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Abstract This paper studies an approximate continu-
ousfixed-time terminal slidingmodecontrol (CFTSMC)
with prescribed performance for uncertain robotic
manipulators. A transformation concerning tracking
error using a fixed-time prescribed performance func-
tion is proposed to guarantee the transient and steady-
state performance of trajectory tracking control for
uncertain robotic manipulators within fixed time. Uti-
lizing the transformed error, a smooth fixed-time slid-
ing mode surface is designed. Then, based on the pro-
posed sliding mode surface, an approximate CFTSMC
scheme is presented to achieve inherent chattering-free
control for uncertain robotic manipulators. Accord-
ing to the Lyapunov stability theory, it is proved that
the position tracking error can be bounded in the
prescribed performance boundaries and globally con-
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verges to a defined small region within fixed time and
then approaches exponentially to the origin. Several
numerical simulation results demonstrate the effective-
ness and superiority of the proposed control strategy for
uncertain robotic manipulators.

Keywords Fixed-time control · Sliding mode control ·
Prescribed performance · Robotic manipulator

1 Introduction

Achieving fast and high-precision trajectory tracking of
multi-joint robotic manipulators has been a challeng-
ing objective due to the difficulty of obtaining accurate
dynamic models and external disturbances that always
significantly degrade the performance of robotic sys-
tems. Among many control algorithms, sliding mode
control (SMC) has gottenmuch attention in virtue of its
fast global convergence, simple implementation, order
reduction, insensitivity to external disturbances and
model errors, and changes in system parameters. Up to
now, SMC and related technologies have been widely
used in robotic systems [1–3].

For the conventional SMC schemes, a linear
hyperplane-based sliding manifold is utilized to force
the tracking error to the origin asymptotically in infinite
time. Amajor weakness of the traditional SMCmethod
is that only asymptotic convergence of the tracking
error is guaranteed. However, in most robotic manip-
ulator tracking applications, the tracking error of the
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system is required to converge in a finite time. As a typ-
ical finite-time SMCmethod, the terminal slidingmode
control (TSMC) can achieve finite-time convergence of
the tracking error. In [4], TSMC was used to achieve
finite-time trackingof roboticmanipulators but lacked a
reasonable consideration of system disturbances. Sub-
sequently, several methods based on the TSMC have
been derived to improve the control performance [5–
7]. For example, to avoid singularities and achieve fast
convergence of the system states far from the origin,
a nonsingular TSMC scheme in [6] and a nonsingular
fast terminal sliding mode control (NFTSMC) scheme
[7] were developed, respectively. Another main weak-
ness of traditional SMC applications is its strong chat-
tering, which significantly affects the tracking control
performance of robotic manipulators. To attenuate the
chattering caused by the discontinuous symbol, some
methods such as the boundary layer approach [8], inte-
gral SMC [9], and adaptive technology [10,11] have
been proposed.

Despite the above advancements, the settling time of
the finite-time control is hard to obtain due to its depen-
dence on the initial states of the system,which prohibits
their applications because the knowledge of initial con-
ditions is always unavailable in advance. For example,
in industrial production, the preset stabilization time
is significant for the process planning of manufactur-
ing [12,13]. In response, Polyakov [14] introduced a
fixed-time control method to ensure a bounded conver-
gence time independent of initial states. Then, some
critical theoretical and mathematical analyses related
to the fixed-time stability and convergence were pre-
sented, which facilitated the development and applica-
tion of the fixed-time SMC [15–17]. Benefiting from
the advantages that the settling time depends only on
the defined parameters and is unrelated to the initial
states, the fixed-time SMC has been widely applied
to the attitude stabilization of spacecraft [18,19] and
the control of multi-intelligent body systems [20,21].
For tracking control of robotic manipulators, the fixed-
time SMC has also received extensive attention from
scholars in recent years. For example,Xu [22] proposed
an adaptive fixed-time control using universal barrier
functions to address the problem of asymmetric out-
put constraint of robotic manipulators. Su et al. [23]
designed a novel fixed-time sliding surface for uncer-
tain robotic manipulators, but the control torque suffers
from strong chattering when the tracking error reaches
the sliding phase. Zhang et al. [24] designed a contin-

uous fixed-time SMC scheme, but at the expense of
convergence speed and requiring a large initial torque.
Sai et al. [25] proposed an adaptive fixed-time SMC
scheme for uncertain robotic manipulators to attenu-
ate chattering but also required a large initial control
torque.

Common to the above contributions is the focus on
the steady-state behavior of the system. However, the
transient performance of the tracking error also sig-
nificantly impacts the manipulation of many indus-
trial control systems. On the one hand, funnel con-
trol was proposed to guarantee prescribed transient
behavior, but its application objects were pretty limited
[26,27]. On the other hand, Bechlioulis and Rovithakis
[28] pioneered the use of the prescribed performance
function (PPF) to bound the convergence error and
the minimum convergence rate of the system. Sub-
sequently, the prescribed performance control (PPC)
technology was widely used in various classes of non-
linear systems to obtain the prescribed performance
bounds (PPB) [29,30]. In particular, Karayiannidis et
al. [31] and Jing et al. [32] exploited such a promis-
ing technique to investigate robust controller design
in robotic manipulator trajectory tracking. In [33], the
fixed-time SMC method in [23] was used in combina-
tion with the PPF technique, but there was unavoidable
chattering in the control torque. It is worth noting that
almost all PPFs guarantee only asymptotic or finite-
time stability [34,35], which prevents its integration
with the fixed-time control technology.

Driven by practical requirements for the uncertain
robotic manipulators tracking control and inspired by
previous discussions, we investigate a novel fixed-
timeTSMCcombinedwith the prescribed performance
method for uncertain robotic manipulators. The main
contributions of this paper are twofold. First, a novel
fixed-timePPF is designed to guarantee fixed-time con-
vergence of the preset performance. Then, a fixed-time
sliding surface is artfully constructed, and an approx-
imate continuous fixed-time terminal sliding mode
control (CFTSMC) scheme is proposed based on the
designed sliding mode surface and the fixed-time PPF.
The proposed controller can ensure that the system con-
verges to a defined small region within fixed time and
then goes to the origin exponentially, and also guar-
antees the transient performance of the system. The
approximate fixed-time prescribed performance stabil-
ity and the continuity of the control torque are demon-
strated, respectively. Compared with existing SMC
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schemes, the proposed scheme has the advantages of
high tracking accuracy, low energy consumption, and
chattering-free.

This paper is structured as follows: In Sect. 2, some
problem statements and preliminaries are provided.
The main of this work is proposed in Sect. 3, including
the fixed-time PPF, the controller design, and stability
analysis. Section 4 introduces two sets of numerical
simulation results. Comparative study and discussion
of quantification are given in Sect. 5, and some conclu-
sions are drawn in Sect. 6.

2 Problem statement and preliminaries

2.1 Statement of notations

In this paper, ‖A‖ = tr
(
AT A

)
and ‖x‖ = √

xT x rep-
resent the norm of the matrix A ∈ R

n×n and the vector
x = [x1, · · · , xn]T , respectively. |·| denotes the abso-
lute value inR.λmin {A} andλmax {A} are theminimum
andmaximumeigenvalues of thematrix A. sgn (x) rep-
resents the signum function and the nonlinear function
sigα (x) and vector Sigα (x) ∈ R

n are

sigα (x) = |x |αsgn (x) , (1)

Sigα (x) = [|x1|αsgn (x1) , · · · , |xn|αsgn (xn)
]T

, (2)

with α > 0.

2.2 Some definitions and lemmas

Consider an autonomous dynamical system as:

ẋ = f (x, ρ) , (3)

where x ∈ R
n is the system state, and the vectorρ ∈ R

n

stands for the tunable parameters of (3). The func-
tion f : Rn → R

n is nonlinear and continuous, with
f (0, ρ) = 0, and the initial state is x0 = x (0) ∈ R

n .

Definition 1 (Finite-time stability [36]) The origin of
(3) is globally finite-time stable if it is globally asymp-
totically stable and any solution x (t, x0) of (3) reaches
the equilibrium point at some finite-time moment, i.e.,
∀t � T (x0) : x (t, x0) = 0, where T : R

n →
R+ ∪ {0} is the settling-time function.

Definition 2 (Fixed-time stability [14]) The origin of
(3) is globally fixed-time stable if it is globally finite-
time stable and the settling-time function T : Rn →
R+ ∪ {0} is bounded, i.e., ∃Tmax > 0 : ∀x0 ∈ R

n :
T (x0) � Tmax.

Definition 3 (Predefined-time stability [37]) For param-
eter vector ρ of (3) and a constant Tc := Tc (ρ) > 0,
the origin of (3) is predefined-time stable if it is fixed-
time stable and the settling-time function T : Rn → R

is such that

T (x0) � Tc,∀x0 ∈ R
n . (4)

In this case, Tc is called as a predefined time.

Lemma 1 [14] For the nonlinear system (3), if there
exists a positive-definite continuous function V (ξ) :
U → R

n and positive constants α, β > 0, 0 < p < 1
and q > 1 satisfying the inequality V̇ (ξ)+αV p (ξ)+
βV q (ξ) < 0, ξ ∈ U\{0}, the system (3) is globally
fixed-time stable with a settling time T bounded by

T < Tmax = 1

α (1 − p)
+ 1

β (q − 1)
. (5)

Lemma 2 For a positive constant α and continuously
differentiable x, the following equations hold:

d|x |α+1

dx
= (α + 1) |x |αsgn (x) (6)

d
(|x |α+1sgn (x)

)

dx
= (α + 1) |x |α. (7)

The proof of Lemma 2 is given in “Appendix A”.

Lemma 3 [15] For constants ξ1, ξ2, · · · , ξn � 0 and
a positive constant p, the following inequalities hold

n∑

i=1

ξ
p
i �

(
n∑

i=1

ξi

)p

if 0 < p � 1 (8)

n∑

i=1

ξ
p
i � n1−p

(
n∑

i=1

ξi

)p

if 1 < p < ∞. (9)

Lemma 4 [38] if f (x) and g(x) are two continuous
function at x0 ∈ R

n, then the function f (x) + g (x) is
also continuous at x0.
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2.3 Dynamic model of robotic manipulators

The dynamic model of a general n-degree-of-freedom
(DOF) rigid robotic manipulator can be expressed as:

M (q) q̈ + C (q, q̇) q̇ + G (q) = τ + τ d , (10)

where q, q̇, q̈ ∈ R
n represent the joint position,

velocity, and acceleration vector of the robotic manip-
ulator, respectively. M (q) ∈ R

n×n is the symmet-
ric and positive-definite matrix, C (q, q̇) ∈ R

n×n is
the centrifugal-Coriolis matrix, and G (q) ∈ R

n is
the Cartesian gravitational term. τ ∈ R

n is the vec-
tor of control input torque, and τ d ∈ R

n represents an
unknown but bounded external disturbance. The posi-
tion error e ∈ R

n and the velocity error ė ∈ R
n are

denoted as:

e = q − qd, ė = q̇ − q̇d, (11)

where qd, q̇d ∈ R
n are vectors of the desired tracking

angular position and velocity. The desired joint perfor-
mance can be described as: [28]

biρi (t) < ei (t) < b̄iρi (t) , (12)

where ρi (t) is the PPF given in the next section. bi and
b̄i can be denoted, respectively, as:

bi =
{

−ϑi , ei (0) � 0

−1, ei (0) < 0
, b̄i =

{
1, ei (0) � 0

ϑi , ei (0) < 0

(13)

with 0 < ϑi < 1 is the overshoot index constant,
ei (t) , i = 1, · · · , n is the i th element of the vector
e, and ei (0) is the initial joint angular position error of
the joint i .

It is reasonable to postulate that the dynamics of
robotic manipulators have the following propositions:

Proposition 1 [39] ThematricesM (q) ,C (q, q̇) and
G (q) can be described as:

⎧
⎪⎨

⎪⎩

M (q) = M0 (q) + ΔM (q)

C (q, q̇) = C0 (q, q̇) + ΔC (q, q̇)

G (q) = G0 (q) + ΔG (q) ,

(14)

whereM0 (q) ,C0 (q, q̇) andG0 (q) are nominal parts
of the model parameters, and ΔM (q) ,ΔC (q, q̇) and
ΔG (q) denote the system uncertainties.

Proposition 2 [39] ThematricesM (q) ,C (q, q̇) and
G (q) are bounded by

Mm �‖ M(q) ‖� MM , for ∀q ∈ R
n (15)

‖ C(q, q̇) ‖� CM ‖ q̇ ‖, for ∀q, q̇ ∈ R
n (16)

‖ G(q) ‖� GM , for ∀q ∈ R
n, (17)

where Mm, MM ,CM and GM are known positive con-
stants.

Lemma 5 [40] In view of (10) and (14), the coupled
uncertainty ρ (t) includes the external disturbance and
system uncertainties, which can be written as:

ρ (t) = −ΔM (q) q̈ − ΔC (q, q̇) q̇ − 	G (q) + τ d .

(18)

Then, the coupled uncertaintyρ(t) canbeboundedwith

‖ ρ (t) ‖< b0+b1 ‖ q (t) ‖ +b2 ‖ q̇ (t) ‖2 +γ ‖ τ ‖ .

(19)

Our goal is to design an approximate fixed-time
controller—to force the joint tracking error of the robot
to converge to a defined small neighborhood within
fixed time unrelated to the initial states, with prescribed
performance.

3 Control development and analysis

3.1 Fixed-time prescribed performance function
design

According to the prescribed performance (12), the
tracking error e (t) is required to evolve strictly in the
designed set of residuals. It means that the convergence
rate is not less than a preset value, exhibitingmaximum
overshoot less than a preallocated constant. The critical
to satisfying the prescribed performance requirements
is to make the control performance of the system sat-
isfy (12) with the aid of the fixed-time PPF. First, the
definition of the PPF is given as:
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Definition 4 [28] A smooth function ρ : R+ → R+
will be called a PPF if:

1. ρ is positive and decreasing;
2. limt→∞ ρ (t) = ρ∞ > 0.

Then, to ensure that the PPF is fixed-time stable, a
novel fixed-time PPF is designed as:

ρi (t) =
{

(ρ0i − ρ∞i )
(
1 − t

Ti

)σi + ρ∞i , 0 � t < Ti

ρ∞i , t � Ti
,

(20)

where 0 < ρ∞i < |ei (0) |< ρ0i , Ti > 0 and σi > 2
are defined positive constants. The constant Ti is the
preset maximum settling time for ρi (t) converging
from the maximum initial error ρ0i to the maximum
allowable steady-state error ρ∞i , and ρ̇i (t) denotes the
prespecified minimum convergence rate.

Proposition 3 The proposed fixed-time PPF (20) sat-
isfies

1. ρi (t) is a monotone decreasing bounded smooth
positive function, such that 0 < ρ∞i � ρi (t) �
ρ0i and ρ̇i (t) � 0;

2. lim
t→Ti

ρi (t) = ρ∞i and ρi (t) = ρ∞i for t � Ti .

The proof of Proposition 3 is given in “Appendix
B.”

Remark 1 The preceding discussion can be summa-
rized that ρi (t) in (20) can converge to ρ∞i with the
preset time Ti . However, the conventional exponential
performance function in [28,31,41,42] only can guar-
antee convergence to a given range when time tends to
infinity. Besides, the finite-time performance function
in [43] can guarantee it converge to a given range in
a finite time, but the convergence time depends on the
initial value of the function. In comparison, the conver-
gence of the proposed fixed-time PPF is only related
to the parameter Ti , and the form is more concise than
that in [33,44].

An example of ρi (t) shown in Fig. 1 to illustrate
the fixed-time convergence of the proposed function
(20) with different initial values ρ0i = 0.5, 100 and
different convergence time Ti = 2, 5, and the other
parameters are given as ρ∞i = 0.01, σi = 2.01. It can
obtain that ρi (t) can converge to the ρ∞i within the
given convergence time Ti for different ρ0i .

Fig. 1 Illustration of ρi (t)

Noting that (20) cannot be used directly to design
the controller, an error transformation is required to
establish the link between the tracking error and the
fixed-time PPF. Considering the transformation func-
tion ψ(x) as [33]:

ψ (x) = bi b̄i (exp (x) − 1)

bi exp (x) − b̄i
, (21)

we can declare that ψ(x) satisfies:

Proposition 4 1. ψ(x) is a smoothand strictly increas-
ing function;

2. lim
x→−∞ψ(x) = bi and lim

x→+∞ψ(x) = b̄i ;

3. With ε1i being a transformed error and the error ei
being related to ε1i by

ei = ρiψ (ε1i ) , (22)

then, the prescribed performance (12) can be guar-
anteed.

The proof of Proposition 4 is given in “Appendix
C”.

ByProperty 4, it is noted thatρiψ (ε1i ) ∈ (biρi , b̄iρi
)
.

Therefore, the tracking error ei can be replaced by ε1i
through an inverse transformation, thus ensuring that
the system performance satisfies (12), which is a com-
mon method in PPC technology. The inverse function
of ψ (x) can be calculated as:
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ψ−1 (x) = ln

(
b̄i
(
x − bi

)

−bi
(
b̄i − x

)

)

. (23)

From Proposition 4, it can obtain that ψ−1 (x) is a
smooth function, increasing bijective mapping with
lim

ε1i→b̄i
ψ−1 (ε1i ) = ∞ and lim

ε1i→bi
ψ−1 (ε1i ) = −∞.

According to (22),ψ (ε1i ) and the transformed error
ε1i can be written as:

ψ (ε1i ) = ei
ρi

, ε1i = ψ−1
(
ei
ρi

)
. (24)

Then, the time derivative of ε1i in (24) is

ε̇1i = βi (ėi + αi ei ) , (25)

where αi and βi represent as:

αi = −ρ̇i/ρi , βi = v

(
ei
ρi

)
/ρi , (26)

and v(x) represents the derivative of ψ−1 (x) with
respect to x as:

v (x) = ψ̇−1 (x) = 1

x − bi
+ 1

b̄i − x
. (27)

From (25), the vector ε̇1 and its derivative can be
denoted as:

{
ε̇1 = ε2 = B (ė + Ae)

ε̇2 = B
(
ë + Ȧe + Aė

) , (28)

where A = diag (α1, · · · , αn) is a semipositive defi-
nite diagonal matrix and B = diag (β1, · · · , βn) is a
positive definite diagonal matrix. To facilitate the proof
subsequently, a proposition is declared in advance as:

Proposition 5 αi and βi in (26) satisfy αi � 0 and
βi > 2ρ−1

0i .

The proof of Proposition 5 is given in “Appendix
D”.

3.2 Fixed-time terminal sliding mode surface design

First, a smooth nonlinear function s p(x) ∈ C1 is
designed as:

s p (x) =
{
sigp (x) , |x |� δ

l1x + l2sig2 (x) + l3x3, |x |< δ
, (29)

where p and δ represent the two defined positive con-
stants satisfying 0 < p < 1 and 0 < δ � 1. l1, l2
and l3 are three constants about δ and p, which can be
calculated with

l1 =
(
1

2
p2 − 5

2
p + 3

)
δ p−1 (30)

l2 =
(
−p2 + 4p − 3

)
δ p−2 (31)

l3 =
(
1

2
p2 − 3

2
p + 1

)
δ p−3. (32)

With Lemma 2, the derivative of s p (x) with respect to
x can be calculated as:

ṡ p (x) =
{
p|x |p−1, |x |� δ

l1 + 2l2|x |+3l3x2, |x |< δ
. (33)

Then, another nonlinear function sq (x) is given as:

sq (x) = sigq (x) , (34)

where q > 1 is a defined positive constant. The deriva-
tive of sq (x) with respect to x can be written as:

ṡq (x) = q|x |q−1. (35)

To simplify the design and analysis of the sliding
surface and the controller, define the following vectors
and matrices as:

Sp (x) = [
s p (x1) , · · · , s p (xn)

]T (36)

F p (x) = diag
(
ṡ p (x1) , · · · , ṡ p (xn)

)
(37)

Sq (x) = [
sq (x1) , · · · , sq (xn)

]T (38)

Hq (x) = diag
(
ṡq (x1) , · · · , ṡq (xn)

)
. (39)
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Based on the vectors Sp (x) and Sq (x), a fixed-time
TSM surface is designed as:

s = B−1ε2 + K 1Sp (ε1) + K 2Sq (ε1) , (40)

where vectors ε1 and ε2 are defined in (24) and (28),
and K 1, K 2 ∈ R

n×n are two diagonal positive definite
matrices.

Remark 2 Different from e and ė used in [23], the pro-
posed sliding surface replaces them by ε1 and ε2. The
advantage of the proposed sliding surface is that it can
guarantee that the position error satisfies the PPB in
(12) and can converge to a defined small region within
fixed time. Moreover, unlike in [33] where only the e
and ė of the sliding surface in [23] are replaced, the pro-
posed nonlinear function s p (x) used in the proposed
sliding surface is continuous and smooth, and has a
faster convergence rate.

3.3 Approximate continuous fixed-time terminal
sliding mode controller design

Based on the proposed fixed-time sliding surface, a
nonsingular approximate continuous fixed-time ter-
minal sliding mode prescribed performance control
(CFTSMPPC) is designed as:

τ = τ 0 + τ 1 + τ 2 (41)

with

τ0 = M0 (q)
(
q̈d − Ȧe − Aė

)+ C0 (q, q̇) q̇ + G0 (q)

(42)

τ1 = −K0Sig
r (s) − M0 (q)

(
K1F

p (ε1)

+K2H
q (ε1)

)
ε2 (43)

τ2 = −u
s

‖s‖ (44)

and

u = 1

1 − γ

(
k + b0 + b1 ‖q‖ + b2 ‖q̇‖2

+γ ‖τ 0 + τ 1‖) , (45)

where K 0 ∈ R
n×n is a given positive-definite symmet-

ric matrix, r > 1 and k > 0 are two positive gains.
b0, b1, b2 and γ are positive constants, and γ is given
by

γ = m2 − m1

m2 + m1
, (46)

where m1 and m2 are two positive constants satisfying

m1 �
∥∥∥M−1 (q)

∥∥∥ � m2. (47)

Theorem 1 With the uncertain robotic manipulator
system (10) and the proposedCFTSMPPC in (41)-(45),
the following three facts hold true.

1. The transformed error ε1i globally converges to an
arbitrary small set Rδ = {ε1i | |ε1i |� δ} with the
settling time T and then goes zero exponentially.
The upper bound of the settling time Tmax includes
the reaching time Tr and the sliding time Ts. The
reaching time Tr is the period that the tracking tra-
jectory converges globally to the sliding mode sur-
face, and the sliding time Ts denotes the period
in which the tracking error converges to a defined
small domain of the origin. T, Tr and Ts can be
described by the following equalities:

T � Tmax = Tr + Ts (48)

Tr � 2

k (m1 + m2)
1
2

+ 2

n
1−r
2 λmin (K 0) (m1 + m2)

r+1
2 (r − 1)

(49)

Ts � 2− p+1
2 ρ0i

k1i (1 − p)
+ 2− q+1

2 ρ0i

k2i (q − 1)
. (50)

2. The position tracking error ei can remain within
the prescribed performance boundaries in (12) and
converge to the prescribed stable region Rb ={
ei |, biρ∞i < ei < b̄iρ∞i

}
within Ti in (20), and

then keeps within the region.
3. Generally, the boundary layer method [8] can be

applied to eliminate chattering in τ 2. Therefore,
(44) can be modified as:

τ 2 = −u
s

‖s‖ + s0
, (51)

where s0 is a small positive constant. Then, the
control torque of the proposed CFTSMPPC can be
regarded continuous and chattering-free, i.e., for
any moment, it has lim

t→t−
τ = lim

t→t+
τ .
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Proof First, the proof of Theorem 1 (1) is given. The
stability analysis of the proposed CFTSMPPC scheme
can be divided into the reaching phase and the sliding
phase.
Step 1. In the reaching phase, with (36)-(39) and the
sliding surface (40), M0 (q) ṡ can be derived as:

M0 (q) ṡ = B−1M0 (q) ε̇2 + M0 (q)
(
K 1F p (ε1) + K 2Hq (ε1)

)
ε2. (52)

Considering ε̇2 in (28) and the dynamic model in (10),
M0 (q) ε̇2 can be obtained by

M0 (q) ε̇2 = B (τ + ρ − C0 (q, q̇) q̇ − G0 (q))

+ M0 (q) B
(
Ȧe + Aė − q̈d

)
. (53)

Then, substituting (53) and the control law (41)-(45) in
(52), we have

M0 (q) ṡ = − 1

1 − γ
(
k + b0 + b1 ‖q‖ + b2 ‖q̇‖2 + γ ‖τ 0 + τ 1‖

) s
‖s‖

+ ρ − K 0Sigr (s) . (54)

The Lyapunov function can be defined as:

V1 = 1

2
sT M0 (q) s. (55)

Differentiating V1 with respect to time yields

V̇1 = sT M0 (q) ṡ

= sT
[
− 1

1 − γ

(
k + b0 + b1 ‖q‖ + b2 ‖q̇‖2

+γ ‖τ 0 + τ 1‖) s
‖s‖ + ρ − K 0Sigr (s)

]

= − ‖s‖
1 − γ

(
k + b0 + b1 ‖q‖ + b2 ‖q̇‖2

+γ ‖τ 0 + τ 1‖)
+ sT ρ − sT K 0Sigr (s) . (56)

Substituting (45) in (56) leads to

V̇1 � −γ ‖s‖ u − ‖s‖
(
k + b0 + b1 ‖q‖ + b2 ‖q̇‖2 + γ ‖τ 0 + τ 1‖

)

+ ‖s‖ ‖ρ‖ − sT K 0Sigr (s) . (57)

Considering the upper boundof the coupled uncertainty
in (19), (57) can lead to

V̇1 � −γ ‖s‖ u − k ‖s‖ − γ ‖s‖ ‖τ 0 + τ 1‖
+ γ ‖s‖ ‖τ‖ − sT K 0Sigr (s) . (58)

According to (41), we have

‖τ‖ � ‖τ 0 + τ 1‖ + ‖τ 2‖ . (59)

Then, substituting (59) in (58), it follows that

V̇1 � −k ‖s‖ − sT K 0Sigr (s)

� −k ‖s‖ − λmin (K 0)

(
n∑

i=1

|si |2
) r+1

2

. (60)

In light of Lemma 3, (60) can lead to

V̇1 � −n
1−r
2 λmin (K 0) ‖s‖r+1 − k ‖s‖ . (61)

Due to the fact that M0 (q) can be chosen as [40]:

M0 (q) = 2

m1 + m2
In, (62)

V1 can be written as:

V1 = 1

m1 + m2
‖s‖2. (63)

Then, combining with (63), (61) can be written as:

V̇1 + n
1−r
2 λmin (K 0) (m1 + m2)

r+1
2 V

r+1
2

+ k (m1 + m2)
1
2 V

1
2 � 0. (64)

As described in Lemma 1, and the fact r > 1, the
sliding surface s can globally converge to zero with the
reaching time Tr bounded by (49).
Step 2. In the reaching phase, the error convergence
enters the sliding phase once the sliding surface reaches
s = 0, and (40) can lead to

ε2i = −βi
(
k1i s

p (ε1i ) + k2i s
q (ε1i )

)
. (65)

Since s p (ε1i ) is a piecewise function of ε1i , there are
two cases for discussion.
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Case 1. If |ε1i |� δ, (65) can be expressed as:

ε2i = −βi k1i sig
p (ε1i ) − βi k2i sig

q (ε1i ) . (66)

The following Lyapunov function is considered as:

V2 = 1

2
ε21i . (67)

Taking the first derivative of (67), it has

V̇2 = ε1iε2i = −βi k1i |ε1i |p+1−βi k2i |ε1i |q+1. (68)

Considering Proposition 5, (68) satisfies

V̇2 < −ρ−1
0i k1i2

p+3
2 V

p+1
2

2 − ρ−1
0i k2i2

q+3
2 V

q+1
2

2 . (69)

ByLemma1, in the sliding phase, the transformed error
ε1i can converge to an arbitrary small set Rδ within a
fixed time Ts given in (50).
Case 2. If |ε1i |< δ, (65) can be written as:

ε2i = −βi k1i
(
l1ε1i + l2sig

2 (ε1i ) + l3ε
3
1i

)

−βi k2i sig
q (ε1i ) . (70)

Similarly, differentiating V2 with respect to time and
substituting (30)-(32) and (70) leads to

V̇2 = −βi k1i
(
l1ε

2
1i + l2|ε1i |3+l3ε

4
1i

)
− βi k2i |ε1i |q+1

= −βi k1iδ
p−1V2

⎡

⎢⎢
⎣
(
p2 − 5p + 6

)
− 2

3
2 δ−1

(
p2 − 4p + 3

)
V

1
2
2 +

(
2p2 − 6p + 4

)
δ−2V2

︸ ︷︷ ︸
f (V2)

⎤

⎥⎥
⎦

− 2
q+1
2 βi k2i V

q+1
2

2 . (71)

With |ε1i |< δ, we can have 0 � V2 < 1
2δ

2. Then, it
is easy to obtain f (V2) > 0, so (71) can yield

V̇2 < −2
q+1
2 βi k2i V

q+1
2

2 < 0. (72)

According to the Lyapunov stability theory [8], the
transformed error ε1i can converge to zero exponen-
tially when |ε1i |< δ. This completes the proof of The-
orem 1 (1).

Then, the proof of Theorem 1 (2) is given as follows.
Based on the above analysis, and Proposition 3,

we have ψ (ε1i ) ∈ (
bi , b̄i

)
. From Proposition 4 (1),

it has ρi (t) = ρ∞i for t � Ti . Combined with
ei = ρiψ (ε1i ) in (22), when t � Ti , the range of
tracking error can be bounded with

ei ∈ (ρ∞i bi , ρ∞i b̄i
)
. (73)

When t < Ti , the range of tracking error can be rep-
resented as (12). Hence, this completes the proof of
Theorem 1 (2).

Finally, the proof of Theorem 1 (3) is given as fol-
lows.

According to Lemma 4, to prove that τ in (41) is
continuous, it is sufficient to show that (42), (43) and
(51) are continuous functions. It is easy to obtain that
τ 0 is always continuous for e ∈ R

n . τ 1 in (43) and
τ 2 in (51) contain the vector consisting of the segment
function s p (x) and its first-order derivative ṡ p (x). If
s p (x) and its derivative ṡ p (x) both are continuous at
x = δ, we can have that τ 1 is continuous.

With δ > 0 in (29) and (33), we can obtain

lim
x→δ+ s p(x) = sigp (δ) = δ p (74)

lim
x→δ− s p(x) =

(
1

2
p2 − 5

2
p + 3

)
δ p

+
(
−p2 + 4p − 3

)
δ p

+
(
1

2
p2 − 3

2
p + 1

)
δ p = δ p (75)

lim
x→δ+ ṡ p(x) = p|δ|p−1= pδ p−1 (76)
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lim
x→δ− ṡ p(x) =

(
1

2
p2 − 5

2
p + 3

)
δ p−1

+ 2
(
−p2 + 4p − 3

)
δ p−1

+ 3

(
1

2
p2 − 3

2
p + 1

)
δ p−1 = pδ p−1.

(77)

Due to limx→δ+ s p(x) = limx→δ− s p(x) and
limx→δ+ ṡ p(x) = limx→δ− ṡ p(x), we can obtain that
s p (x) and ṡ p (x) is continuous at x = δ. This com-
pletes the proof of Theorem 1 (3). 
�
Remark 3 In [23,33], a nonlinear function similar to
the proposed s p(x) in τ 1 is expressed as:

ŝ p (x) =
{
sigp (x) , |x |� δ

δ p−1x, |x |< δ
. (78)

It is easy to calculate that the first-order derivative of
ŝ p (x) is a discontinuous function, which can cause sig-
nificant transient changes in the control torque and thus
damage the controller. In contrast, the control torque of
our proposed controller is continuous and chattering-
free according to Theorem 1(3).

Remark 4 When the transformed error ε1i tends to
zero, i.e., |ε1i |< δ, it can be calculated that the value of
the first derivative of s p(x) is larger than that of ŝ p (x).
Therefore, the proposed controller can obtain a faster
convergence rate to the neighborhood near the origin
than fixed-time controllers in [23,33].

Remark 5 Compared to the finite-time controller in
[4] without considering the uncertainty of the robotic
manipulator and external disturbances, and some fixed-
time controllers [23,24,33] regard the coupling uncer-
tainty of the robotic manipulator bounded by

‖ ρ̂ (t) ‖< b0 + b2 ‖ q̇ (t) ‖2 +γ ‖ τ ‖, (79)

the influence of the joint angle of the uncertain robotic
manipulator on its dynamics model is fully considered
in the proposed controller.

Remark 6 The proposed controller parameters should
be carefully chosen by the following principles. The
control parameters in PPF should satisfy 0 < ρ∞i <

|ei (0) |< ρ0i , Ti > 0 and σi > 2, where the smaller Ti
and the larger σi contribute to a faster convergence of

the system, but too small Ti and too large σi may lead to
actuator saturation or even instability. The value of σi
has a significant effect on the controller, and it should be
chosen close to 2. Then, constants m1 and m2 should
be chosen to satisfy the inequality (47); otherwise, it
can lead to torque chattering. After that, the other con-
trol parameters K 0, K 1, K 2, r > 1, k > 0, 0 < p <

1, 0 < δ � 1 and q > 1 should be chosen by trial-
and-error for a good tracking performance. Generally,
δ should be chosen as small as possible ensuring the
convergence accuracy of the system as long as the con-
trol torque allows. Smaller p contributes to fast tran-
sient response, and q should be chosen as small as
possible, they can have a large effect on the control
torque and should be modified carefully. Larger con-
trol gains K 0, K 1, K 2 and k contribute to faster con-
vergence rates but result in larger control inputs, so a
trade-off must be made between the control input and
the control performance.

4 Simulation results

In this section, two simulation examples are used to
demonstrate the effectiveness and advantages of the
proposed controller. First, a two-link robotic manipu-
lator is considered to illustrate the contribution of the
proposed controller in eliminating chattering and con-
straining tracking errors. In the second example, amore
complex 3-DOF robotic manipulator is considered to
illustrate the robustness of the proposed control scheme
against disturbances and other advantages by compar-
ing it with several different SMC schemes. In both sim-
ulation examples, the proposed CFTSMPPC use the
modified continuous controller in (51). All the simu-
lations are conducted using the Simulink of MATLAB
R2020a, with a time step size of 1 × 10−4 s.

Example 4.1 Considering a two-link robotic manipu-
lator depicted in Fig. 2, and being affected by the grav-
ity field [45].

The dynamic parameters of the two-link robotic
manipulator are chosen as: l1 = 1m, l2 = 0.8m,m1 =
0.5 kg,m2 = 1.5 kg, I1 = I2 = 5 kg · m2,
where li ,mi and Ii denote the length, mass, and iner-
tia of the link i , respectively, and g = 9.8 m/s2

is the acceleration of gravity. Considering the uncer-
tainty of dynamic model, the nominal values are set
as m0

1 = 0.6 kg,m0
2 = 1.8 kg and I 01 = I 02 =
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Fig. 2 Schematic of the two-link rigid robotic manipulator

Fig. 3 Position tracking errors

6 kg · m2. The time-varying external disturbances are
set as τ d = [2 sin(t) + 0.5 sin(200π t), cos(2t) +
0.5 sin(200π t)]T , and the reference trajectories are
set as qd = [

1.25 − 7
5 exp(−t) + 7

20 exp(−4t), 1.25

+ exp(−t) − 1
4 exp(−4t)

]T
(rad). The initial states

of the joints are given as q1(0) = −0.4, q2(0) =
2.5, q̇1(0) = q̇2(0) = 0.

To illustrate the advantages of the proposed con-
troller, the fixed-time sliding mode control (FTSMC)
in [23] is used as a comparator. Furthermore, the pro-
posed PPF is applied to FTSMC in [23], denoted as
FTSMPPC, to illustrate the effectiveness of our pro-
posed PPF. For a fair comparison, the control param-
eters of CFTSMPPC and FTSMPPC are set the same.
The parameters of the controllers are chosen in Table 1.

The simulation results are shown in Figs. 3, 4 and 5.
As shown in Fig. 3, all three control schemes complete
the tracking task. With the proposed PPF, the proposed
controller and FTSMPPC have higher tracking accu-
racy, and the tracking error can remain within the pre-

Fig. 4 Control input torque

Fig. 5 Tracking trajectories of the robotic manipulator in the
workspace

set PPB. It can be seen that the proposed CFTSMC has
a faster convergence rate when the tracking error con-
verges to zero, as described in Remark 4. Meanwhile,
from Fig. 4, there are two significant mutations in the
control torque of FTSMC and FTSMPPC, which are
caused by the discontinuity of the controllers. The pro-
posed controller eliminates the transient change of the
control torque by the proposed function s p(x), as stated
in Remark 3. Further, we show the tracking trajectories
of the robotic manipulator in the workspace in Fig. 5,
where the end of the robotic manipulator can quickly
track the desired trajectory by the proposed controller.
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Table 1 Simulation parameters of the CFTSMPPC, FTSMPPC and FTSMC

Controller Parameters

CFTSMPPC/ FTSMPPC ρ0 = [0.8; 0.6] , ρ∞ = [0.002; 0.002] , σ = [2.01; 2.01] , θ = [0.2; 0.2] , T = [5; 6] , δ = 0.01, q =
1.2, p = 0.5, r = 1.2,m1 = 0.09, m2 = 0.2, k = 1, s0 = 0.05, b0 = 12, b1 = 2.2, b2 = 2.8, K 0 =
0.1I2, K 1 = 0.2I2, K 2 = 0.6I2

FTSMC [23] δ = 0.01, q = 1.2, p = 0.5, r = 1.2,m1 = 0.09,m2 = 0.2, k = 1, b0 = 12, b2 = 2.8, K 0 = I2, K 1 =
1.5I2, K 2 = I2

Fig. 6 Architecture of the 3-DOF robotic manipulator

Example 4.2 In this example, a 3-DOF robotic manip-
ulator shown in Fig. 6 is utilized, and its dynamicmodel
has been given in [46]. The 3-DOF robotic manipu-
lator has two rotary joints and a prismatic joint, and
the two rotation angles of rotary joints are defined as
q1 and q2, and the translational of the prismatic joint
is defined as q3. Model parameters of the manipula-
tor are chosen as l1 = 0.3 m, l2 = 0.4 m,m1 =
m2 = 2 kg,m3 = 1 kg. The initial states are set
as q1 = q3 = 0.5, q2 = 1.2, q̇1(0) = q̇2(0) =
q̇3(0) = 0, and the reference trajectories are given
as qd = [

sin
(

π
5 t
)
, 1.5 cos

(
π
5 t
)
, 1 + 0.5 sin

(
π
5 t
)]T .

Considering the bounded time-varying disturbance as
τ d = [sin(t) + 1, 2 cos(t) + 0.5, 2 sin(t) + 1]T .

To demonstrate the advantages of the proposed
controller, three control schemes proposed in recent
years include the NFTSMC [7], adaptive nonsingu-
lar fast terminal sliding mode control (ANFTSMC)
[10], and singularity-free fixed-time sliding mode con-
trol (SFSMC) [24] are considered. The NFTSMC and
the ANFTSMC are finite-time stable, and the SFSMC
scheme is fixed-time stable. All control parameters are

chosen in Table 2 and set according to the values given
in the references.

It can be seen from Fig. 7 that the proposed con-
trol scheme can ensure that the tracking error is always
within the preset PPB range. From Fig. 7b, the con-
vergence accuracy of the steady-state error satisfies
|ei |< 8 × 10−11 even with time-varying external dis-
turbances. Figure 8 shows the position tracking error
of the joints, and the proposed control scheme has
a significantly higher accuracy control performance
and a faster transient response over the other control
schemes. Although the SFSMC can also guarantee the
fixed-time stability, it has the lowest position tracking
accuracy. Furthermore, for the velocity tracking error
of the robotic manipulator in Fig. 9, the proposed con-
trol scheme also shows a significantly higher tracking
accuracy. Figure 10 shows the control torques of several
control schemes, and we can obtain that the proposed
control scheme has a smooth and continuous torque,
and the control torque range is much smaller than those
of the other control schemes. Figure 11 shows the track-
ing trajectory of the end of the robotic manipulator
in the workspace. The two described finite-time con-
trollers have slower convergence rates, consistent with
the results shown in Fig. 8.

5 Comparative study and discussion

To quantitatively evaluate the performance of the con-
trol schemes in Example 2, we first present the actual
convergence time ts , Steady-state error eρ , maximum
control torque τmax, and the simulation results are
shown in Table 3. Considering external disturbances,
the proposed control scheme has significant advantages
over the existing control schemes regarding conver-
gence rate, tracking error, and the maximum control
torque. It is worth mentioning that although actuator
saturation is not considered in the simulation, in the
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Table 2 Simulation parameters of the CFTSMPPC, NFTSMC, ANFTSMC and SFSMC

Controller Parameters

CFTSMPPC ρ0 = 1.2I3×1, ρ∞ = 0.002I3×1, σ = 2.01I3×1, θ = 0.2I3×1, T = [5; 6; 7] , δ = 0.01, q = 1.2, p =
0.5, r = 1.2,m1 = 0.9, m2 = 1.1, k = 1, s0 = 0.05, b0 = 12, b1 = 2.2, b2 = 2.8, K 0 = 0.1I3, K 1 =
0.2I3, K 2 = 0.6I3

NFTSMC [7] Γ 1 = diag{2, 2, 2},Γ 2 = diag{5/3, 5/3, 5/3}, M1 = M2 = 2, b0 = 12, b1 = 2.2, b2 = 2.8

ANFTSMC [10] α = 0.2, β = 5/3, η = 0.5, k = 250, λ0 = λ1 = λ2 = 0.01, k1 = k2 = 1, b̂0(0) = b̂1(0) = b̂2(0) = 0

SFSMC [24] δ = 0.3, α = 0.7, r = 1.7, β = 1.9,C1 = C2 = 2I3, K 1 = K 2 = 5I3, v1 = 2.5, v2 = 0.5, a0 =
12, a1 = 2.2,m1 = 0.9,m2 = 1.1, k = 1

(a) (b)

Fig. 7 Position tracking errors of the proposed control scheme.
(a) Position tracking error with PPB. (b) Position tracking error
in the given range

Fig. 8 Position tracking errors with different control schemes

Fig. 9 Velocity tracking errors with different control schemes

actual control, the actuator may not be able to provide
a large control torque due to physical constraints. Com-
pared to other control schemes [7,10,24], the proposed
control scheme has a smaller control torque range that
contributes to its practical application.

Further, we introduce the definition of the following
three metrics to evaluate the control performance of the
above four control schemes, including the integrated
absolute error (IAE), the energy of control input (ECI),
and the absolute input chattering error (AICE) [25], and
they can be represented as:

|ei |IAE=
N∑

k=1

|ei (k) | (80)
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Table 3 The performance of the control schemes in Example 2

controller Joint 1 Joint 2 Joint 3 PPC Fixed-time

ts (s) eρ (rad) τmax(Nm) ts (s) eρ (rad) τmax(Nm) ts (s) eρ (rad) τmax(Nm)

CFTSMPPC 1.37 4.92 × 10−11 12.19 1.35 6.90 × 10−11 14.96 1.53 2.21 × 10−11 15.17 Yes Yes

NFTSMC [7] 1.77 1.89 × 10−5 39.62 1.47 1.52 × 10−5 203.39 1.75 5.25 × 10−6 100.52 No No

ANFTSMC [10] 1.79 2.81 × 10−6 26.24 1.47 4.21 × 10−6 20.64 1.76 2.60 × 10−6 39.44 No No

SFSMC [24] 2.20 3.08 × 10−4 23.41 2.12 1.30 × 10−4 29.04 2.35 1.23 × 10−4 45.37 No Yes

Fig. 10 Control input torques with different control schemes

Fig. 11 Tracking trajectories of the robotic manipulator in the
workspace

|τi |ECI=
N∑

k=1

|τi (k) |2 (81)

|Δτi |AICE=
N−1∑

k=1

|τi (k + 1) − τi (k) |, (82)

where N is the total number of samples, and i denotes
the joint number. To avoid the influence of initial error
on IAE, only values with time greater than 2 s are con-
sidered for |ei |. Meanwhile, for convenience, CFT is
used to represent the proposed CFTSMPPC scheme,
NFT is the NFTSMC scheme, ANF is the ANFTSMC
scheme, and SFS is the SFSMC scheme. As shown in
Figs. 12, 13 and 14, the proposed control scheme has
smaller IAE, ECI, and AICE than others. It can obtain
that the proposed controller has obvious advantages,
especially for tracking error and chattering suppres-
sion. According to Fig. 12, the proposed scheme only
consumes 8.84% energy of the NFTSMC scheme and
obtains a better tracking control performance. In con-
clusion, the proposed control scheme shows the excel-
lent performance in tracking accuracy, energy con-
sumption, and chattering suppression of the robotic
system, and is more suitable for practical control of
the robotic manipulator than these existing schemes.

The comparison of the above quantitative indicators
and the analysis of the two examples in Sect. 4 allow us
to highlight the contributions of the proposed control
scheme as follows:

1. Comparedwith the SMC schemeswithout PPB, the
designed PPF contributes to improving the track-
ing accuracy of the robotic manipulator and mak-
ing the tracking error converge to the prescribed
bounds. Compared with the existing SMC schemes
[7,10,23,24], the proposed controller can guaran-
tee the transient performance of the system and
improve the control accuracy. It is worth noting that
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Fig. 12 IAE of different controllers

Fig. 13 ECI of different controllers

the proposed PPF is a generic function that can also
be applied to other SMC algorithms.

2. Compared with the conventional SMC and the
finite-time SMC, the proposed fixed-time SMC
scheme is singularity-free and can guarantee that
the settling time is independent of the initial states.
Benefiting from the proposed sliding surface, the
proposed controller can achieve a faster conver-
gence of the tracking error despite requiring more
tuning parameters and more complex control tech-
niques compared to conventional SMC. Moreover,
with Definition 3, the proposed controller can be
considered as predefined-time stable if Ti � Tmax,
i.e., the tracking error of the system converges to

Fig. 14 AICE of different controllers

the region Rδ bounded with Ti in (20). Therefore,
the upper bound of the settling time can be eas-
ily determined by the parameter Ti , thus providing
high certainty in the system behavior, which is the
most significant advantage of the predefined-time
control [47].

3. The chattering-free control torque is a significant
advantage of the proposed scheme. Compared to
the fixed-time SMC schemes in [23] and [24], the
proposed controller ensures smooth control torque
without sacrificing the convergence rate even with
the coupled uncertainty, benefits to the designed
smoothing function s p (x). Therefore, the proposed
control scheme has significant advantages over the
existing SMC schemes regarding energy consump-
tion and chattering suppression.

6 Conclusion

In this work, an approximate CFTSMCwith prescribed
performance is proposed for uncertain robotic manip-
ulators. A fixed-time PPF is designed to ensure the
transient and steady-state performance of the position
tracking control within fixed time. Meanwhile, a novel
CFTSMPPC method is proposed to force the tracking
error of the uncertain robotic manipulator to converge
to a defined small region in a fixed time which is up
bounded by a constant independently of initial states
and then converge exponentially to zero. Based on the
Lyapunov stability theory, the fixed-time stability of
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the proposed controller is rigorously proved. Several
numerical simulation results illustrate the effectiveness
of the proposed controller in tracking control for robotic
manipulatorswith external disturbanceswhile ensuring
high tracking accuracy, low energy consumption, and
chattering-free. Some future work is focused on the
experimental evaluation of our control scheme through
a collaborative robotic manipulator to demonstrate the
effectiveness of our proposed control scheme in engi-
neering applications.
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Appendix A: The proof of Lemma 2

Proof For inequality (6), with a positive constant α, we
can obtain that

lim
x→0+

d|x |α+1

dx
= lim

x→0+
dxα+1

dx

= (α + 1) xα = (α + 1) |x |αsgn (x)
(A1)

lim
x→0−

d|x |α+1

dx
= lim

x→0−
d (−x)α+1

dx
= − (α + 1) (−x)α

= − (α + 1) |x |α= (α + 1) |x |αsgn (x) .

(A2)

Then, for inequality (7), we have

lim
x→0+

d|x |α+1sgn (x)

dx
= lim

x→0+
dxα+1

dx

= (α + 1) xα = (α + 1) |x |α
(A3)

lim
x→0−

d|x |α+1sgn (x)

dx
= lim

x→0−
d
[− (−x)α+1]

dx

= (α + 1) (−x)α = (α + 1) |x |α.

(A4)

Hence, inequalities (6) and (7) hold. 
�

Appendix B: The proof of Proposition 3

Proof The time derivative of ρi (t) is

ρ̇i (t) =
⎧
⎨

⎩
−σi

Ti
(ρ0i − ρ∞i )

(
1 − t

Ti

)σi−1
, 0 � t < Ti

0, t � Ti
.

(B5)

When 0 � t < Ti , it can be obtained that ρ̇i < 0 with
ρ0i > ρ∞i . In light of (20) and (B5), it has

lim
t→T−

i

ρi (t) = (ρ0i − ρ∞i )

(
1 − Ti

Ti

)σi

+ ρ∞i = ρ∞i = lim
t→T+

i

ρi (t) (B6)

lim
t→T−

i

ρ̇i (t) = −σi

Ti
(ρ0i − ρ∞i )

(
1 − Ti

Ti

)σi−1

= 0

= lim
t→T+

i

ρ̇i (t) . (B7)

Hence, ρi (t) is monotone decreasing bounded smooth
positive function. Due to the fact ρi (0) = ρ0i and
ρi (∞) = ρ∞i , we can get 0 < ρ∞i � ρi (t) � ρ0i .
With (B6), we have lim

t→Ti
ρi (t) = ρ∞i , The proof of

Proposition 3. 
�

Appendix C: The proof of Proposition 4

Proof The derivative of ψ (x) with respect to x is

ψ̇ (x) = −bi b̄i exp (x)
(
b̄i − bi

)

(
bi exp (x) − b̄i

)2 . (C8)

It is easy to haveψ (0) = 0. According to bi < 0 < b̄i ,
we have ψ̇ (x) > 0, hence ψ (x) is a monotonically

increasing function. It has ψ (x)
lim x→∞

= bi b̄i (exp(∞)−1)
bi exp(∞)−b̄i

=
b̄i and ψ (x)

lim x→−∞
= bi b̄i (exp(−∞)−1)

bi exp(−∞)−b̄i
= bi , so we can

have ψ (x) ∈ (bi , b̄i
)
. According to (12), it can obtain

ei ∈ (
biρi (t), b̄iρi (t)

)
, so Proposition 4 has been

proved. 
�
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Appendix D: The proof of Proposition 5

Proof FromProposition 3, we have ρi > 0 and ρ̇i � 0.
Considering αi defined in (26), it can obtain αi � 0.
From Proposition 4, we can have ei (t)

ρi (t)
− bi > 0 and

b̄i − ei (t)
ρi (t)

> 0. According to the triangle inequality

a + b � 2
√
ab with a � 0 and b � 0, it has

βi =
(

1

ei/ρi − bi
+ 1

b̄i − ei/ρi

)
/ρi

� 2

ρi

√
1

(
ei/ρi − bi

) (
b̄i − ei/ρi

) . (D9)

If and only if 1
ei /ρi−bi

= 1
b̄i−ei /ρi

, the equality in (D9)

holds, which means that βi can get the minimum value

when ei
ρi

= bi+b̄i
2 . As a consequence, βi satisfies

βi � 4

ρi
(
b̄i − bi

) . (D10)

From (13), it has b̄i − bi < 2, then we can have βi >

2ρ−1
0i . Proposition 5 has been proved. 
�
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