS1 − abd2S2 + b2cdS2 − iad2S3 + ibcdS3] exp(−iφ1)

+
1
8
[a2c2S1 + abcdS1 + acS1 − abc2S2 − b2cdS2 − bcS2 + iac2S3 + ibcdS3 + icS3] exp[i(φ1 + φ2)]

+
1
8
[a2c2S1 + abcdS1 + acS1 − abc2S2 − b2cdS2 − bcS2 + iac2S3 − ibcdS3 − icS3] exp[−i(φ1 + φ2)],

(4)

where the wavenumber dependence was ignored for simplicity. Using the inverse Fourier
transform to calculate the autocorrelation function of I(σ), we can obtain nine channels containing
different polarization information:

C(L) = C0(L) + C1(L − L2) + C−1(L + L2)

+ C2(L − (L1 − L2)) + C−2(L + (L1 − L2))

+ C3(L − L1) + C−3(L + L1)

+ C4(L − (L1 + L2)) + C−4(L + (L1 + L2)),

(5)

where
C0 = F−1{

1
2
[S0(σ) + df S12(σ)]}, (6a)



Research Article Vol. 30, No. 9 / 25 Apr 2022 / Optics Express 14556

C1 = F−1{
1
4

ceS12(σ) exp(iϕ2)}, (6b)

C−1 = F−1{
1
4

ceS12(σ) exp(−iϕ2)}, (6c)

C2 = F−1{
1
8

c(f − 1)S123(σ) exp[i(ϕ1 − ϕ2)]}, (6d)

C−2 = F−1{
1
8

c(f − 1)S∗123(σ) exp[−i(ϕ1 − ϕ2)]}, (6e)

C3 = F−1{−
1
4

deS123(σ) exp(iϕ1)}, (6f)

C−3 = F−1{−
1
4

deS∗123(σ) exp(−iϕ1)}, (6g)

C4 = F−1{
1
8

c(f + 1)S123(σ) exp[i(ϕ1 + ϕ2)]}, (6h)

C−4 = F−1{
1
8

c(f + 1)S∗123(σ) exp[−i(ϕ1 + ϕ2)]}, (6i)

and {︄
e = bc − ad = sin 2(β − α)
f = ac + bd = cos 2(β − α)

, (7)

⎧⎪⎪⎨⎪⎪⎩
S12(σ) = bS1(σ) + aS2(σ)

S123(σ) = aS1(σ) − bS2(σ) + iS3(σ)
. (8)

To make full use of the information of the nine channels, an appropriate thickness ratio of R1
to R2 must be satisfied to avoid overlap between the channels. In this study, we used a thickness
ratio of 3:1; thus, C−4–C4 were uniformly distributed in the optical-path difference domain.
Using frequency filtering and Fourier transform, the Stokes parameters can be reconstructed as

S0 = 2F(C0) − df S12(σ), (9a)

S1 = bS12(σ) + aRe[S123(σ)], (9b)

S2 = aS12(σ) − bRe[S123(σ)], (9c)

S3 = Im[S123(σ)], (9d)

where ⎧⎪⎪⎨⎪⎪⎩
S12(σ) =

4F(C1)
ce·exp(iφ2)

S123(σ) =
8F(C4)

c(f+1)·exp[i(φ1+φ2)]

. (10)

The Stokes parameters can be reconstructed as long as the phase retardations and retarder
orientations are known.
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2.2. Calibrate the phase retardations

The instrument usually needs to be calibrated in the laboratory before practical application. To
calibrate the phase retardations of R1 and R2 in the laboratory, we used a linearly polarized light
oriented at an arbitrary angle θ, whose Stokes vector can be expressed as

SLP,θ (σ) = Sθ0 (σ) · [ 1 cos(2θ) sin(2θ) 0 ]T , (11)

where SLP,θ (σ) and Sθ
0 (σ) denote Stokes vector and the first parameter in the vector. When it

passes through the CSP system, the content in the desired channel is expressed as

C3
′ = F−1{−

1
4

deS123
′(σ) exp(iϕ1)}, (12)

C4
′ = F−1{

1
8

c(f + 1)S123
′(σ) exp[i(ϕ1 + ϕ2)]}, (13)

where
S123

′(σ) = Sθ0 (σ) sin 2(α − θ). (14)

If the angle of the linearly polarized light is not parallel to the axis of R1, that is, S′
123(σ) ≠ 0,

ϕ1, and ϕ2 can be obtained by taking the arguments of C3
′ and C4

′/C3
′, respectively.

Because high-order retarders are used in CSP system, even though the phase retardations are
accurately calibrated in the laboratory, they are still susceptible to environmental perturbations,
such as temperature changes during applications [23], thereby degrading the performance of the
instrument. Therefore, the phase retardations must be calibrated in real time. Fortunately, we
found that CSP inherently possesses the ability to self-calibrate under all circumstances. Since
f 2 + e2 = 1, from [Eq. (8)], we find that

S2
12(σ) + |S123(σ)|

2 = S2
1(σ) + S2

2(σ) + S2
3(σ), (15)

where | · | stands for the operator to take the modulus. Therefore, we obtain

16[F(C1)]
2 − 64F(C2)F(C−4) = c2e2[S2

1(σ) + S2
2(σ) + S2

3(σ)] exp(2iϕ2). (16)

This equation is similar to that proposed by Taniguchi and Oka [18]. It is easy to show that
both c2 and e2 are greater than 0, if the principle of CSP is followed. Therefore, ϕ2 can be
obtained by taking the argument of [Eq. (16)], regardless of the state of polarization (SOP) of the
incident light. The other phase retardation ϕ1 can be obtained using ϕ2 and the thickness ratio of
R1 and R2, as the two retarders are compact and undergo the same environmental perturbations.

It should be noted that the phases obtained using [Eq. (16)] is 2ϕ2, which belongs to (−π, π).
Phase ambiguity may occur when calculating ϕ2. To avoid this, an appropriate reference
wavenumber must be chosen for phase unwrapping and it should be compared with the phase
calibrated in the laboratory. In addition, phase ambiguity may also be caused by temperature
changes, which has been addressed by Chrysler et al. [24]; therefore, this is not our focus.

2.3. Determine the retarder orientations

To determine the orientations of the retarders, we must determine the quadrants of α and β to
avoid sign errors before determining their values. In practical applications, the values of α and
β are set artificially before adjustment. Commercial retarders generally indicate the direction
of the fast axis, and laboratories usually have precision adjustment devices; therefore, the first
step can be skipped. However, to improve the applicability of the proposed model and avoid
a situation where the fast axis direction is not indicated on the retarders, we still introduce a
method to determine the quadrants of α and β.
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2.3.1. Determining the quadrants of α and β

Three reference beams were used to determine the quadrants of α and β: two linearly polarized
beams oriented at 0° and 45°, and one circularly polarized beam. First, the circularly polarized
light was used for calibration, where the content of the desired channel is

C2,circular = F−1{
1
8

c(f − 1)S3,circular(σ) exp[i(ϕ1 − ϕ2)]}, (17)

C4,circular = F−1{
1
8

c(f + 1)S3,circular(σ) exp[i(ϕ1 + ϕ2)]}, (18)

where ϕ1 and ϕ2 are determined in Subsection 2.2, and thus, f can be calculated as

f =
C4,circular
C2,circular

exp(−2iϕ2) + 1
C4,circular
C2,circular

exp(−2iϕ2) − 1
. (19)

Because the f from the above equation has the correct value and sign, the sign of c can be
obtained from C4,circular/exp[i(ϕ1 + ϕ2)]. It should be noted that here we only need to know
the sign of S3,circular, so the result will not be affected even if there is small error in S3,circular.
Then, we use 0° linearly polarized light for calibration, and the content in the desired channel is
expressed as

C2,0◦ = F−1{
1
8

ac(f − 1)S0,0◦ (σ) exp[i(ϕ1 + ϕ2)]}, (20)

where the signs of S0,0°, c, and (f-1) are known, and the exponential term has been determined.
Thus, the sign of a can be obtained from the above equation. Finally, we used a beam of 45°
linearly polarized light for calibration, and the contents in the desired channels were

C1,45◦ = F−1{
1
4

ceaS0,45◦ (σ) exp(iϕ2)}, (21)

C2,45◦ = F−1{
1
8

bc(1 − f )S0,45◦ (σ) exp[i(ϕ1 − ϕ2)]}, (22)

C3,45◦ = F−1{
1
4

debS0,45◦ (σ) exp(iϕ1)}. (23)

The signs of e, b, and d can be determined sequentially using [Eqs. (21)–(23)]. Once the signs
of a–f are determined, the quadrants of α and β can be determined.

2.3.2. Determine the values of α and β

After determining the ranges of α and β, their values were calculated, and using [Eqs. (6.a)–(6.i)]
we obtain

F(C4)

F(C2)
=

f + 1
f − 1

exp(2iϕ2), (24)

F(C3)

F(C4)
=

−2de
c(f + 1)

exp(−iϕ2). (25)

With [Eqs. (24)–(25)] and f 2 + e2 = 1, the retarder orientations can be obtained as follows:

f =
F(C4)
F(C2)

exp(−2iϕ2) + 1
F(C4)
F(C2)

exp(−2iϕ2) − 1
, (26)

d
c
= −

f + 1
e

F(C3)

2F(C4)
exp(iϕ2). (27)
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Note that d/c = cot 2β, then α and β are given as

α = −
1
2

arccos(f ) +
1
2

arccot(
d
c
), (28)

β =
1
2

arccot(
d
c
). (29)

Once α and β have been determined, the Stokes parameters can be reconstructed according to
[Eqs. (9a)–(9d)].

In particular, if none of channels C2–C4 exist, that is S123 = 0. This means that the target light
is linearly polarized, assuming that it has an orientation of γ, from [Eq. (8)], we obtain⎧⎪⎪⎨⎪⎪⎩

S′′
123 = sin 2(α − γ) = 0

S′′
12 = cos 2(α − γ)

. (30)

Therefore, γ=α (S12= 1), or γ=α+ 90° (S12= -1), which means that the incident light is
linearly polarized parallel to the fast axis (S12 = 1) or slow axis (S12 = -1) of R1. Because the signs
of c and e are known, the sign of S12 can be obtained using the sign of C1 / exp(iϕ2). Conversely,
the target light is linearly polarized at an angle of 45° to the axis of R1 if C1 channel does not
exist.

Using the established model, the Stokes parameters can be accurately reconstructed when the
retarder orientations are arbitrary, and there is a change in temperature.

3. Simulation analysis

The effectiveness of the proposed model was verified via a simulation. The wavenumber range in
the simulation was 12,000–17143 cm-1 (583–833 nm). The thicknesses of R1 and R2 were 6 and
2 mm, respectively. The retarders were made of quartz, whose birefringence can be obtained
from [25]. We used a 30° linearly polarized beam as the target light, and the orientations of R1
and R2 were arbitrarily set to 20° and 70°, respectively, for the demonstration.

[ Fig. 2] shows the magnitude of the autocorrelation function. As expected, nine channels were
separated. The calculation results for the retarder orientations are shown in [ Fig. 3]. Because
the retarder orientations are independent of the wavenumber, we use the average value under
different wavenumbers as the final results, which are shown in Table 1. These results suggest that
the retarder orientations can be accurately determined using the proposed method, which lays the
foundation for reconstructing Stokes parameters.

Table 1. Averages and errors of the calculated results of α and β

Parameter Input value Calculated
value

Error

α 20° 20.0222° 0.0222°

β 70° 70.0347° 0.0347°

The results of the reconstructed Stokes parameters are shown in [ Fig. 4]. Using the presented
method, the residual errors of S1/S0 and S2/S0 and S3/S0 are 1.94×10−4 and 8.77×10−5 and
2.07×10−4, respectively; the residual error of the degree of polarization (DOP) is 2.95×10−4.
These results indicate that the calibration and reconstruction methods are effective.

To further verify the performance of the proposed model and to demonstrate its generality, we
set the input light to S1(σ) = S2(σ) = S3(σ) = S0(σ)/

√
3 and traversed all possible values of α

and β from 1° to 180°. The residual errors of DOP are shown in [ Fig. 5]. The white part in the
figure represents the cases that does not conform to the principle of CSP, corresponding to α= β,
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Fig. 2. The magnitude of the autocorrelation function of the modulated spectrum.

Fig. 3. Calculated results of the azimuth angles of R1 and R2.

Fig. 4. Reconstructed results of Normalized Stokes Parameters, theoretical values are
S1/S0= 0.5, S2/S0= 0.866, and S3/S0= 0.
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α= β+ 90°, β= 0°, and β= 90°. [Figure 5] shows that the reconstruction accuracy was better
when the fast axes of R1 and R2 were in the same quadrant. In addition, the closer the axes of R2
are to the transmission axis of A, the further the axes of R1 must be separated from the axes of
R2. When β is in the range of 30°–70°, the fast axis of R1 only needs to be separated from the
fast axis of R2 by 2° to ensure accuracy. However, if the angle between the fast axis of R2 and the
transmission axis of A is less than 10°, then the fast axis of R1 is preferably separated from the
fast axis of R2 by more than 10°. This is because the coefficients of the channels are too small,
making them more susceptible to crosstalk.

Fig. 5. Residual errors of reconstructed results of DOP at all possible orientation combina-
tions.

It should be noted that we used the same rectangular window for filtering in all cases in the
simulation. The red part is smaller if the filter window is modified accordingly. Therefore, even
if the residual DOP errors at some points in [Fig. 5] are of the order of 10−3, such as α= 16°and
β= 6°, the CSP still has sufficient accuracy in this case, which is verified in the experiments in
the next section.

The simulation results suggest that the presented model is very robust, the orientations of R1
and R2 can be accurately calculated, and the Stokes parameters can be accurately reconstructed.
In addition, the tolerance requirements for assembly and adjustment have been drastically relaxed,
which is of great significance for the development of the instrument.

4. Experimental results

The feasibility of the proposed model was demonstrated using the experimental setup shown
in [ Fig. 6]. It consists of a polarizer, two retarders with the same thickness and material as in
the simulation, and a spectrometer (ASD FieldSpec 3). A stabilized tungsten halogen lamp,
collimator, and rotatable polarizer P, were used to generate the target beams. The wavenumber
range was consistent with the simulation settings.

Because the angle between the fast axes of the two retarders is in the range of 0°–90°, we set
four different combinations of α and β with differences of 10°, 30°, 50°, and 70°. To verify the
self-calibration capability of the CSP system, we changed the temperature from 21 °C to 27 °C to
change the retardations. The measured results at α= 20° and β= 70° are shown in [ Fig. 7]. The
desired channels were separated from one another, and their distributions were consistent with
the simulation results, which further validated the proposed model.

The reconstructed Stokes parameters for these cases are shown in [ Fig. 8(a)], and [Fig. 8(b)]
gives the reconstructed Stokes parameters at different temperatures when α= 20° and β= 70°.
Notably, the normalized Stokes parameters under different orientation settings almost overlap
with each other. The residual errors of S1/S0, S2/S0, and S3/S0 were less than 5.9×10−3, 5.6×10−3,
and 6.6×10−3, respectively. The residual errors of the DOP were less than 4.1×10−3, which
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Fig. 6. Experimental setup.

Fig. 7. Measured results (a) Measured spectral intensity; (b) Magnitude of the autocorrelation
function of the modulated spectrum.

meets practical application requirements [26]. Owing to the self-calibration capability of the
system, the reconstructed Stokes parameters were hardly affected by the temperature changes.

Fig. 8. Reconstructed Stokes parameters from experimental measurements under different
(a) orientation settings and (b) temperatures. Theoretical reference values are S1/S0= 0.5,
S2/S0= 0.866, and S3/S0= 0.

We also set two combinations of α= 40°, β= 43°, α= 16°, and β= 6° to verify the performance
of CSP in extreme cases, the results of which are shown in [ Fig. 9]. The results fluctuate
slightly more, and the residual errors of S1/S0, S2/S0, and S3/S0 are less than 8.3×10−3, 6.4×10−3,
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and 8.6×10−3, respectively. The residual errors of the DOP were still less than 0.5%. These
results support the conclusions of the simulations described in Section 3. The experimental
reconstruction errors were larger than the simulation results because of the thickness errors of
the retarders, noise, and stray light.

Fig. 9. Reconstructed Stokes parameters from experimental measurements. Theoretical
reference values are S1/S0= 0.5, S2/S0= 0.866, and S3/S0= 0.

The experimental results indicate that the CSP system can work under various orientation
settings of the two retarders and is immune to the influence of temperature changes on phase
retardations. This conclusion is consistent with the simulation results, indicating that the CSP
system is robust and does not require effort for installation and adjustment.

5. Conclusion

In this study, we derived a general CSP model in which the orientations of the two retarders can
be arbitrary and unknown. Meanwhile, the system is unaffected by environmental perturbation
because it can self-calibrate to avoid fluctuations in the retarder orientations and phase retardations.
We simulated the performance of the system for all possible retarder orientation combinations.
The results showed that the system performed better when the fast axes of the two retarders were
in the same quadrant. The fast axes of R1 and R2 only need to be separated by more than 2° to
ensure accuracy when the fast axis of R2 is in the range of 30°–70°. The feasibility, validity, and
robustness of the proposed model were verified experimentally in the presence of temperature
changes. The residual errors of the normalized Stokes parameters are of the order of 10−3, and
the residual error of the DOP is less than 0.5%, which meets practical application requirements.
Using the proposed model, the CSP system has almost no tolerance requirements and does not
require periodic recalibration, which is very beneficial for practical applications.
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