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a b s t r a c t

This paper describes an adaptive nonsingular fixed-time sliding mode control (ANFSMC) scheme under
actuator saturation that can track the trajectory of a robotic manipulator under external disturbances
and inertia uncertainties. First, a novel NFSMC that offers rapid convergence and avoids singularities is
proposed for ensuring robotic manipulators global approximate fixed-time convergence. An ANFSMC
is then developed for which the bound of the coupling uncertainty is not necessary to know in
advance. The controller exhibits small absolute tracking errors and consumes little energy. An actuator
saturation compensator is designed and shown to minimize the chattering of the system while
accelerating the trajectory tracking. The proposed schemes are analyzed using Lyapunov stability
theory, and their effectiveness and superiority are demonstrated through numerical simulations.

© 2021 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

With the further application of robots, increasingly onerous
equirements are being placed on robot performance. However,
ue to external interference and the complex structure of the
obotic manipulator, the precise control of robots remains a sig-
ificant challenge [1]. Sliding mode control (SMC) has attracted
ide attention due to its excellent robustness to uncertainties
nd disturbances and is widely used in the field of robots [2–5].
Although SMC has gained popularity, it still has some fatal

laws. Chattering is the main barrier to SMC application, as it
eriously degrades the tracking performance of the controlled
obotic manipulator system. Moreover, the conventional SMC
otion to the origin is accomplished asymptotically, that is, the

racking error of the system converges to the origin over time.
he finite-time control ensures fast and high-precision tracking
erformance for the control system. A terminal sliding mode
ontrol (TSMC) algorithm was designed to guarantee finite-time
tate convergence [6]. Feng et al. [7] proposed a nonsingular
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TSMC (NTSMC) to overcome the singularity in TSMC by design-
ing an appropriate fractional power in the controller. To further
accelerate the convergence of NTSMC, a fast NTSMC (FNTSMC)
scheme was developed [8]. Compared with other sliding mode
surfaces, FNTSMC can achieve finite-time state convergence and
fast convergence when the state is far from the origin, which
avoids the singularity problem and reduces the incidence of chat-
tering. A novel FNTSMC manifold without any constraints was
proposed to achieve finite-time tracking control for spacecraft
attitude [9]. To avoid the computational burden of feedback lin-
earization and complex inverse matrices, a novel nonsingular
super-twisted integral SMC scheme was proposed for finite-time
attitude stabilization control of rigid body subject with unknown
disturbances [10]. However, the time required to establish finite-
time SMC depends on the initial state of the system, making it
difficult to calculate the establishment time of trajectory tracking
ahead of time.

For the last few years, scholars have proposed the fixed-time
control theory, which is a further development of conventional
SMC methods. Fixed-time control can guarantee a bounded set-
tling time and autonomy from the initial condition of the system,
and it can provide faster transients and higher control accu-
racy than finite-time control [11]. Researchers have conducted
detailed mathematical analyses of fixed-time stability and con-
vergence [12–14]. A fixed-time control algorithm based on SMC
has been proposed, with a new fixed-time manifold introduced
to guarantee that the system has a fast merging speed [15].

https://doi.org/10.1016/j.isatra.2021.05.011
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olestani et al. [16] proposed a novel nonsingular fast fixed-
ime SMC algorithm for spacecrafts with system uncertainties.
i et al. [17] proposed a fixed-time SMC scheme for single in-
erted pendulum systems, while Zuo [18] designed a new slid-
ng mode surface to avoid the singularity of fixed-time SMC.
he above-mentioned studies indicate that most existing fixed-
ime controllers apply to linear and nonlinear affine systems, but
hey cannot be easily applied to uncertain robotic manipulators.
o calculate the settling time of robotic manipulator trajectory
racking error, a novel fixed-time SMC was proposed, which can
rack the global fixed-time trajectory of the robotic manipulator
ith uncertain model dynamics and bounded disturbances [19].
u et al. [20] proposed a global approximate fixed-time control
ethod for manipulators in uncertain states, which enables the

racking errors to converge to an arbitrarily small range within
uniform predetermined time. However, the above-mentioned
ontrol schemes assume some forward knowledge regarding the
pper bound of the coupling uncertainty, and it is not easily
vailable in practical engineering.
In the existing literature, the problem of system and exter-

al disturbance uncertainties has been widely studied through
he following three methods: (i) Intelligent algorithms such as
eural networks (NNs) were used to approximate the system
ncertainties. Several scholars have proposed using radial ba-
is function NNs to estimate the nonlinear robotic manipulator
ynamics and disturbances, thus improving the control effect
f fixed-time SMC [21–23]. However, NNs are computationally
ntensive and struggle to achieve real-time control of robotic ma-
ipulators. (ii) Disturbance observers have been developed and
sed to predict the unknown external disturbance. Nevertheless,
he position tracking performance of the robotic depends largely
n the effect of the designed observer and the estimated noise
f the disturbances is always large, thus requiring additional
ilters [24–26]. (iii) The adaptive control algorithm is a simple
ut effective method to adjust the controller to adapt to the
oupling uncertainty of the system. For instance, an adaptive
lobal fast TSMC was used for a MEMS gyro with model un-
ertainties and disturbance [27]. Besides, adaptive second-order
SMC and adaptive nonsingular fast TSMC (ANFTSMC) methods
ere developed for trajectory tracking of robotic manipulators
ith coupling uncertainty [28,29].
Since fixed-time control requires a fast instantaneous re-

ponse, the actuator of the robotic manipulator is likely to be
aturated due to large control torque. The uncertainty and sat-
ration of the actuator are usually considered in the robust
ontrol of the spacecraft. For example, fixed-time attitude control
rameworks are presented to separately spacecraft, and they
an ensure fixed-time stability of the spacecraft system even in
he case of saturation and faults of the actuator [30,31]. Novel
bservers were designed for spacecraft attitude tracking by taking
he system uncertainties, actuator saturation, and finite-time
ssues into account [26,32]. It is noting that combining the input
rror caused by actuator saturation with system uncertainties and
isturbances imposes a computational burden on the observer,
nd the dynamics of the system can be greatly affected by the
dditional disturbance caused by actuator saturation. A robust
ontroller for manipulators with actuator faults was proposed
n [33], and it has been applied to the control experiment of
obotic. Jia et al. [34] proposed a novel auxiliary system for com-
ensating the saturation of space manipulator actuators, but this
till requires some prior knowledge of the system uncertainties.
As discussed above, few existing studies simultaneously con-

ider the system uncertainties and disturbances in the context
f fixed-time SMC, system singularities, and actuator saturation.
onsequently, this paper describes three SMC schemes that are

esigned to overcome the above problems. These schemes are

47
mainly based on nonsingular fixed-time SMC, an adaptive control
law, and an actuator saturation compensator. The overall contri-
bution of this study includes: (1) A novel nonsingular fixed-time
SMC (NFSMC) scheme is designed. It is demonstrated that the
tracking errors of manipulators can reach an arbitrary small do-
main near zero with a bounded time. (2) An adaptive parameter
adjustment program is proposed in the estimation of the upper
bound of the lumped uncertainty. Consequently, the bound of the
lumped uncertainty need not be known or estimated. Moreover,
the proposed adaptive nonsingular fixed-time SMC (ANFSMC)
offers faster trajectory tracking and requires less energy than sev-
eral previous control schemes [8,19,29]. (3) Considering actuator
saturation, an actuator saturation compensator is designed for
ANFSMC. The resulting ANFSMC-AS can adaptively compensate
the control input when the actuator control torque is saturated.
The compensated controller has a faster trajectory tracking rate
with less joint chattering than before compensation.

The paper is organized as follows. Some symbol definitions
and lemmas are introduced in Section 2. In Section 3, the NFSMC,
ANFSMC, and ANFSMC-AS schemes are designed, and their sta-
bilities are proved using Lyapunov stability theory. In Section 4,
the proposed ANFSMC scheme is simulated in a two-link manip-
ulator. The numerical simulation results are compared with those
given by the control schemes in [8,19,29]. Finally, this work and
future direction are summarized in Section 5.

2. Preliminaries and notation

2.1. Notions

For an n-dimensional vector x = [x1, x2, . . . , xn]T , xi
(i = 1, . . . , n) denotes the ith element of vector x. The norm of
matrix A ∈ Rn×n and vector x ∈ Rn are defined as ∥A∥ = tr

(
ATA

)
and ∥x∥ =

√
xTx. λmin {A} and λmax {A} denote the smallest

nd largest eigenvalues, respectively. sign (x) denotes the signum
unction, and the nonlinear function sigα (x) and vector Sigα (x) ∈

Rn are defined as

sigα (x) = |x|α sign (x) , (α > 0) (1)

Sigα (x) = [|x1|α sign (x1) , . . . , |xn|α sign (xn)]T . (α > 0) (2)

The saturation function can be denoted as

sat (x) =

{
sign (x) xmax, |x| ⩾ xmax

x, |x| < xmax.
(3)

2.2. Some definitions and lemmas

Consider the following nonlinear system

ẋ = f (x; ρ) , x (0) = x0, (4)

where x ∈ Rn is the system state, and the vector ρ ∈ Rn denotes
the system parameters. The function f : U0 → Rn is a continuous
function in an open neighborhood U0 of the origin, and f (0) = 0.

Definition 1 (Finite-Time Stability [35,36]). The control system (4)
is called globally finite-time stable if it is globally asymptotically
stable, and for any x0 ∈ Rn there exists a time moment T (x0)
satisfies the solution x (t, x0) = 0 for all t ⩾ T .

Definition 2 (Fixed-Time Stability [11]). The control system (4) is
called globally fixed-time stable if it is globally finite-time stable
and there is a time T such that the system state converges to zero,
i.e. x (t, x0) = 0 for all t ⩾ T .
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emma 1 ([37]). For the following scalar system

˙ = −ϵ1y
m
n − ϵ2y

p
q , y (0) = y0, (5)

where ϵ1 > 0, ϵ2 > 0, and m, n, p, q are all positive odd integers
that satisfy m > n, p < q, system (5) is globally fixed-time stable
with the guaranteed convergence time T bounded by

T < Tmax ≜
1
ϵ1

n
m − n

+
1
ϵ2

q
q − p

. (6)

Lemma 2 ([38]). Consider ξ1, ξ2, . . . , ξN ⩾ 0. Then,

N∑
i=1

ξ
p
i ≥

(
N∑
i=1

ξi

)p

if 0 < p ≤ 1 (7)

N∑
i=1

ξ
p
i ≥ N1−p

(
N∑
i=1

ξi

)p

if 1 < p < ∞. (8)

Lemma 3. With a positive constant α and a variable x ∈ Rn, they
satisfy the following inequality

d |x|α+1 /dx = (α + 1) |x|α sign (x) (9)

d
[
|x|α+1 sign (x)

]
/dx = (α + 1) |x|α . (10)

2.3. Dynamic model of robots

Consider the following Cartesian dynamics of a general n-
degrees-of-freedom (DOF) rigid robotic manipulator system

M (q) q̈ + C (q, q̇) q̇ + G (q) = τ + τd, (11)

where q, q̇, q̈ ∈ Rn are the position, velocity, and acceleration
vector of the robotic manipulator. M (q) ∈ Rn×n denotes the
inertia matrix, and C (q, q̇) ∈ Rn×n denotes the centrifugal-
Coriolis matrix. G (q) ∈ Rn is the vector of Cartesian gravitational
forces. τ denotes the vector of joint torque inputs, and τd is a
vector of bounded but unknown disturbances.

Property 1 ([39]). Generally, M (q) , C (q, q̇), and G (q) are always
nknown, and they can be written as⎧⎨⎩
M (q) = M0 (q) + ∆M (q)
C (q, q̇) = C0 (q, q̇) + ∆C (q, q̇)
G (q) = G0 (q) + ∆G (q)

(12)

here M0 (q) , C0 (q, q̇), and G0 (q) are the nominal values, and
M (q) , ∆C (q, q̇) , ∆G (q) represent the system uncertainties.

roperty 2 ([39]). M (q) , C (q, q̇), and G (q) are all bounded ma-
rices, and M (q) satisfies

m ⩽ ∥M (q)∥ ⩽ MM , for ∀q ∈ Rn (13)

here Mm,MM are both known positive constants.

Then, the dynamic equation given by Eq. (11) can lead to

0 (q) q̈ + C0 (q, q̇) q̇ + G0 (q) = τ + F d (q, q̇, q̈) , (14)

where the lumped uncertainty F d (q, q̇, q̈) is defined as

F d (q, q̇, q̈) = τd − ∆M (q) q̈ − ∆C (q, q̇) q̇ − ∆G (q) . (15)

he position tracking error, speed tracking error and acceleration
rror are denoted as

= q − qd, ė = q̇ − q̇d, ë = q̈ − q̈d . (16)
48
3. Control development

In this section, an NFSMC algorithm for the tracking control
of rigid manipulators is proposed. The main advantages of this
NFSMC algorithm are its fast convergence, singularity-free, and
convergence time independent of the initial states of the system.
Generally, the bound of the coupling uncertainty F d is not easily
btained in practical applications (for simplification, F d (q, q̇, q̈)
s written as F d in the remainder of this paper); thus the AN-
SMC is designed to compensate the model uncertainties and
isturbances. Considering that actuator saturation may occur in
he robotic manipulator because the fixed-time control requires
large control torque to guarantee a rapid transient response, a
aturation compensator is developed to compensate for system
nputs.

.1. Design approach for NFSMC

A nonlinear function f (x) is proposed as [19]:

(x) =

{
k1sigr (x) + k2δ|x|x if |x| < δ

sigα (x) if |x| ⩾ δ
(17)

where δ ∈ (0, exp (−1)) , r = 2 − δ, α = 1 − δ. The constants k1
and k2 are defined as

k1 =
−1 − ln δ

α − δ ln δ
, k2 =

δ2α−2

α − δ ln δ
. (18)

Considering the Lemma 3, the time derivative of f (x) is calculated
by

ḟ (x) =

{
k1r |x|r−1

+ k2 (|x| ln δ + 1) δ|x| if |x| < δ

α |x|α−1 if |x| ⩾ δ.
(19)

Then, define the vector F (x) and the diagonal matrix Ḟ (x) as

F (x) = [f (x1) , f (x2) , . . . , f (xn)]T , (20)

Ḟ (x) = diag
{
ḟ (xi)

}
, i = 1, 2, . . . , n. (21)

An NFSMC surface s is introduced as [19]:

s = ė + C1F (e) + C2Sigβ (e) , (22)

where C1, C2 are two positive-definite diagonal matrixes, and
β > 1 is a defined positive constant. Thus,

ṡ = ë + C1Ḟ (e) + C2Dβ−1 (e) ė, (23)

where the diagonal matrix Dr (ξ) ∈ Rn×n is defined as

Dr (ξ) = diag
{
|ξi|

r} , i = 1, 2, . . . , n. (24)

The overall NFSMCer can be designed as

τ = −τ0 + τ1 + τ2 (25)

τ0 = C1M0 (q) Ḟ (e) ė + C2M0 (q)Dβ−1 (e) ė

− C0 (q, q̇) q̇ − G0 (q) − M0 (q) q̈d (26)

τ1 = −K pSigv1 (s) − K dSigv2 (s) (27)

τ2 = −sign (s) η, (28)

where v1 > 1 and 0 < v2 < 1 are positive constants and
K p,K d ∈ Rn×n are positive-definite diagonal matrixes. Ḟ (e) and
β are defined by Eqs. (21) and (22), respectively. The nominal part
η ∈ Rn is

η =
1

exp
(M−1 (q)

ε
− 1

)

1 − σ 0
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×
(
b0 + b1 ∥q∥ + b2 ∥q̇∥2

+ σ ∥τ1 − τ0∥
)
, (29)

= ε0sign
(M−1

0 (q)
− 1

)
, (30)

=
m2 − m1

m1 + m2
, (31)

where ε0 is a known positive constant, and b0, b1, b2 are three
positive constants. m1 and m2 are two positive constants satisfy
m1 ⩽

M−1 (q)
 ⩽ m2.

Property 3 ([40,41]). The coupling uncertainty F d is bounded by

∥F d∥ < b0 + b1 ∥q∥ + b2 ∥q̇∥2
+ σ ∥τ∥ , (32)

where b0, b1, b2 and σ are known positive constants, and defined by
Eqs. (29) and (31), and the relevant proof can be found in [40,41].

Theorem 1. For the control scheme in Eqs. (25)–(28), the tracking
error can converge inside some fixed time T , and the settling time T
includes the reaching time Tr and the sliding time Ts. The reaching
time Tr represents the period in which the tracking trajectory con-
verges to the sliding surface s = 0, and the sliding time Ts represents
the period in which the tracking error along the sliding mode surface
reaches an arbitrarily small domain of the origin. T , Tr , Ts can be
written in the following inequalities:

T < Tmax ≜ Tr + Ts, (33)

Tr ⩽
2 (m1 + m2)

−(1+v1)/2

λmin
{
K p
}
n(1−v1)/2 (v1 − 1)

+
2 (m1 + m2)

−(1+v2)/2

λmin {K d} (1 − v2)
, (34)

s ⩽
2

1−α
2

(1 − α) λmin (C1)
+

( 2
n

) 1−β
2

(β − 1) λmin (C2)
. (35)

roof. The stability analysis of the proposed NFSMC scheme
includes the reaching phase and the sliding phase.

Step 1. Stability and settling time analysis in reaching phase:
By multiplying both sides of Eq. (23) by M0 (q), we have

0 (q) ṡ = M0 (q) ë+C1M0 (q) Ḟ (e) ė+C2M0 (q)Dβ−1 (e) ė. (36)

ubstituting Eqs. (15), (16) and (26) into Eq. (36) yields

M0 (q) ṡ = M0 (q) q̈ − M0 (q) q̈d + τ0

+ C0 (q, q̇) q̇ + G0 (q) + M0 (q) q̈d

= τ1 + τ2 + F d .

(37)

onsider the Lyapunov function as

1 =
1
2
sTM0s. (38)

aking the derivative V1 with regard to time yields

V̇1 = sTM0ṡ = sT (τ1 + τ2 + F d)

= −sT
(
K pSigv1 (s) + K dSigv2 (s)

)
− ∥s∥ η + sTF d

⩽ −sT
(
K pSigv1 (s) + K dSigv2 (s)

)
− ∥s∥ η + ∥s∥ ∥F d∥ .

(39)

onsidering Eq. (32), V̇1 can be written as

˙1 ⩽ − ∥s∥ η +
(
b0 + b1 ∥q∥ + b2 ∥q̇∥2

+ σ ∥τ∥
)
∥s∥

− sT
(
K pSigv1 (s) + K dSigv2 (s)

)
. (40)

rom Eq. (25), it is easy to obtain

∥τ∥ ⩽ ∥τ − τ ∥ + ∥τ ∥ . (41)
1 0 2

49
hen, Eq. (40) can be written as

V̇1 ⩽ − ∥s∥ η +
(
b0 + b1 ∥q∥ + b2 ∥q̇∥2

+ σ ∥τ1 − τ0∥
)
∥s∥

+ σ ∥τ2∥ ∥s∥ − sT
(
K pSigv1 (s) + K dSigv2 (s)

)
= − (1 − σ) ∥s∥ η − σ ∥s∥ η + σ ∥τ2∥ ∥s∥

+
(
b0 + b1 ∥q∥ + b2 ∥q̇∥2

+ σ ∥τ1 − τ0∥
)
∥s∥

+ σ ∥τ2∥ ∥s∥ − sT
(
K pSigv1 (s) + K dSigv2 (s)

)
=

(
1 − exp

(M−1
0 (q)

ε
− 1

))
×
(
b0 + b1 ∥q∥ + b2 ∥q̇∥2

+ σ ∥τ1 − τ0∥
)
∥s∥

− σ ∥s∥ η + σ ∥τ2∥ ∥s∥ − sT
(
K pSigv1 (s) + K dSigv2 (s)

)
.

(42)

onsidering Eq. (30), it is easy to see that
M−1

0 (q)
ε

⩾ 1, and

hen we can get exp
(M−1

0 (q)
ε

− 1
)

⩾ 1. Eq. (42) can be
ounded by

V̇1 ⩽ −σ ∥s∥ η + σ ∥τ2∥ ∥s∥ − sT
(
K pSigv1 (s) + K dSigv2 (s)

)
= −σ ∥s∥ η + σ ∥s∥ ∥sign (s) η∥

− sT
(
K pSigv1 (s) + K dSigv2 (s)

)
= −sT

(
K pSigv1 (s) + K dSigv2 (s)

)
.

(43)

ccording to Lemma 2, we obtain

TK pSigv1 (s) =

n∑
i=1

kpi |si|1+v1 ⩾ λmin
{
K p
} n∑

i=1

|si|1+v1

⩾ λmin
{
K p
}
n

1−v1
2

(
n∑

i=1

|si|2
) 1+v1

2

(44)

sTK dSigv1 (s) =

n∑
i=1

kdi |si|1+v2 ⩾ λmin {K d}

n∑
i=1

|si|1+v2

⩾ λmin {K d}

(
n∑

i=1

|si|2
) 1+v2

2

. (45)

ubstituting Eqs. (44) and (45) into Eq. (43) yields

˙1 ⩽ −λmin
{
K p
}
n

1−v1
2

(
n∑

i=1

|si|2
) 1+v1

2

− λmin {K d}

(
n∑

i=1

|si|2
) 1+v2

2

. (46)

M0 (q) can be chosen as

M0 (q) =
2

m1 + m2
In. (47)

hen, the Lyapunov function can be written as

1 =
1

m + m
∥s∥2 . (48)
1 2
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pplying Eq. (48) to Eq. (46), it follows that

˙1 ⩽ −λmin
{
K p
}
n

1−v1
2 (m1 + m2)

1+v1
2 V

1+v1
2

1

− λmin {K d} (m1 + m2)
1+v2

2 V
1+v2

2
1 . (49)

ccording to Lemma 1, due to v1 > 1, 0 < v2 < 1 are positive
constants, the trajectory tracking is fixed-time stable with settling
time Tr bounded by Eq. (34).

Step 2. Stability and settling time analysis in sliding phase:
The tracking error of the robotic enters the sliding phase when

s = 0,

s = ė + C1F (e) + C2Sigβ (e) = 0. (50)

As F (e) is a piecewise function of e, it can be divided into the
following two cases.

Case 1: When ∥e∥ ⩾ δ, we obtain

ė = −C1Sigα (e) − C2Sigβ (e) . (51)

For Eq. (51), the following Lyapunov function is considered as

V2 =
1
2
eT e. (52)

Taking the first derivative of Eq. (52), it has

V2 = eT ė. (53)

After substituting Eq. (50) into (53) yields

V̇2 = eT ė = −eTC1Sigα (e) − eTC2Sigβ (e)

= −

n∑
i=1

c1i |ei|α+1
−

n∑
i=1

c2i |ei|β+1

= −

n∑
i=1

c1i
(
|ei|2

) α+1
2 −

n∑
i=1

c2i
(
|ei|2

) β+1
2 .

(54)

onsidering Lemma 2 and 0 < α < 1, β > 1, we have

˙2 ⩽ −λmin (C1) ∥e∥α+1
− λmin (C2) n

1−β
2 ∥e∥β+1 . (55)

Substituting Eq. (52) into (55) yields

V̇2 ⩽ −2
α+1
2 λmin (C1) V

α+1
2

2 − 2
β+1
2 λmin (C2) n

1−β
2 V

β+1
2

2 . (56)

y using Lemma 1, the bound of sliding time Ts is given by
q. (35). It can be obtained that the system tracking errors can
each to an arbitrary small set δ with the bound of Ts.

Case 2: When ∥e∥ < δ, Eq. (50) can lead to

ė = −C1
(
k1Sigr (e) + k2δ∥e∥e

)
− C2Sigβ (e) . (57)

hen, the Lyapunov function is selected as

3 =
1
2
eT e. (58)

Thus,

V̇3 = eT ė = −C1k1Sigr (e) e − C1k2δ∥e∥eT e − C2Sigβ (e) e

⩽ −k2δ∥e∥λmin {C1} ∥e∥2
− k1

n∑
i=1

c1i |ei|r+1
−

n∑
i=1

c2i |ei|β+1

⩽ −k2δδλmin {C1} ∥e∥2
− k1n(1−r)/2λmin {C1} ∥e∥r+1

− n(1−β)/2λmin {C2} ∥e∥β+1

⩽ −k2δδλmin {C1} ∥e∥2

= −2k2δδλmin {C1} V3.
(59)

50
According to Lyapunov stability theory, the position tracking er-
ror can globally converge to zero exponentially.

Remark 1. According to the stability analysis of Step 1 and Step
2, it can be obtained that the tracking errors of the system can
converge firstly to the NFSMC surface s in Eq. (22) within settling
time Tr . Then, the tracking errors reach an arbitrary small domain
of the origin δ within a fixed-time Ts and thereafter converge to
zero exponentially.

Remark 2. The proposed NFSMC scheme can achieve global
approximating fixed-time convergence of robotic manipulators
with the model uncertainty and bounded external disturbances.
However, the proposed control scheme must be formulated with
an upper bound on the known coupling uncertainty in advance,
and it is always difficult to be satisfied for industrial robotic
manipulators.

3.2. Design approach for ANFSMC

In this subsection, an ANFSMC scheme is designed with the
unknown upper bound of the coupling uncertainty in Eq. (32).
The adaptive switching control law in Eq. (28) can be modified as

τa2 = −sign (s) ηa

ηa =
1

1 − σ
exp

(M−1
0 (q)

ε
− 1

)
×

(
b̂0 + b̂1 ∥q∥ + b̂2 ∥q̇∥2

+ σ ∥τ1 − τ0∥

)
,

(60)

here b̂0, b̂1, and b̂2 are the estimators of b0, b1, and b2, and they
re updated by the following laws of adaptability:

˙̂
0 = µ0 ∥s∥ ,

˙̂b1 = µ1 ∥s∥ ∥q∥ ,
˙̂b2 = µ2 ∥s∥ ∥q̇∥2 , (61)

here µ0, µ1, and µ2 are positive gain constants. Thus,

τ = −τ0 + τ1 + τa2

τ0 = C1M0Ḟ (e) ė + C2M0Dβ−1 (e) ė
− C0 (q, q̇) q̇ − G0 (q) − M0q̈d

τ1 = −K pSigv1 (s) − K dSigv2 (s) .

(62)

heorem 2. Considering a robotic manipulator system closed by the
ontroller in Eq. (62), the origin of system tracking error is fixed-time
table.

roof. As the ANFSMC and NFSMC schemes have the same sliding
ode surface, when the system enters the sliding phase, the
NFSMC scheme has the same convergence properties as NFSMC.
he stability of the ANFSMC scheme can be analyzed as follows.
Now, choose a Lyapunov function candidate as

4 =
1
2
sTM0s +

2∑
i=0

1
2µi

(
b̂i − bi

)2
. (63)

According to Lemma 3 and differentiating V4 with respect to time
yields

V̇4 = sTM0ṡ +

2∑ 1
µ

(
b̂i − bi

)
˙̂bi. (64)
i=0 i
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S
ubstituting Eqs. (37), (61) and (62) into (64), it yields

V̇4 =sT (τ1 + τa2 + F d) +

2∑
i=0

1
µi

(
b̂i − bi

)
˙̂bi

= − sT
(
K pSigv1 (s) + K dSigv2 (s)

)
− ∥s∥ ηa + sTF d

+

((
b̂0 − b0

)
∥s∥ +

(
b̂1 − b1

)
∥s∥ ∥q∥

+

(
b̂2 − b2

)
∥s∥ ∥q̇∥2

)
⩽ − (1 − σ) ∥s∥ ηa − σ ∥s∥ ηa + ∥s∥ ∥F d∥

+

((
b̂0 − b0

)
+

(
b̂1 − b1

)
∥q∥ +

(
b̂2 − b2

)
∥q̇∥2

)
∥s∥

− sT
(
K pSigv1 (s) + K dSigv2 (s)

)
.

(65)

Considering Eqs. (32) and (60), Eqs. (65) can lead to

V̇4 ⩽ − exp
(M−1

0 (q)
ε

− 1
)

×

(
b̂0 + b̂1 ∥q∥ + b̂2 ∥q̇∥2

+ σ ∥τ1 − τ0∥

)
∥s∥ − σ ∥s∥ ηa

+ ∥s∥
(
b0 + b1 ∥q∥ + b2 ∥q̇∥2

+ σ ∥τ∥
)

+

((
b̂0 − b0

)
+

(
b̂1 − b1

)
∥q∥ +

(
b̂2 − b2

)
∥q̇∥2

)
∥s∥

− sT
(
K pSigv1 (s) + K dSigv2 (s)

)
.

(66)

According to Eq. (62), we have

∥τ∥ ⩽ ∥τ1 − τ0∥ + ∥τa2∥ . (67)

Substituting Eq. (67) into (66), it yields

V̇4 ⩽ − exp
(M−1

0 (q)
ε

− 1
)

×

(
b̂0 + b̂1 ∥q∥ + b̂2 ∥q̇∥2

+ σ ∥τ1 − τ0∥

)
∥s∥ − σ ∥s∥ ηa

+ ∥s∥
(
b0 + b1 ∥q∥ + b2 ∥q̇∥2

+ σ ∥τ1 − τ0∥ + σ ∥τa2∥
)

+

((
b̂0 − b0

)
+

(
b̂1 − b1

)
∥q∥ +

(
b̂2 − b2

)
∥q̇∥2

)
∥s∥

− sT
(
K pSigv1 (s) + K dSigv2 (s)

)
.

(68)

Then, Eq. (68) can be simplified to

V̇4 ⩽ − exp
(M−1

0 (q)
ε

− 1
)

×

(
b̂0 + b̂1 ∥q∥ + b̂2 ∥q̇∥2

+ σ ∥τ1 − τ0∥

)
∥s∥

+ σ ∥τ1 − τ0∥ ∥s∥ +

(
b̂0 + b̂1 ∥q∥ + b̂2 ∥q̇∥2

)
∥s∥

− sT
(
K pSigv1 (s) + K dSigv2 (s)

)
=

(
1 − exp

(M−1
0 (q)

ε
− 1

))(
b̂0 + b̂1 ∥q∥ + b̂2 ∥q̇∥2

)
∥s∥

+

(
1 − exp

(M−1
0 (q)

ε
− 1

))
σ ∥τ1 − τ0∥ ∥s∥

− sT
(
K pSigv1 (s) + K dSigv2 (s)

)
.

(69)

Considering exp
(M−1

0 (q)
ε

− 1
)
⩾ 1, one can obtain

V̇4 ⩽ −sT
(
K pSigv1 (s) + K dSigv2 (s)

)
. (70)

Compared with Eq. (43), it can be obtained that the ANFSMC
scheme has the same setting time as the NFSMC scheme, which
51
means that the desired tracking can be achieved, and hence the
proof is completed.

Remark 3. In the proof of setting time, the mathematical devel-
opment including inequalities results that the bound of setting
time is conservation. Worth to be mentioned, the non-singularity
of the system is realized at the expense of the convergence
accuracy.

3.3. Design approach for ANFSMC under actuator saturation

Fixed-time SMC always requires a fast transient response with
large torque, which may result in actuator saturation. As an
auxiliary system, saturation compensator is an effective method
to compensate or weaken the negative effects of saturation.
Therefore, a saturation compensator is designed for the ANFSMC
scheme in this subsection.

Let uc be the input of the control system, umax be the satura-
tion value. Saturation function defined in Eq. (3) is always used to
formulate the control input constraints, then ∆uc = uc − sat (uc)
denotes the saturation error. The auxiliary variable ζ ∈ Rn×1 and
the auxiliary matrix Γ ∈ Rn×n can be obtained from the following
auxiliary system

ζ̇ =

⎧⎪⎪⎨⎪⎪⎩
0, ∥ζ∥ < ζ0

−kaSigβ (ζ) − kbSigα (ζ) −

sTΩ−1Γ
+ 1

2

(
∆uTc ∆uc+kaζT ζ

)
∥ζ∥2

ζ

+kc∆uc, ∥ζ∥ > ζ0

(71)

Γ = diag
{
ė1−α
i ∆uci

}
, i = 1, 2, . . . , n, (72)

where α and β are positive constants defined in Eqs. (17) and
(23), s is the proposed sliding mode surface in Eq. (22), ka, kb, kc
are positive constants with 0 < kc < ka < 1. Ω ∈ Rn×n is a known
symmetric positive matrix.

Remark 4. The auxiliary variable can achieve saturation com-
pensator fixed-time convergence of the tracking control. By se-
lecting the appropriate parameter kc , the possible overcompen-
sation of actuator saturation can be avoided.

The fixed-time compensation for input saturation is designed
as

τsa = −K dM−1
0 (q) ζ, (73)

where K d is the positive-definite diagonal matrix defined in
Eq. (27). The controller of ANFSMC-AS can be written as

τ = τ0 + τ1 + τ2 + τsa

τ0 = C1M0Ḟ (e) ė + C2M0Dβ−1 (e) ė
− C0 (q, q̇) q̇ − G0 (q) − M0q̈d

τ1 = −K pSigv1 (s) − K dSigv2 (s)

τ2 = −
sign (s)
1 − σ

exp
(M−1

0 (q)
ε

− 1
)

×

(
b̂0 + b̂1 ∥q∥ + b̂2 ∥q̇∥2

+ σ ∥τ1 − τ0∥

)
.

(74)

Theorem 3. With the saturation compensator in Eq. (73), the
controller in Eq. (74) can realize the effective compensation for the
saturation of the actuator and ensure that the system is fixed-time
stable.

Proof. Propose the following Lyapunov function as

V5 =
1
ζT ζ. (75)
2
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Fig. 1. Control flowchart of the proposed ANFSMC-AS.
Differentiating V5 with respect to time and using Eq. (71) yields

V̇5 =ζT ζ̇ = −kaζTSigβ (ζ) − kbζTSigα (ζ) −
sTΩ−1Γ


−

1
2
∆uT

c ∆uc −
1
2
kaζT ζ + kcζT∆uc

⩽ − kaζTSigβ (ζ) − kbζTSigα (ζ) −
1
2
∆uT

c ∆uc

−
1
2
kaζT ζ + kcζT∆uc .

(76)

ccording to the following inequalities

T∆uc ⩽
1
2
ζT ζ +

1
2
∆uT

c ∆uc (77)

hen, V̇5 can be written as

V̇5 ⩽ − kaζTSigβ (ζ) − kbζTSigα (ζ)

−
1
2
∆uT

c ∆uc −
1
2
kaζT ζ +

1
2
kcζT ζ +

1
2
kc∆uT

c ∆uc

= − kaζTSigβ (ζ) − kbζTSigα (ζ)

−
1
2

(ka − kc) ζT ζ −
1
2

(1 − kc) ∆uT
c ∆uc .

(78)

Considering that 0 < kc < ka < 1, we can obtain that

V̇5 ⩽ − kaζTSigβ (ζ) − kbζTSigα (ζ)

= − ka
n∑

i=1

(ζi)
β+1

− kb
n∑

i=1

(ζi)
α+1,

(79)

where ζi denotes the ith elements of the auxiliary variable ζ.
onsidering Lemma 2, Eq. (79) can lead to

˙5 ⩽ −2β−1kaV
β

5 − 2(α+1)/2kbV
(α+1)/2
5 . (80)

ubstituting Eq. (75) into Eq. (80), it yields

˙5 ⩽ −n(1−β)/22(β+1)/2kaV
(β+1)/2
5 − 2(α+1)/2kbV

(α+1)/2
5 . (81)

Since β > 1 and α < 1, by Lemma 1, it can obtain that the
saturation compensator is fixed-time stable, and the convergence
time can be written as

Tas ⩽
n(β−1)/22(1−β)/2

ka (β − 1)
+

2(1−α)/2

kb (1 − α)
. (82)

his completes the proof.

emark 5. The actuator saturation compensator only works
when the actuator is saturated. Compared with the method of
using bounded control to avoid saturation to make the system
52
asymptotically stable, it does not affect the performance of the
ANFSMCer. But it is worth noting that the actuator saturation
compensator can only be used to weaken the impact of saturation
on the system, and cannot completely offset the effect of actuator
saturation.

Remark 6. In this paper, the control input of the actuator
is not allowed to exceed the allowable value in a wide range
or the saturation time is too long so that the actual output
control torque can provide sufficient driving torque to guarantee
the robotic manipulator can execute a given tracking task. Oth-
erwise, the robotic manipulator will become an underactuated
one, and the controller needs to be redesigned. In addition, the
transient response of the robotic manipulator is positively cor-
related to the range of the control torque. When the actuator of
the robotic manipulator is saturated, the gain parameters of the
controller should be adjusted to increase the convergence time of
the tracking error and try to avoid the saturation of the actuator.

Remark 7. When implementing the proposed control scheme,
control parameters should be carefully selected to achieve fast
transients and high tracking accuracy of robotic manipulators.
The control parameters mainly include two types. One is the
parameters determined by the characteristics of the robotic ma-
nipulator, including m1 and m2. The other type of parameters
is used to determine the performance of the controller, includ-
ing the positive constants v1, v2, δ, ε, β , control gain matrixes
C1, C2,K p,K d , gain constants of actuator saturation compensator
ka, kb, kc and auxiliary actuator matrix Ω . In general, positive
constants v1, v2, ε and β can be chosen as v1 = 2.5, v2 = 0.5, ε =

0.01 and β = 1.9 for most robotic manipulator systems. A small
δ contributes to fast transient but too small δ may conduce large
overshoot and more energy consumption. Control gain matrixes
C1, C2,K p and K d should be chosen as large as possible for
fast transient and higher tracking accuracy. However, excessively
large control gain matrixes can also cause actuator saturation.
For actuator saturation compensator, auxiliary actuator matrix Ω
always can be chosen as Ω = 0.5I2. Larger gain constants ka and
kb can improve the effect of saturation compensation. However,
large gain constants may cause the actuator to overcompensate,
and the possible overcompensation of actuator saturation can be
avoided by increasing kc .

A flowchart of the ANFSMC-AS scheme is presented in Fig. 1.
Part A is the NFSMC controller designed in Section 3.1, Part B is
the adaptive controller designed in Section 3.2, and Part C is the
actuator saturation compensator designed in Section 3.3.
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Fig. 2. Architecture of a two-link robotic manipulator.

. Simulation results

To demonstrate the effectiveness of the proposed control
chemes, a two-link manipulator shown in Fig. 2 is considered.
he dynamics of two-link robotic manipulators are given by [29][
M11 (q) M12 (q)
M21 (q) M22 (q)

][
q̈1
q̈2

]
+

[
C11 (q) C12 (q)
C21 (q) C22 (q)

][
q̇1
q̇2

]
+

[
G1 (q)
G2 (q)

]
=

[
τ1
τ2

]
(83)

where

M11 (q) = (m1 + m2) l21 + m2l22 + 2m2l1l2 cos (q2) + I1
M12 (q) = M21 (q) = m2l22 + m2l1l2 cos (q2)
M22 (q) = m2l22 + I2
C11 (q, q̇) = −2m2l1l2 sin (q2) q̇2
C12 (q, q̇) = −m2l1l2 sin (q2) q̇2
C21 (q, q̇) = m2l1l2 sin (q2) q̇1
C22 (q, q̇) = 0
G1 (q) = (m1 + m2) gl1 cos (q1) + m2gl2 cos (q1 + q2)
G2 (q) = m2l2g cos (q1 + q2) .

The model parameters of the manipulator are set as: l1 =

m, l2 = 0.8 m,m1 = 0.5 kg,m2 = 1.5 kg, I1 = 5 kg ·
2, I2 = 5 kg · m2, where li is the length of link i, mi is the
ass of link i, and Ii is the inertia of link i, i = 1, 2. Gravitational
cceleration is g = 9.81 m/s2. The nominal values of m1,m2 are
0
1 = 0.6 kg,m0

2 = 1.8 kg and the nominal values of I1, I2 are
0
1 = 6 kg · m2, I02 = 6 kg · m2. All numerical simulations in this
aper are conducted with the following external disturbances

d (t) =

[
τ1d (t)
τ2d (t)

]
=

[
2 sin (t) + 0.5 sin (200π t)
cos (2t) + 0.5 sin (200π t)

]
. (84)

he reference trajectories qd = [qd1, qd2]T are designed as [29]

qd1 = 1.25 −
7
5
exp (−t) +

7
20

exp (−4t)

qd2 = 1.25 + exp (−t) −
1
4
exp (−4t) .

(85)

The initial conditions of the system are set to q1 (0) = 1, q2 (0) =

1.5, q̇1 (0) = 0, q̇2 (0) = 0. The parameters of the proposed
controllers are listed in Table 1.

Four sets of simulations are described in this paper. First,
we discuss the NFSMC scheme described in Section 3.1, where
the upper bound of the coupling uncertainties F d is assumed
to be known. Second, the ANFSMC scheme in Section 3.2 with
unknown uncertainties F d is simulated. Comparative studies be-
tween ANFSMC and three other SMC schemes are then presented.
Finally, considering the case of actuator saturation, ANFSMC-AS is
simulated and compared with the controller without saturation
compensation.

4.1. Performance evaluation of NFSMC

Simulation results for the NFSMC scheme proposed in Sec-
tion 3.1 are displayed in Figs. 3–7. Figs. 3 and 4 show the position
53
Fig. 3. Position tracking performance.

Fig. 4. Velocity tracking performance.

Fig. 5. Position and velocity tracking errors.
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Table 1
Parameters of the controllers.
Parameter Value Parameter Value

Positive constant m1 0.2 Positive constant m2 0.09
Positive constant v1 2.5 Positive constant v2 0.5
Positive constant ε 0.001 Positive constant δ 0.3
Tracking gain error β 1.9 Auxiliary system constant b0 9.5
Auxiliary system constant b1 2.2 Auxiliary system constant b1 2.8
Adaptive constant λ 0.67 Auxiliary actuator constant ka 0.5
Auxiliary actuator constant kb 1 Auxiliary actuator constant kc 0.2
Auxiliary actuator matrix Ω 0.5I2 Control gain matrixes C1, C2,K p,K d 5I2
v
F
m
e
b
b
t
u
2
c
r
T
m
t
c

4

r

Fig. 6. Control torque of joints 1 and 2.

Fig. 7. Phase portraits of joints 1 and 2.

nd speed tracking performance of the proposed NFSMC scheme,
nd Fig. 5 shows the position and speed tracking errors of the
obotic manipulator. These results demonstrate that the robotic
anipulator can quickly and accurately track the desired trajecto-

ies and desired velocity under an uncertain external disturbance.
ig. 6 presents the control torque of joints 1 and 2. To achieve fast
rack of the ideal trajectories, the control torque of the robotic
anipulator has a large transient response at the beginning of

he movement. Fig. 7 shows the phase diagram of joints 1 and 2.
he proposed control system can reach the sliding surface with
 c

54
Fig. 8. Position tracking performance.

a limited time, and then converges to zero along this surface.
Therefore, the proposed NFSMC scheme achieves fast transients
in the manipulator with highly stable tracking accuracy, avoids
singularities, and it has strong robustness to interference and
system uncertainties.

4.2. Performance evaluation of ANFSMC

Simulation results using the ANFSMC scheme proposed in
Section 3.2 are shown in Figs. 8–13. For initial conditions of
b̂0 = 0, b̂1 = 0, b̂2 = 0, Figs. 8 and 9 present the position and
elocity tracking performance of the proposed ANFSMC scheme.
ig. 10 shows the position and velocity tracking errors of the
anipulator, demonstrating that the manipulator can achieve
xcellent trajectory tracking performance. From Fig. 11, it can
e seen that the input joint control torque is smooth, which is
eneficial to the manipulator in practical applications. Moreover,
he adaptive system is insensitive to disturbances and the model
ncertainties. Fig. 12 shows the phase diagrams of joints 1 and
, illustrating that the proposed control scheme achieves good
onvergence. Fig. 13 shows that the predicted values of the pa-
ameters in the adaptive system rapidly converge to constants.
hese simulation results show that the proposed ANFSMC can
aintain good control performance when the upper bound of

he lumped uncertainty is unknown, and even obtain a smoother
ontrol torque input than the NFSMC scheme.

.3. ANFSMC comparative study

To prove the superiority of the proposed ANFSMC scheme, the
esults given by SFSMC [19], ANFTSMC [29], and FNTSMC [8] are
ompared with from the proposed scheme. All simulations use



H. Sai, Z. Xu, S. He et al. ISA Transactions 123 (2022) 46–60
Fig. 9. Velocity tracking performance.

Fig. 10. Position and velocity tracking errors.

Fig. 11. Control torque of joints 1 and 2.
55
Fig. 12. Phase portraits of joints 1 and 2.

Fig. 13. Parameter estimation.

the same tracking trajectory and the robotic manipulator param-

eters in [8,19,29] to ensure that the comparison is reasonable. The

SFSMCer can be described as follows [19]:

τ = −η + τ0 + τ1

η = C1M0B (e) ė + C2M0Dβ−1 (e) ė
− C0 (q, q̇) q̇ − g0 (q) − M0q̈d

τ0 = −K 1Sigv1 (s) − K 2Sigv2 (s)

τ1 = −b (s) ·
1

1 − σ

(
a0 + a1 ∥q̇∥2

+ σ ∥τ0 − η∥
)

s = ė + C1F (e) + C2Sigβ (e)

f (e) =

{
kasigα+1 (x) + kbδ|x|x, if |x| < δ

sig1−δ (x) , if |x| ⩾ δ

F (e) = [f (ei)]T , i = 1, 2, . . . , n

B (e) = diag
{
ḟ (ei)

}
, i = 1, 2, . . . , n

b (s) =

{
s

∥s∥ , ∥s∥ ̸= 0
0, ∥s∥ = 0

(86)

where δ, β, v1, v2, a0, a1 are positive coefficients and C1, C2,K 1,

K are positive-definite diagonal matrices.
2
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Fig. 14. Position tracking error performance.

The control laws of ANFTSMC are given by [29]

s (t) = ε1 + k1 |e|α sign (e) + k2 |ė|β sign (ė)
τ (t) = τeq (t) + τasw (t)

τeq (t) = M0 (q) q̈d + C0 (q, q̇) q̇ + G0 (q)

−
M0 (q)
β · k2

|ė|2−β
(
1 + α · k1 |e|α−1) sign (ė)

τasw (t) = −M0 (q)
[
k · s +

(̂
b0 + b̂1|q| + b̂2|q̇|2 + η

)
sign (s)

]
b̂0 = λ0|s| · |ė|β−1

b̂1 = λ1|s| · |ė|β−1
|q|

b̂2 = λ2|s| · |ė|β−1
|q̇|2

(87)

here α, β, η, k1, k2, k, λ0, λ1, λ2 are positive coefficients.
The FNTSMC scheme is written as [8]

S = e + SigΓ 1 (e) + SigΓ 2 (ė)

τ = −M0 (q)
[
M2S + (S + M1)

S
∥S∥

+ F 2

+Γ−1
2

(
I2 + Γ 1DΓ 1−I2 (e)

)
Sig2I2−Γ 2 (ė)

]
ζ =

M−1
0 (q)

 (b0 + b1|q| + b2|q̇|2
)

F 2 = −M−1
0 (q) (C (q, q̇) + g0 (q)) − q̈d,

(88)

where b0, b1, b2,M1,M2 are known positive constants, Γ 1 and Γ 2
are two given positive-definite diagonal matrices.

The control parameters for these three schemes are listed in
Table 2, and are the same as in their respective papers [8,19,29].

Fig. 14 presents the position tracking error with the different
controllers. The trajectory tracking error of the developed con-
trol scheme converges to zero faster than in the other control
schemes. Figs. 15–17 provide a clear comparison of the joint
56
Fig. 15. ANFSMC and SFSMC control torque.

Fig. 16. ANFSMC and ANFTSMC control torque.

torques with the various controllers. In the case of external dis-
turbances, the proposed scheme provides a smaller control torque
chattering and smoother control input. To ulteriorly compare the
trajectory tracking and control torque output performance of the
four controllers, the integrated absolute error (IAE), the energy of
control input (ECI), and absolute input chattering error (AICE) are
designed as

|ei|IAE =
1
N

N∑
k=1

|ei (k)| (89)

|τi|ECI =
1
N

N∑
k=1

|τi (k)| (90)

|∆τi|AICE =
1
N

N−1∑
k=1

|τi (k + 1) − τi (k)|, (91)

here N is the total number of samples, i denotes the joint
number, and e (k), τ (k) denote the position error and control
input of joints, respectively.

As shown in Figs. 18–20, the proposed ANFSMC scheme gives
smaller values of IAE and ECI than the other controllers. In Fig. 20,
the ANSTSMC controller achieves a slightly smaller AICE value



H. Sai, Z. Xu, S. He et al. ISA Transactions 123 (2022) 46–60

t
r
m
e
e

4

t
s
t
S
t
b

Table 2
Parameter values of SFSMC, ANFTSMC, and FNTSMC.
Controller Parameters

SFSMC [18] δ = 0.3, α = 0.7, r = 1.7, β = 1.9, C1 = C2 = 3I2
K 1 = K 2 = 5I2, ν1 = 2.5, ν2 = 0.5, a0 = 12, a1 = 2.2

ANFTSMC [29] α = 0.2, β = 5/3, η = 0.5, k = 250, λ0 = λ1 = λ2 = 0.01
k1 = k2 = 1, b̂0 (0) = b̂1 (0) = b̂2 (0) = 0

FNTSMC [8] Γ1 = diag{2, 2},M1 = M2 = 2, Γ2 = diag{5/3, 5/3}
b0 = 12, b1 = 2.2, b2 = 2.8
Fig. 17. ANFSMC and FNTSMC control torque.

Fig. 18. Absolute tracking errors of controllers.

han the proposed controller, because the proposed controller
equires a large control torque at the beginning of the robotic
anipulator movement. Overall, the proposed ANFSMC scheme
xhibits excellent performance in terms of trajectory tracking,
nergy consumption, and chatter suppression.

.4. Performance evaluation of ANFSMC-AS

The performance of ANFSMC-AS is now described to illustrate
he effectiveness of the proposed actuator saturation compen-
ator in the ANFSMC scheme. The initial auxiliary variable ζ0 is set
o 0.006 and the saturation threshold value is [-50 50]. The ANF-
MC controller without actuator saturation is also compared with
he ANFSMC controller with consideration of actuator saturation
ut without compensation. The results are shown in Figs. 21–26.
57
Fig. 19. Energy consumptions of controllers.

Fig. 20. Absolute control torque chattering error.

Fig. 21. Position tracking performance.
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s
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Fig. 22. Velocity tracking performance.

Fig. 23. Compensator parameter prediction.

Fig. 24. Position tracking error performance.

Fig. 21 shows the position tracking performance and Fig. 22
hows the velocity tracking performance. In Fig. 23, the pre-
icted value of the compensator parameter rapidly converges to
58
Fig. 25. Control torque of joints 1 and 2.

Fig. 26. Absolute control torque chattering error.

a constant, indicating the strong compensation effect when the
manipulator starts to track the ideal trajectory. From Fig. 24,
it can be obtained that actuator saturation slows the conver-
gence rate of the trajectory error in ANFSMC. Under the action
of the compensator, the influence of actuator saturation can be
eliminated and the convergence rate of the trajectory error can
be accelerated. In Fig. 25, the control torque of the proposed
ANFSMC-AS is smoother and the chattering is significantly alle-
viated. Finally, in Fig. 26, the AICE metric defined in Section 4.3
is used to compare the absolute control torque chattering error,
where NCS represents the ANFSMC controller without consider-
ing actuator saturation, CSNC represents the ANFSMC controller
considering actuator saturation but without compensation, and
CSC represents the ANFSMC controller considering actuator sat-
uration and compensation. It can obtain that the proposed com-
pensator greatly alleviates the chattering of the system, leading
to a reduction in AICE of 71.1%. Additionally, after considering the
saturation compensation, the system chattering of the developed
controller is much smaller than that in ANFTSMC.

4.5. Discussion on comparison with existing methods

According to the above simulation, compared to the existing
fixed-time and finite-time SMC schemes, the superiorities of the
proposed controllers are highlighted as follows.
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(1) Compared with the existing finite-time SMC scheme, as
escribed FNTSMC [8] and ANFTSMC [29], the convergence time
f the proposed controllers is independent of the initial states.
n other words, we can estimate the settling time of the tracking
rrors of robotic manipulators without an initial position in ad-
ance. This feature makes the proposed control schemes suitable
or robotic manipulators with error convergence time constraints.
oreover, faster convergence rate and higher tracking accuracy
an be obtained compared with the other two methods.
(2) Compared with the existing fixed-time SMC scheme, as

escribed SFSMC [19], the model or the exact upper bound of the
isturbance is unnecessary in our proposed control scheme. This
akes it easier to be applied to industrial robotic manipulators.
(3) According to the three evaluation indicators, including IAE,

CI, and AICE, the proposed control scheme has better perfor-
ance in tracking precision, energy consumption, and chattering
limination. Moreover, the proposed controller saturation com-
ensator can mitigate the adverse effects of actuator saturation
ue to the large initial control torque. This is always ignored in
xisting fixed-time SMC schemes for robotic manipulators.

. Conclusion

This paper has described a new adaptive nonsingular fixed-
ime SMCer that considers the uncertainties of the robotic ma-
ipulator model and external disturbances, as well as actuator
aturation. The proposed controller has the advantage of non-
ingular fixed-time SMC, and fixed-time trajectory tracking of
he manipulator can be realized without knowing the model or
he exact upper bound of the disturbance. The saturation caused
y excessive actuator torque is compensated by the actuator
aturation compensator, allowing the chatter of control torque to
e reduced by 71.1%, which makes the proposed control scheme
ighly suitable for practical industrial robotic manipulators. Com-
arisons between the proposed control scheme and other existing
ontrollers in the case of a time-varying external disturbance
roved that the proposed control scheme has a faster conver-
ence rate, less control torque chattering, and greater robustness.
n the future, the applications of the proposed scheme will be
ainly focused on, and the smoother torque control schemes will
lso be studied.
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