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Abstract: The aircraft anti-skid braking system (AABS) plays an important role in aircraft taking off,
taxiing, and safe landing. In addition to the disturbances from the complex runway environment,
potential component faults, such as actuators faults, can also reduce the safety and reliability of
AABS. To meet the increasing performance requirements of AABS under fault and disturbance
conditions, a novel reconfiguration controller based on linear active disturbance rejection control
combined with deep reinforcement learning was proposed in this paper. The proposed controller
treated component faults, external perturbations, and measurement noise as the total disturbances.
The twin delayed deep deterministic policy gradient algorithm (TD3) was introduced to realize the
parameter self-adjustments of both the extended state observer and the state error feedback law. The
action space, state space, reward function, and network structure for the algorithm training were
properly designed, so that the total disturbances could be estimated and compensated for more
accurately. The simulation results validated the environmental adaptability and robustness of the
proposed reconfiguration controller.

Keywords: aircraft anti-skid braking system; actuator faults; reconfiguration control; linear active-
disturbance rejection control; deep reinforcement learning; twin delayed deep deterministic policy
gradient algorithm

1. Introduction

The aircraft anti-skid braking system (AABS) is an essential airborne utilities system to
ensure the safe and smooth landing of aircraft [1]. With the development of aircraft towards
high speed and large tonnage, the performance requirements of AABS are increasing.
Moreover, AABS is a complex system with strong nonlinearity, strong coupling, and time-
varying parameters, and is sensitive to the runway environment [2]. These characteristics
make AABS controller design an interesting and challenging topic.

The most widely used control method in practice is PID + PBM, which is a speed
differential control law. However, it suffers from low-speed slipping and underutilization
of ground bonding forces, making it difficult to meet high performance requirements. To
this end, researchers have proposed many advanced control methods to improve the AABS
performance, such as mixed slip deceleration PID control [3], model predictive control [4],
extremum-seeking control [5], sliding mode control [6], reinforcement Q-learning control [7],
and so on. Zhang et al. [8] proposed a feedback linearization controller with a prescribed
performance function to ensure the transient and steady-state braking performance. Qiu
et al. [9] combined backstepping dynamic surface control with an asymmetric barrier
Lyapunov function to obtain a robust tracking response in the presence of disturbance
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and runway surface transitions. Mirzaei et al. [10] developed a fuzzy braking controller
optimized by a genetic algorithm and introduced an error-based global optimization
approach for fast convergence near the optimum point. The above-mentioned works
provide an in-depth study on AABS control; however, the adverse effects caused by typical
component faults such as actuator faults are neglected. Since most AABS are designed
based on hydraulic control systems, the long hydraulic pipes create an enormous risk of
air mixing with oil, and internal leakage. Without regular maintenance, it is easy to cause
functional degradation or even failure, which raises many security concerns [11,12]. How
to ensure the stability and the acceptable braking performance of AABS after actuator faults
becomes a key issue.

In order to actually improve the safety and reliability of AABS, the fault probability can
be reduced by reliability design and redundant technology on the one hand [13]. However,
due to the production factors (cost/weight/technological level), the redundancy of aircraft
components is so limited that the system reliability is hard to increase. On the other hand,
fault-tolerant control (FTC) technology can be introduced into the AABS controller design,
which is the future development direction of AABS and the key technology that needs
urgent attention [14]. Reconfiguration control is a popular branch of FTC that has been
widely used in many safety-critical systems, especially in aerospace engineering [15,16].
The essence of reconfiguration control is to consider the possible faults of the plant in the
controller design process. When component faults occur, the fault system information
is used to reconfigure the controller structure or parameters automatically [17]. In this
way, the adverse effects caused by faults can be restrained or eliminated, thus realizing
an asymptotically stable and acceptable performance of the closed-loop system. A num-
ber of common reconfiguration control methods can be classified as follows: adaptive
control [18,19], multi-model switching control [20], sliding mode control [21], fuzzy con-
trol [22], other robust control [23], etc. In addition, the characteristics of AABS increase the
difficulty of accurate modeling, and many nonlinear reconfiguration control methods are
complex and relatively hard to apply in engineering. Therefore, it is crucial to design a
reconfiguration controller with a clear structure, and which is model-independent, strong
fault-perturbation resistant, and easy to implement.

Han retained the essence of PID control and proposed an active disturbance rejection
control (ADRC) technique that requires low model accuracy and shows good control
performance [24]. ADRC can estimate disturbances in internal and external systems and
compensate for them [25]. Furthermore, ADRC has been widely used in FTC system
design because of its obvious advantages in solving control problems of nonlinear models
with uncertainty and strong disturbances [26–28]. Although the structure is not difficult
to implement with modern digital computer technology, ADRC needs to tune a bunch
of parameters which makes it hard to use in practice [29]. To overcome the difficulty,
Gao proposed linear active disturbance rejection control (LADRC), which is based on
linear extended state observer (LESO) and linear state error feedback (LSEF) [30,31]. The
bandwidth tuning method greatly reduced the number of LADRC parameters. LADRC
has been applied to solve various control problems [32–34].

However, it is well known that a controller with fixed parameters may not be able to
maintain the acceptable (rated or degraded) performance of a fault system. For this reason,
some advanced algorithms with parameter adaptive capabilities have been introduced by
researchers that further improve the robustness and environmental adaptability of ADRC,
such as neural networks [35,36], fuzzy logic [37,38], and the sliding mode [39,40]. With the
development of artificial intelligence techniques, reinforcement learning has been applied
to control science and engineering [41,42], and good results have been achieved. Yuan
et al. proposed a novel online control algorithm for a thickener which is based on rein-
forcement learning [43]. Pang et al. studied the infinite-horizon adaptive optimal control of
continuous-time linear periodic systems, using reinforcement learning techniques [44]. A
Q-learning-based adaptive method for ADRC parameters was proposed by Chen et al. and
has been applied to the ship course control [45].
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Motivated by the above observations, in this paper, a reconfiguration control scheme
via LADRC combined with deep reinforcement learning was developed for AABS which is
subject to various fault perturbations. The proposed reconfiguration control method is a
remarkable control strategy compared to previous methods for three reasons:

(1) AABS is extended with a new state variable, which is the sum of all unknown
dynamics and disturbances not noticed in the fault-free system description. This state
variable can be estimated using LESO. It indirectly simplifies the AABS modeling;

(2) Artificial intelligence technology is introduced and combined with the traditional
control method to solve special control problems. By combining LADRC with the deep
reinforcement learning TD3 algorithm, the selection of controller parameters is equivalent
to the choice of agent actions. The parameter adaptive capabilities of LESO and LSEF
are endowed through the continuous interaction between the agent and the environment,
which not only eliminates the tedious manual tuning of the parameters, but also results in
more accurate estimation and compensation for the adverse effects of fault perturbations;

(3) It is a data-driven robust control strategy that does not require any additional
fault detection or identification (FDI) module, while the controller parameters are adaptive.
Therefore, the proposed method corresponds to a novel combination of active reconfigura-
tion control and FDI-free reconfiguration control, which makes it an interesting solution
under unknown fault conditions.

The paper is organized as follows. Section 2 describes AABS dynamics with an
actuator fault factor. The reconfiguration controller is presented in Section 3. The simulation
results are presented to demonstrate the merits of the proposed method in Section 4, and
conclusions are drawn in Section 5.

2. AABS Modeling

The AABS mainly consists of the following components: aircraft fuselage, landing gear,
wheels, a hydraulic servo system, a braking device, and an anti-skid braking controller.
The subsystems are strongly coupled and exhibit strong nonlinearity and complexity.

Based on the actual process and objective facts of anti-skid braking, the following
reasonable assumptions can be made [46]:

(1) The aircraft fuselage is regarded as a rigid body with concentrated mass;
(2) The gyroscopic moment generated by the engine rotor is not considered during the

aircraft braking process;
(3) The crosswind effect is ignored;
(4) Only the longitudinal deformation of the tire is taken into account and the deformation

of the ground is ignored;
(5) All wheels are the same and controlled synchronously.

2.1. Aircraft Fuselage Dynamics

The force diagram of the aircraft fuselage is shown in Figure 1 and the specific param-
eters described in the diagram are shown in Table 1.
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of gravity 1.076 m 
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xC  Aerodynamic drag coefficient 0.1027 

yC  Aerodynamic lift coefficient 0.6 

xsC  Parachute drag coefficient 0.75 

0T′  Intimal engine force 426 kg 

vK  Velocity coefficient of engine 1 kg·s/m 
ρ  Air density 4000kg·s2/m4 

Figure 1. Force diagram of aircraft fuselage.
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Table 1. Parameters of aircraft fuselage dynamics.

Name Description Value

H Center of gravity height
y Center of gravity height variation
V Aircraft speed
T0 Engine force
Fx Aerodynamic drag
Fy Aerodynamic lift
Fs Parachute drag
f1 Braking friction force between main wheel and ground
f2 Braking friction force between front wheel and ground

N1 Main wheel support force
N2 Front wheel support force
m Mass of the aircraft 1761 kg
g Gravitational acceleration 9.8 m/s2

ht
Distance between engine force line

and center of gravity 0.1 m

hs
Distance between parachute drag line

and center of gravity 0.67 m

a Distance between main wheel and center of gravity 1.076 m
b Distance between front wheel and center of gravity 6.727 m
I Fuselage inertia 4000 kg·s2·m
S Wing aera 50.88 m2

Ss Parachute area 20 m2

Cx Aerodynamic drag coefficient 0.1027
Cy Aerodynamic lift coefficient 0.6
Cxs Parachute drag coefficient 0.75
T′0 Intimal engine force 426 kg
Kv Velocity coefficient of engine 1 kg·s/m
ρ Air density 4000 kg·s2/m4

The aircraft force and torque equilibrium equations are:
m

.
V + Fx + Fs + f1 + f2 − T0 = 0

Fy + N1 + N2 −mg = 0

N2b + Fshs − N1a− T0ht − f1H − f2H = 0

(1)

According to the influence of aerodynamic characteristics, we can obtain [46]:

T0 = T′0 + KvV

Fx =
1
2

ρCxSV2

Fy =
1
2

ρCySV2

Fs =
1
2

ρCxsSsV2

f1 = µ1N1

f2 = µ2N2

(2)

2.2. Landing Gear Dynamics

The main function of the landing gear is to support and buffer the aircraft, thus
improving the longitudinal and vertical forces. In addition to the wheel and braking device,
the struts, buffers, and torque arm are also the main components of the landing gear. In this
paper, it is assumed that the stiffness of the torque arm is large enough, and the torsional
freedom of the wheel with respect to the strut and the buffer is ignored, so the torque arm
is not considered.
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The buffer can be reasonably simplified as a mass-spring-damping system [46], and
the force acting on the aircraft fuselage by the buffer can be described as: N1 = K1X1 + C1

.
X

2
1

N2 = K2X2 + C2
.

X
2
2

(3)

{
X1 = a + y
X2 = −b + y

(4)

whose parameters are shown in Table 2.

Table 2. Parameters of the buffer.

Name Description Value

X1 Main buffer compression
X2 Front buffer compression
K1 Main buffer stiffness coefficient 42,529
K2 Front buffer stiffness coefficient 2500
C1 Main buffer damping coefficient 800
C2 Front buffer damping coefficient 800

Due to the non-rigid connection between the landing gear and the aircraft fuselage,
horizontal and angular displacements are generated under the action of braking forces.
However, the struts are cantilever beams, and their angular displacements are very small
and negligible. Therefore, the lateral stiffness model can be expressed by the following
equivalent second-order equation:

da =
− f1

K0
1

W2
n

s2 +
2ξ

Wn
s + 1

dV =
d
dt
(da)

(5)

whose parameters are shown in Table 3.

Table 3. Parameters of the landing gear lateral stiffness model.

Name Description Value

da Navigation vibration displacement Please see Equation (5)
dV Navigation vibration speed Please see Equation (5)
K0 Dynamic stiffness coefficient 536,000
ξ Dynamic stiffness coefficient 0.2

Wn Equivalent model natural frequency 60 Hz

2.3. Wheel Dynamics

The force diagram of the main wheel brake is shown in Figure 2.
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It can be seen that during the taxiing, the main wheel is subjected to a combined effect
of the braking torque Ms and the ground friction torque Mj. Due to the effect of the lateral
stiffness, there is a longitudinal axle velocity Vzx along the fuselage, which is superimposed
by the aircraft velocity V and the navigation vibration velocity dV . The dynamics equation
of the main wheel is [46]: 

.
ω =

Mj −Ms

J
+

Vzx

Rg

Vw = ωRg

Vzx = V + dV

Rg = R− Nkσ

Mj = µNRgn

(6)

whose parameters are shown in Table 4.

Table 4. Parameters of the main wheel.

Name Description Value

ω Main wheel angular velocity
.

ω Main wheel angular acceleration
Vw Main wheel line speed
Rg Main wheel rolling radius
N Radical load
J Main wheel inertia 1.855 kg·s2·m
R Wheel free radius 0.4 m
kσ Tire compression coefficient 1.07 × 10−5 m/kg
n Equivalent model natural frequency 4

During the braking, the tires are subjected to the braking torque that keeps the aircraft
speed always greater than the wheel speed, that is V > Vw. Thus, the slip ratio λ is defined
to represent the slip motion ratio of the wheels relative to the runway. For the main wheel,
using Vzx instead of V to calculate λ can avoid false brake release due to landing gear
deformation, thus effectively reducing the landing gear walk situation [46]. The following
equation is used to calculate the slip rate in this paper:

λ =
Vzx −Vw

Vzx
(7)

The tire–runway combination coefficient is related to many factors, including real-time
runway conditions, aircraft speed, slip rate, and so on. A simple empirical formula called
‘magic formula’ developed by Pacejka [47] is widely used to calculate and can be expressed
as follows:

µ(λ, τj) = τ1 sin(τ2arctg(τ3λ)) (8)

where τj(j = 1, 2, 3), τ1, τ2, τ3 are peak factor, stiffness factor, and curve shape factor,
respectively. Table 5 lists the specific parameters for several different runway statuses [48].

Table 5. Parameters of the runway status.

Runway Status τ1 τ2 τ3

Dry runway 0.85 1.5344 14.5
Wet runway 0.40 2.0 8.2

Snow runway 0.28 2.0875 10
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2.4. Hydraulic Servo System and Braking Device Modeling

Due to the complex structure of the hydraulic servo system, in this paper, some
simplifications have been made so that only electro-hydraulic servo valves and pipes are
considered. Their transfer functions are given as follows:

M(s) =
Ksv

s2

ω2
sv

+
2ξsvs
ωsv

+ 1

L(s) =
Kp

Tps + 1

(9)

whose parameters are shown in Table 6.
It should be noted that the anti-skid braking controller should realize both braking

control and anti-skid control. To this end, there is an approximately linear relationship
between the brake pressure P and the control current Ic, which can be described as follows:

P = −Ic M(s)L(s) + P0 (10)

where P0 = 1× 107 Pa.
The braking device serves to convert the brake pressure into brake torque, which is

calculated as follows:
Ms = µmcNmcPRmc (11)

whose parameters are shown in Table 6.

Table 6. Parameters of the hydraulic servo system.

Name Description Value

Ksv Servo valve gain 1
ωsv Servo valve natural frequency 17.7074 rad/s
ξsv Servo valve damping ratio 0.36
Kp Main wheel rolling radius 1
Tp Pipe gain 0.01

µmc Friction coefficient of brake material 0.23
Nmc Number of friction surfaces 4
Rmc Effective brake friction radius 0.142 m

The hydraulic servo system, as the actuator of AABS, is inevitably subject to some
potential faults. Problems such as hydraulic oil mixing with air, internal leakage, and
vibration seriously affect the efficiency of the hydraulic servo system [49]. Therefore, in
this paper, the loss of efficiency (LOE) is introduced to represent a typical AABS actuator
fault, which is characterized by a decrease in the actuator gain from its nominal value [26].
In the case of an actuator LOE fault, the brake pressure generated by the hydraulic servo
system deviates from the commanded output expected by the controller. In other words,
one instead has:

Pf ault = kLOEP (12)

where Pf ault represents the actuator actual output, and kLOE ∈ (0, 1] refers the LOE fault
factor.

Remark 1. n% LOE is equivalent to the LOE fault gain kLOE = 1− n/100, kLOE = 1 indicates
that the actuator is fault-free.

Remark 2. Note that if the components do not always have the same characteristics as those of
fault-free, it is necessary to establish the fault model. This not only provides an accurate model for
the next reconfiguration on controller design, but also ensures that the adverse effects caused by
fault perturbation can be effectively observed and compensated for.
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Thus, Equation (11) can be rewritten as follows:

Ms
′ = µmcNmcPf aultRmc (13)

where Ms
′ is the actual brake torque.

Remark 3. As can be seen from the entire modeling process described above, AABS is nonlinear
and highly coupled. The actuator fault leads to a sudden jump in the model parameters with greater
internal perturbation compared to the fault-free case. Meanwhile, external disturbances such as the
runway environment cannot be ignored.

3. Reconfiguration Controller Design
3.1. Problem Description

Despite the aircraft having three degrees of freedom, only longitudinal taxiing is
focused on in AABS. In this paper, AABS adopted the slip speed control type [48], that is,
the braked wheel speed Vω was used as the reference input, and the aircraft speed V was
dynamically adjusted by the AABS controller to achieve anti-skid braking. According to
Section 2, the AABS longitudinal dynamics model can be rewritten as follows:

..
V = f (V,

.
V, vout, v f ) + bvu (14)

where f (·) is the controlled plant dynamics, vout represents the external disturbance, v f is
an uncertain term including component faults, bv is the control gain, and u is the system
input.

Let x1 = V, x2 =
.

V. Set f (V,
.

V, vout, v f ) as the system generalized total perturbation

and extend it to a new system state variable, i.e., x3 = f (V,
.

V, vout, v f ). Then the state
equation of System (14) can be obtained:

.
x1 = x2.
x2 = x3 + bvu
.
x3 = h(V,

.
V, vout, v f )

(15)

where x1, x2, x3 are system state variables, and h(V,
.

V, vout, v f ) =
.
f (V,

.
V, vout, v f ).

Assumption 1. Both the system generalized total perturbation f (V,
.

V, vout, v f ) and its dif-

ferential h(V,
.

V, vout, v f ) are bounded, i.e.,


∣∣∣ f (V,

.
V, vout, v f )

∣∣∣≤ σ1∣∣∣h(V,
.

V, vout, v f )
∣∣∣≤ σ2

, where σ1, σ2 are two

positive numbers.

For System (14), affected by the total perturbation, a LADRC reconfiguration controller
was designed next to restrain or eliminate the adverse effects, thus realizing the asymptotic
stability and acceptable performance of the closed-loop system.

3.2. LADRC Controller Design

The control schematic of the LADRC is shown in Figure 3.
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Firstly, the following tracking differentiator (TD) was designed:
e(k) = v1(k)− vr(k)

fh = fhan(e(k), v2(k), r, h)
v1(k + 1) = v1(k) + hv2(k)

v2(k + 1) = v2(k) + hfh

(16)

where vr is the desired input, v1 is the transition process of vr, v2 is the derivative of v1,
and r and h are adjusted accordingly as filter coefficients. The function fhan(·) is defined
as follows:

fhan(x1, x2, r, h) = −
{

rsgn(a), |a| > d0

r a
d , |a| ≤ d0

(17)

We established the following form, LESO:
.
z1 = z2 − β1(z1 − v1)
.
z2 = z3 − β2(z1 − v1) + bvu
.
z3 = −β3(z1 − v1)

(18)

Selecting the suitable observer gains (β1, β2, β3), LESO then enabled real-time obser-
vation of the variables in System (14) [50], i.e., z1 → v1 , z2 → v2 , z3 → f (V,

.
V, vout, v f ) .

Set
u =

u0 − z3

bv
(19)

When z3 can estimate f (V,
.

V, vout, v f ) without error, let LSEF be:
e1 = v1 − z1
e2 = v2 − z2
u0 = k1e1 + k2e2

(20)

then the system (15) can be simplified to a double integral series structure:

..
V = ( f (V,

.
V, vout, v f )− z3) + u0 ≈ u0 (21)

Further, the bandwidth method [50] was used and we could obtain:
β1 = 3ωo

β2 = 3ω2
o

β3 = ω3
o

(22)

where ωo is the observer bandwidth. The larger ωo is, the smaller LESO observation errors
are. However, the sensitivity of the system to noise may be increased, so the ωo selection
requires comprehensive consideration.

Similarly, according to the parameterization method and engineering experience [32],
the LSEF parameters can be chosen as:{

k1 = ω2
c

k2 = 2ξωc
(23)

where ωc is the controller bandwidth, ξ is the damping ratio, and in this paper ξ = 1. There-
fore, the parameter tuning problem of LADRC controller was simplified to the observer
bandwidth ωo and controller bandwidth ωc configuration.
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3.3. TD3 Algorithm

TD3 algorithm is an offline RL algorithm based on DDPG proposed in 2015 [51].
This approach adopted a similar method implemented in Double-DQN [52] to reduce the
overestimation in function approximation, delaying the update frequency in the actor–
network, and adding noises to target the actor–network to release the sensitivity and
instability in DDPG. The structure of TD3 is shown in Figure 4.

Aerospace 2022, 9, x FOR PEER REVIEW 11 of 27 
 

 

where oω  is the observer bandwidth. The larger oω  is, the smaller LESO observation er-

rors are. However, the sensitivity of the system to noise may be increased, so the oω  se-
lection requires comprehensive consideration. 

Similarly, according to the parameterization method and engineering experience 
[32], the LSEF parameters can be chosen as: 

2
1

2 2
c

c

k
k

ω
ξω

 =


=
 (23)

where cω  is the controller bandwidth, ξ  is the damping ratio, and in this paper 1ξ = . 
Therefore, the parameter tuning problem of LADRC controller was simplified to the ob-
server bandwidth oω  and controller bandwidth cω  configuration. 

3.3. TD3 Algorithm 
TD3 algorithm is an offline RL algorithm based on DDPG proposed in 2015 [51]. This 

approach adopted a similar method implemented in Double-DQN [52] to reduce the over-
estimation in function approximation, delaying the update frequency in the actor–net-
work, and adding noises to target the actor–network to release the sensitivity and insta-
bility in DDPG. The structure of TD3 is shown in Figure 4. 

Critic Network Actor Network

TD error update

Compared target y

DPG update

critic1 critic2

target1 target2

actor

target

( )1, , ,t t t ts a r s +

Replay Buffer

′є

1θ

1θ′ 2θ′

ta

Environment
φ

φ′

2θ

: data flow

: parameter update

( )tsμ ta

Store samples

N

1
Qθ

Agent

 
Figure 4. Structure of TD3. 

Updating the parameters of critic networks by minimizing loss: 

( )( ),
i

L N y Q s aθ
−=  −

21  (24)

where s is the current state, a  is the current action, and ( ),
i

Q s aθ  stands for the pa-

rameterized state-action value function Q  with parameter iθ . 

( )'
1,2

min ,
ii

y r Q s a
θ

γ
=

′= +   (25)

is the target value of the function ( ),Q s aθ , [ ]0,1γ ∈  is the discount factor, and the target 
action is defined as: 

( )a sφπ ′ ′= + є  (26)

Figure 4. Structure of TD3.

Updating the parameters of critic networks by minimizing loss:

L = N−1 ∑
(
y−Qθi (s, a)

)2 (24)

where s is the current state, a is the current action, and Qθi (s, a) stands for the parameterized
state-action value function Q with parameter θi.

y = r + γmin
i=1,2

Qθ′i

(
s′, ã

)
(25)

is the target value of the function Qθ(s, a), γ ∈ [0, 1] is the discount factor, and the target
action is defined as:

ã = πφ′(s) + ε′ (26)

where noise ε′ follows a clipped normal distribution clip [N (0, σ),−c, c], c > 0. This
implies that ε′ is a random variable with N (0, σ) and belongs to the interval [−c, c].

The inputs of the actor network are both Qθ(s, a) from the critic network and the
minibatch form the memory, and the output is the action given by:

at = πφ(st) + ε (27)

where φ is the parameter of the actor network, and πφ is the output form the actor network,
which is a deterministic and continuous value. Noise ε follows the normal distribution
N (0, σ), and is added for exploration.

Updating the parameters of the actor–network based on deterministic gradient strategy:

∇φ J(φ) = N−1 ∑∇a Qθ1(s, a)
∣∣
a=πφ(s)

∇φπφ(s) (28)
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TD3 updates the actor–network and all three target networks every d steps periodically
in order to avoid a too fast convergence. The parameters of the critic target networks and
the actor–target network are updated according to:{

θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ + (1− τ)φ′

(29)

The pseudocode of the proposed approach is given in Algorithm 1.

Algorithm 1. TD3

1 Initialize critic networks Qθ1 , Qθ2 and actor network πφ with random parameters θ1, θ2, φ;
2 Initialize target networks Qθ′1

, Qθ′2
with θ′1 ← θ1 , θ′2 ← θ2 , and target actor network πφ′ with

φ′ ← φ ;
3 Initialize replay bufferR;
4 For every episode:
5 Initialize state s;
6 Repeat;
7 Select action with exploration noise a ∼ π(a) +N (0, σ);
8 Observe reward r and new state s′;
9 Store transition tuple (s, a, r, s′) inR;
10 Sample mini-batch of N transitions (s, a, r, s′) fromR;
11 Attain ã← πφ′ (s) + ε , where ε ∼ clip(N (0, σ),−c, c);

12 Update critics θi ← minθi N
−1 ∑

(
y−Qθi (s, a)

)2 ;
13 Every d steps:
14 Update φ by the deterministic policy gradient:
15 ∇φ J(φ) = N−1 ∑∇a Qθ1 (s, a)

∣∣
a=πφ(s)

∇φπφ(s);

16 Update target network:
17 θ′i ← τθi + (1− τ)θ′i
18 φ′ ← τφ + (1− τ)φ′ ;
19 s← s′ ;
20 Until s reaches terminal state sT .

3.4. TD3-LADRC Reconfiguration Controller Design

Lack of environment adaptability, poor control performance, and weak robustness are
the main shortcomings of parameter-fixed controllers [36]. When a fault occurs, it may not
be possible to maintain the acceptable (rated or degraded) performance of the damaged
system. Motivated by the above analysis, a reconfiguration controller called TD3-LADRC
is proposed in this paper, and its control schematic is shown in Figure 5.
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The deep reinforcement learning algorithm TD3 is introduced to realize the LADRC
parameters adaption. The details of each part have been described above. The selection of
control parameters is treated as the agent’s action at, and the response result of the control
system st is considered as the state, i.e., as follows:
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 at = [ωo, ωc]
T

st = sobs =
[
e,

.
e, V,

.
V
]T (30)

where e = V −Vw, and sobs is the agent observations vector.
The range of each controller parameter is selected as follows:{

ωc ∈ [0, 4]

ωo ∈ [100, 200]
(31)

The reward function plays a crucial role in the reinforcement learning algorithm. The
appropriateness of the reward function design directly affects the training effect of the
reinforcement learning, which in turn affects the effectiveness of the whole reconfiguration
controller. According to the working characteristics of AABS, the following reward function
is selected after several attempts to ensure stable and smooth braking:

rt = 1
(
−6 ≤

.
V ≤ −4

)
+ 0
( .

V > −4 ‖
.

V < −6
)
− 100(V < 2 ‖ e > 20) (32)

The stop conditions for each training episode are as follows, and one of the three
will do:

(1) The aircraft speed V < 2;
(2) The error between main wheel speed and aircraft speed e > 20;
(3) Simulation time t > 20 s.

Remark 4. TD3, TD, LESO, and LSEF together constitute the TD3-LADRC controller. Compared
to normal LADRC, TD3-LADRC realizes the parameter adaption that makes the controller recon-
figurable. The robustness and immunity are greatly improved. It can effectively compensate the
adverse effects caused by the total perturbations including faults.

3.5. TD3-LESO Estimation Capability Analysis

In order to prove the stability of the whole closed-loop system, the convergence of
TD3-LESO is first analyzed in conjunction with Assumption 1 [53]. Let the estimation errors
of TD3-LESO be x̃i = xi − zi, i = 1, 2, 3, and the estimation error equation of the observer
can be obtained as: 

.
x̃1 = x̃2 − 3ωo x̃1.
x̃2 = x̃3 − 3ω2

o x̃1.
x̃3 = h(V,

.
V, vout, v f )−ω3

o x̃1

(33)

Let εi =
x̃i

ωi−1
o

, i = 1, 2, 3, then Equation (33) can be rewritten as:

.
ε = ωo A3ε + B

h(V,
.

V, vout, v f )

ω2
o

(34)

where A3 =

−3 1 0
−3 0 1
−1 0 0

, B = [0 0 1]T.

Based on Assumption 1 and Theorem 2 in Reference [54], the following theorem can
be obtained:

Theorem 1. Under the condition that h(V,
.

V, vout, v f ) is bounded, the TD3-LESO estimation
errors are bounded and their upper bound decrease monotonically with the increase of the observer
bandwidth ωo.
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The proof is given in the Appendix A. Thus, it is clear that there are three positive
numbers υi, i = 1, 2, 3, such that the state estimation error |x̃i|≤ υi holds, i.e., the TD3-LESO
estimation errors are bounded, which can effectively estimate the states of the controlled
plant and the total perturbation.

3.6. Stability Analysis of Closed-loop System

The closed-loop system consisted of the control laws (19) and (20), and the controlled
object (21) is:

..
V = f − z3 + k1e1 + k2e2 (35)

If we defined the tracking errors as εi = vi − xi, i = 1, 2, then we could attain:
.
ε1 =

.
r1 −

.
x1 = r2 − x2 = ẽ2

.
ε2 =

.
r2 −

.
x2 = r3 −

..
V

= −k1ε1 − k1 x̃1 − k2ε2 − k2 x̃2 − x̃3

(36)

Let ε = [ε1, ε2]
T , x̃ = [x̃1, x̃2, x̃3]

T , then:

.
ε(t) = Aεε(t) + Ax̃ x̃(t) (37)

where Ae =

[
0 1
−k1 −k2

]
, Ax̃ =

[
0 0 0
−k1 −k2 −1

]
.

By solving Equation (37):

ε(t) = eAεtε(0) +
∫ t

0
eAε(t−τ)Ax̃ x̃(τ)dτ (38)

Combining Assumption 1, Theorem 1, Theorem 3, and Theorem 4 in the literature [54],
the following theorem was proposed to analyze the stability of the closed-loop system:

Theorem 2. Under the condition that the TD3-LESO estimation errors are bounded, there exists a
controller bandwidth ωc, such that the tracking error of the closed-loop system is bounded. Thus,
for a bounded input, the output of the closed-loop system is bounded, i.e., the closed-loop system is
BIBO-stable.

See the Appendix A for proof.

4. Simulation Results

In order to verify the reconfiguration capability and disturbance rejection capabilities
of the proposed method, the corresponding simulations are carried out in this section and
compared with conventional PID + PBM and LADRC.

The initial states of the aircraft are set as follows:

(1) The initial speed of aircraft landing V(0) = 72 m/s;
(2) The initial height of the center of gravity Hh = 2.178 m.

To prevent deep wheel slippage as well as tire blowout, the wheel speed was kept
following the aircraft speed quickly at first, and the brake pressure was applied only after
1.5 s. The anti-skid brake control was considered to be over when V was less than 2 m/s.

In the experiment, both the critic networks and the actor networks were realized by a
fully connected neural network with three hidden layers. The number of neurons in the
hidden layer was (50,25,25). The activation function of the hidden layer was selected as the
ReLU function, and the activation function of the output layer of the actor network was
selected as the tanh function. In addition, the parameters of the actor network and the critic
network were tuned by an Adam optimizer. The remaining parameters of TD3-LADRC are
shown in Table 7.
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Table 7. Parameters of TD3-LADRC.

Name Value

Control gain bv 2
TD− r 0.001
TD− h 1

Discount factor γ 0.99
Actor learning rate 0.0001
Critic learning rate 0.001

Target update rate τ 0.001

Remark 5. It is noted that the braking time t and braking distance x are selected as the criteria for
braking efficiency, and the system stability is observed by slip rate λ.

The model simulation was carried out in MATLAB 2022a, and the TD3 algorithm was
realized through the reinforcement learning toolbox. The simulation time was 20 s, the
sampling time was 0.001 s. The training stopped when the average reward reached 12,000.
The training took about 6 h to complete. The learning curves of the reward obtained by the
agent for each interaction with the environment during the training process are shown in
Figure 6.
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Figure 6. Learning curves.

It can be seen that at the beginning of the training, the agent was in the exploration
phase and the reward obtained was relatively low. Later, the reward gradually increased,
and after 40 episodes, the reward was steadily maintained at a high level and the algorithm
gradually converges.

4.1. Case 1: Fault-Free and External Disturbance-Free in Dry Runway Condition

The simulation results of the dynamic braking process for different control schemes
are shown in Figures 7 and 8 and Table 8.

As can be seen from Figure 7, PID + PBM leads to numerous skids during braking,
which may cause serious loss to the tires. In contrast, LADRC and TD3-LADRC not only
skid less frequently, but also have shorter braking time and braking distance. Moreover,
the control effect of TD3-LADRC is better than LADRC. Figure 8 shows that TD3-LADRC
can dynamically tune the controller parameters to accurately observe and compensate for
the total disturbances, and thus improve the AABS performance.



Aerospace 2022, 9, 555 15 of 25Aerospace 2022, 9, x FOR PEER REVIEW 17 of 27 
 

 

(a) 

(b) 

 
(c) 

(d) 

Figure 7. (a) Aircraft velocity and wheel velocity; (b) breaking distance; (c) slip ratio; (d) control 
input. 

  

0 5 10 15 20 25
Time(s)

0

20

40

60

80
A

ir
cr

af
t v

el
oc

ity
 

an
d 

w
he

el
 v

el
oc

ity
(m

/s)
PID-V
PID-Vw
LADRC-V
LADRC-Vw
TD3-LADRC-V
TD3-LADRC-Vw

0 5 10 15 20 25
Time(s)

0

300

600

900

Br
ak

in
g 

di
st

an
ce

(m
)

PID
LADRC
TD3-LADRC

0 5 10 15 20 25
Time(s)

0

0.1

0.2

Sl
ip

 ra
tio

PID
LADRC
TD3-LADRC

0 5 10 15 20 25
Time(s)

0

10

20

30

40

C
on

tr
ol

 in
pu

t(m
A

) PID
LADRC
TD3-LADRC

Figure 7. (a) Aircraft velocity and wheel velocity; (b) breaking distance; (c) slip ratio; (d) control
input.
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Table 8. AABS performance index.

Performance Index PID + PBM LADRC TD3-LADRC

Braking time (s) 20.48 16.73 14.79
Braking distance (m) 811.9 595.46 571.18

Remark 6. During the braking process, it is observed that in some instants ωc = 0. It may
not affect the stability of the whole system. On the one hand, the value of ωc does not change
the fact that Aε is Hurwitz (see Proof of Theorem 2 for details). On the other hand, ωc is
constantly changed by the agent through a continuous interaction with the environment, and in
these instants the agent considers ωc = 0 as optimal, i.e., no anti-skid braking control leads to better
braking results.

4.2. Case 2: Actuator LOE Fault in Dry Runway Condition

The fault considered here assumed a 20% actuator LOE at 5 s and escalated to 40%
LOE at 10 s. The simulation results are shown in Figures 9 and 10 and Table 9.
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Figure 9. (a) Aircraft velocity and wheel velocity; (b) breaking distance; (c) slip ratio; (d) control
input.
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Table 9. AABS performance index.

Performance Index PID + PBM LADRC TD3-LADRC

Braking time (s) 23.48 - 17.70
Braking distance (m) 838.46 - 618.12

As can be seen in Figure 9, PID + PBM continuously performed a large braking and
releasing operation under the combined effect of fault and disturbance. This makes braking
much less efficient and risks dragging and flat tires. In addition, LADRC cannot brake
the aircraft to a stop which is not allowed in practice. Figure 9c shows that there is a high
frequency of wheel slip in the low-speed phase of the aircraft. In contrast, TD3-LADRC
retains the experience gained from the agent’s prior training and continuously adjusts the
controller parameters online based on the plant states, which ultimately allows the aircraft
to brake smoothly. From Figure 10a, it can be seen that the total fault perturbations are
estimated fast and accurately based on the adaptive LESO. Overall, TD3-LADRC not only
improves the robustness and immunity of the controller in fault-perturbed conditions, but
also greatly significantly improves the safety and reliability of AABS.
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4.3. Case 3: Actuator LOE Fault in Mixed Runway Condition

The mixed runway structure is as follows: dry runway in the interval of 0–10 s, wet
runway in the interval of 10–20 s, and snow runway after 20 s. The fault considered here
assumed a 10% actuator LOE at 10 s. The simulation results are shown in Figures 11 and 12
and Table 10.
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Table 10. AABS performance index.

Performance Index PID + PBM LADRC TD3-LADRC

Braking time (s) 49.14 29.82 24.19
Braking distance (m) 1228.71 739.99 672.03

The deterioration of the runway conditions has resulted in a very poor tire–ground
bond. It can be seen from Figure 11 that both braking time and braking distance have
increased compared to the dry runway. Figure 12 shows that TD3-LADRC is still able to
achieve controller parameters adaption, accurately observe the total fault perturbations, and
effectively compensate for the adverse effects. The whole reconfiguration control system
adapts well to runway changes. The environmental adaptability of AABS is improved.

5. Conclusions

A linear active disturbance rejection reconfiguration control scheme based on deep
reinforcement learning was proposed to meet the higher performance requirements of
AABS under fault-perturbed conditions. According to the composition structure and
working principle, AABS mathematical model with an actuator fault factor is established.
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A TD3-LADRC reconfiguration controller was developed, and the parameters of LSEF and
LESO were adjusted online using the TD3 algorithm. The simulation results under different
conditions verified that the designed controller can effectively improve the anti-skid braking
performance even under faults and perturbations, as well as different runway environments.
It successfully strengthened the robustness, immunity, and environmental adaptability
of the AABS, thereby improving the safety and reliability of the aircraft. However, TD3-
LADRC is so complex that its control effectiveness was verified only by simulations in this
paper. The combined effect caused by various uncertainties in practical applications on the
robustness of the controller cannot be completely considered. Therefore, in future work, an
aircraft braking hardware-in-loop experimental platform is necessary to build, consisting of
the host PC, the target CPU, the anti-skid braking controller, the actuators, and the aircraft
wheel. The host PC and the target CPU are the software simulation part, while the other
four parts are the hardware part.
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Appendix A. Proof of Theorems

Proof of Theorem 1. By solving Equation (34) we can attain:

ε(t) = eωo A3tε(0) +
∫ t

0
eωo A3(t−τ)B

h(V(τ),
.

V(τ), vout, v f )

ω2
o

dτ (A1)

Define ζ(t) as follows:

ζ(t) =
∫ t

0
eωo A3(t−τ)B

h(V(τ),
.

V(τ), vout, v f )

ω2
o

dτ (A2)

From the fact that h(V(τ),
.

V(τ), vout, v f ) is bounded, we have:

|ζi(t)| ≤
σ

ω3
o

[∣∣∣(A3
−1B

)
i

∣∣∣+ ∣∣∣(A3
−1eωo A3tB

)
i

∣∣∣] (A3)

Because A3
−1 =

0 0 −1
1 0 −3
0 1 −3

, we can attain:

∣∣∣(A3
−1B

)
i

∣∣∣ ≤ 3 (A4)
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Considering that A3 is Hurwitz, there is thus a finite time T1 so that for any t ≥ T1,
i, j = 1, 2, 3, the following formula holds [54]:∣∣∣∣[eωo A3t

]
ij

∣∣∣∣ ≤ 1
ω3

o
(A5)

Therefore, the following formula is satisfied:∣∣∣[eωo A3tB
]

i

∣∣∣ ≤ 1
ω3

o
(A6)

Finally, we can attain: ∣∣∣(A3
−1eωo A3tB

)
i

∣∣∣ ≤ 4
ω3

o
(A7)

From Equations (A3), (A4), and (A7) we can attain:

|ζi(t)| ≤
3σ

ω3
o
+

4σ

ω6
o

(A8)

Let εsum(0) = |ε1(0)|+ |ε2(0)|+ |ε3(0)|, for all t ≥ T1, the following formula holds:∣∣∣[eωo A3tε(0)
]

i

∣∣∣ ≤ εsum(0)
ω3

o
(A9)

Form Equation (A1) we can attain:

|εi(t)| ≤
∣∣∣[eωo A3tε(0)

]
i

∣∣∣+ |ζi(t)| (A10)

Let x̃sum(0) = |x̃1(0)|+ |x̃2(0)|+ |x̃3(0)|, from εi =
x̃i

ωi−1
o

and formulas (A8)–(A10), we
can attain:

|x̃i(t)| ≤
∣∣∣∣ x̃sum(0)

ω3
o

∣∣∣∣+ 3σ

ω4−i
o

+
4σ

ω7−i
o

= υi (A11)

For all t ≥ T1, i = 1, 2, 3, the above formula holds. �

Proof of Theorem 2. According to Equation (37) and Theorem 1, we can attain:{
[Ax̃ x̃(τ)]1 = 0

|[Ax̃ x̃(τ)]2| ≤ ksumυi = γl , ∀t ≥ T1
(A12)

where ksum = 1 + k1 + k2, bringing in the controller bandwidth ksum = 1 + ω2
c + 2ωc, and

taking the parameters in this way ensures that Aε is Hurwitz [54].
Define Θ = [0 γl

]T , let ϑ(t) =
∫ t

0 eAε(t−τ)Ax̃ x̃(τ)dτ, then we can attain:

|ϑi(t)| ≤
∣∣∣(A−1

ε Θ
)

i

∣∣∣+ ∣∣∣(A−1
ε eAεtΘ

)
i

∣∣∣, i = 1, 2 (A13)


∣∣(A−1

ε Θ
)

1

∣∣ = γl
k1

=
γl
ω2

c∣∣(A−1
ε Θ

)
2

∣∣ = 0
(A14)

Consider that Aε is Hurwitz; thus, there is a finite time T2 so that for any t ≥ T2,
i, j = 1, 2, 3, the following formula holds [54]:∣∣∣∣[eAεt

]
ij

∣∣∣∣ ≤ 1
ω3

c
(A15)
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Let T3 = max{T1, T2}, for any t ≥ T3, i = 1, 2, we can attain:∣∣∣(eAεtΘ)i

∣∣∣ ≤ γl

ω3
c

(A16)

Then we can attain:

∣∣∣(A−1
ε eAεtΘ

)
i

∣∣∣ ≤


1 + k2

ω2
c

γl

ω3
c

, i = 1

γl

ω3
c

, i = 2
(A17)

From Equations (A13), (A14), and (A17) we can attain that for any t ≥ T3:

|ϑi(t)| ≤


γl
ω2

c
+

(1 + k2)γl

ω5
c

, i = 1

γl

ω3
c

, i = 2
(A18)

Let εs(0) = |ε1(0)|+ |ε2(0)|, then for any t ≥ T3:∣∣∣[eAεtε(0)
]

i

∣∣∣ ≤ εs(0)
ω3

c
(A19)

From Equation (A12), we can attain:

|εi(t)| ≤
∣∣∣[eAεtε(0)

]
i

∣∣∣+ |ϑi(t)| (A20)

From Equations (A12), (A18)–(A20), we can attain that for any t ≥ T3, i = 1, 2:

|εi(t)| ≤


εs(0)
ω3

c
+

ksumυi
ω2

c
+

(1 + k2)ksumυi

ω5
c

, i = 1

ksumυi + εs(0)
ω3

c
, i = 2

(A21)
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