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Abstract  In this paper, an adaptive radial basis function neural network (RBFNN) control-
ler based on extraordinariness particle swarm optimization (EPSO) is proposed. To improve the
trajectory tracking performance of robotic manipulators, the uncertainties of the manipulator 
dynamic equation are locally approximated using three RBFNNs with optimized hyperparame-
ters. Besides, a robust control item is also considered in the controller to resist external distur-
bances. During hyperparameters optimization, the EPSO optimizer iteratively optimizes the 
hyperparameters of the RBFNN controller using the composite error of the system output. The
stability of the control scheme is analyzed with the Lyapunov stability. Simulation results as well
as the experimental verification prove the efficiency and applicability of the control scheme. 

 
1. Introduction   

Nowadays, robotic manipulators are used to assist humans and work in many specific fields 
such as military, medical science, aerospace, etc., mostly requiring high precision [1]. However, 
it is difficult to establish an accurate dynamic model of the manipulator because of uncertainties 
and external disturbances, such as payload changes, friction, external disturbances and sensor 
noise [2]. To address the problem of inaccurate modeling parameters in the manipulator model-
ing process and ensure the high tracking accuracy of manipulators, many scholars and re-
search institutions have proposed a variety of methods [3-5]. Among them, adaptive nonlinear 
control for radial basis function neural network (RBFNN) approximation has been widely stud-
ied in recent years. 

Narendra et al. [6] first formulated an artificial neural network adaptive control method for 
nonlinear dynamic systems, which laid the foundation for the application of RBFNNs in robot 
control. To address the complex problem of the inverse solution of the Jacobian matrix in the 
robot adaptive control system, a neural network online modeling method was proposed in Ref. 
[7]. Subsequently, multilayer neural networks and RBFNNs have been successfully applied in 
the field of robot control [8, 9]. For instance, to overcome the problem of the explosion of the 
flexible joint manipulator dynamic model in backstepping control, the control method of model-
free compensators using a neural network and sliding surface was proposed, which constructs 
an adaptive RBFNN to approximate the unknown function of the system model, and uses the 
nonlinear damping term to overcome the external disturbance torque [10, 11]. Although 
RBFNNs are widely used, how to improve the control effect and anti-disturbance ability of the 
neural network control method is still a problem worth further study. 

In recent years, researchers have attempted to improve the performance of robot controllers 
and optimize the mechanical structure by introducing different structures of neural networks 
[12-14]. Neural network structures, such as an echo state network and convolutional neural 
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network, have also been successfully applied in the robot con-
trol field [15, 16]. Azizi [17] proposed an artificial neural network 
architecture to find the optimal parameters of the universal joint, 
which helps to reduce energy consumption and waste in the 
manufacturing process. In Ref. [18], a ring probabilistic logic 
neural network architecture is designed to reduce the adverse 
effects of road uncertainty on vehicles, and it is beneficial to 
improve the service life of vehicles. Notably, most neural net-
work structures have many hyperparameters that need to be 
determined, and the pros and cons of the hyperparameters 
have a great influence on the control effect of robots. Some 
scholars have proposed schemes to select the hyperparame-
ters of neural networks [19-21]. For example, for the RBFNN, 
the classical approach used to locate neuron centers is to ap-
ply clustering techniques, such as k-means clustering [22] and 
vector quantization [23], to form templates of the input. How-
ever, current conventional clustering algorithms, such as the k-
means algorithm, cannot ensure the high precision of the se-
lected centers. Ismkhan [19] and Hu et al. [24] proposed an 
improved k-means algorithm, which yields good accuracy but 
has a large computational cost. Additionally, the gradient de-
scent algorithm, orthogonal least squares and support vector 
machine are also used to determine hyperparameters in neural 
networks [25]. These methods are proved that hyperparameter 
values have a great impact on the performance of neural net-
works. However, these methods require a large amount of data 
sets and computation, which is difficult to apply in the field of 
robot control. In generally, the hyperparameters of neural net-
works are mostly artificially selected to be used in robot control 
systems, which is time and effort-consuming and in great ran-
dom.  

Inspired by physical phenomena, the metaheuristic optimiza-
tion algorithm provides a tool for researchers to optimize target 
parameters. Most of these algorithms are developed by draw-
ing inspiration from the natural world and are very suitable for 
solving complex calculation problems in design and operation 
optimization problems [26-28]. Particle swarm optimization 
(PSO) is one of the most famous metaheuristic optimization 
algorithms, and mainly imitates the foraging behavior of birds. 
However, in the standard PSO algorithm, particles tend to fall 
into a local extremum, and premature convergence or stagna-
tion occurs. To address this problem, scholars have proposed 
many improved algorithms based on the PSO algorithm [29-31]. 
Among them, Ngo et al. [31] proposed the extraordinariness 
particle swarm optimization (EPSO) algorithm, which over-
comes the shortcomings of the standard PSO algorithm, by 
moving to other selected particles and altering the range of the 
potential target. EPSO algorithm enhances the performance of 
standard PSO by using a new movement strategy for each 
particle. Specifically, the particles in EPSO fly towards their 
own predetermined goals, rather than the best particles (i.e., 
personal and global bests). However, the EPSO has only been 
simply applied in the design of mechanical structure at present, 
and its potential in manipulator control has not been further 
explored. 

In this paper, the effects of hyperparameters on robot control 
performance when using RBFNN to approximate the robot 
dynamic model is investigated. We propose an adaptive 
RBFNN control scheme based on an EPSO optimizer 
(EPRBF) for robotic systems with external disturbances in task 
space, which includes both an inner-loop and outer-loop con-
trol structure. The inner-loop controller is designed to model the 
manipulator using RBFNN based on local approximation. The 
outer loop controller is designed to use a proportion-derivative 
(PD) controller, and a robust controller is designed to quickly 
eliminate position and speed tracking errors. Meanwhile, the 
EPSO optimizer is introduced to optimize the hyperparameters 
in the RBFNN controller using the composite error to eliminate 
the errors caused by artificially selecting hyperparameters. 
Finally, numerical simulation and experimental results are 
shown to verify the effectiveness of and the advantages of the 
designed scheme by comparing it with some existing ones. 

The structure of this paper is as follows: In Sec. 2, we dis-
cuss theoretical preparatory knowledge, including details of the 
mathematical notation, EPSO, RBFNN, and robotic system 
dynamic model. In Sec. 3, we design the EPRBF controller and 
discuss stability. We present the simulation results of the pro-
posed scheme in Sec. 4 and experiments that are conducted in 
Sec. 5, followed by conclusions in Sec. 6.  

 
2. Problem formulation and preliminaries 

In this paper, R, Rn and Rn×n denote the real number set, n-
dimensional vector space and n×n real matrix space, respec-
tively. L2 denotes the Euclidean norm for vectors, and L∞ de-
notes the largest absolute value of the element in x vector 
space.  is an estimate of arbitrary parameter , which 
specifies that , and  denotes the error value be-
tween the actual value and estimate of . 

 
2.1 Description of EPSO 

For the EPSO algorithm, a combined operator is utilized in-
stead of the coefficients presenting cognitive and social com-
ponents in the standard PSO. That is to say, any particles in 
the EPSO algorithm can exchange information with each other, 
which can help particles escape from the local optimum, as 
particles do not always move towards their best locations. The 
detailed procedure of the EPSO algorithm is as follows [31].  

First, initialize the particle population, i.e., randomly generate 
some new particles between the given upper and lower bounds. 
Then, these particles are sorted from the best to the worst ac-
cording to their cost/fitness. Next, the target index T needs to 
be selected for each particle at each iteration: 

 
 (1) 

 
where Npop is the population size and rand  [0, 1] is a uni-
formly distributed random number. Then, the particle position 
update formula is as follows: 
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where LB and UB are the lower and upper bounds of the 
search space, respectively. Cepso  [0, 2] denotes a combined 
component that includes cognitive and social factors. Finally, 
the stop condition is checked until the particle satisfies the stop 
criterion. 

According to the above description, the main feature of the 
EPSO algorithm is to change the range of potential targets and 
make them move to other selected particles, which brings the 
opportunity for particles to jump out of the local optimum, to 
overcome the shortcomings of premature convergence of PSO 
algorithm. 

 
2.2 Description of the RBFNN  

The RBFNN can approximate any nonlinear function in a 
compact set with arbitrary precision [32, 33]. As shown in Fig. 1, 
the RBFNN has a three-layer network structure, which consists 
of an input layer, hidden layer and output layer. Xp represents 
the sample space and  is the input 
vector. In the RBFNN, the neuron activation function of the 
hidden layer is often composed of the RBF. The Gaussian 
function is the most commonly used RBF because of its simple 
expression, good analyticity and smoothness. An array opera-
tion unit composed of hidden layers is called a hidden layer 
node. Each hidden layer node contains a center vector  with 
the same dimension as the input parameter vector , and the 
Euclidean distance between them is defined as . 

The output of the hidden layer is composed of a nonlinear 
activation function : 

 

 (3)  

 
where  is a positive scalar that represents the width of the 
Gaussian function.  is the number of nodes in the hidden 
layer. The output layer of the network is implemented by the 
following weighting function: 

 

 (4)
 

 
where  is the weight of the output layer, J is the number of 
nodes in the output layer and  is the output of the neural 
network. 

At present, some results [34-36] indicate that for any con-
tinuous smooth function  over a compact set 

, if RBFNN is applied to approximate the nonlinear 
function  and the number of hidden layer nodes  is 
sufficiently large, then a set of ideal bounded weights  exist, 
and we have 

 
 (5) 

 
where ( )xε  is the reconstruction error. Note that the ideal 
weight matrix  in Eq. (5) is assumed to be completely 
known. However, in an actual application process, the RBFNN 
is typically constructed using the estimated value  of the 
weight instead of the ideal weight  to approximate the un-
known function , that is 

 
 (6) 

 
where  is the estimated weight matrix, which can be ad-
justed using a weight learning law.  

 
2.3 Robot dynamics modeling 

In this paper, the dynamic can be obtained using the La-
grange equation for an n-DOF rigid manipulator with bounded 
random disturbances 

 
 (7) 

 
where q,  and  are the joint angular position vectors, 
velocity vectors and acceleration vectors of the manipulator, 
respectively;  is the symmetric and positive defi-
nite inertia matrix;  is the centrifugal and Corio-
lis forces matrix;  is the gravity vector;  is the 
torque input vector, and  represents the unknown 
disturbances. 

In practical engineering applications, manipulators are af-
fected by external disturbances and system uncertainties. Un-
certainty mainly refers to the factors that are not considered or 

 

 
 
Fig. 1. Structure of the RBFNN. 
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are intentionally ignored when establishing the mathematical 
model of the manipulator [37], including inaccuracies in the 
quality and length of the manipulator, inaccuracies in the pa-
rameters of the gravitational acceleration and the influence of 
the frictional force when the joint is rotated. Generally, 

 and G(q) are unknown, so we can assume 
that M0(q), C0  and G0(q) are the nominal parts of the 
model parameters, and the errors are denoted by EM, EC and 
EG, respectively. These variables can be expressed as 

 

 (8)

 
 

where EM, EC and EG are the modeling errors of 
 and G(q), respectively. 

Assuming that the working nature of the manipulator is re-
lated to the spatial position of the end effector, it is necessary 
to design the control algorithm directly in the workspace. Using 

 to indicate the position and orientation of the end effector in 
the workspace, the dynamics of the robot in the workspace can 
be expressed as [38] 

 
 (9) 

 
where ( ) ( ) ( ) ( )1T

xM q J q M q J q− −= ;    
;  and  

;  are Jacobian matrices determined by 
the manipulator system, and we assume that they are non-
singular in the bounded workspace. Simultaneously, the dy-
namic equation of the manipulator has the following character-
istics. 

Property 1. The inertia matrix  is a symmetric and posi-
tive definite inertia matrix. 

Property 2. If  is defined by the Christoffel symbol 
rule, then the matrix - 2Cx  is diagonally symmetric. 

Property 3. Unknown disturbance  is bounded and satis-
fies 

 
 (10) 

 
where  is a positive constant. 

 
3. Controller design and stability analysis 

In this section, to improve the position tracking performance, 
and anti-interference ability of manipulators, the EPRBF con-
troller is proposed and its stability is analyzed. 

 
3.1 Neural network modeling of the manipula-

tor 

As discussed in Sec. 2,  and  are often 

unknown in actual engineering applications. We use three 
RBFNNs to approximate  and . From 
Eq. (8):  and  are functions about , so they can 
be modeled using a static neural network. Because  is 
a function of  and , it needs to be modeled using a dy-
namic neural network with inputs  and . The three output 
items of the RBFNN are  and , 
which can be expressed as 

 

 (11)

 
 

where EM, EC and EG are the approximation errors of 
 and G(q), respectively. 

Similarly, in Eqs. (7) and (9),  and 
 have similar properties. Therefore, as 

shown in Fig. 2, models of neural networks can be built as 
follows: 

 

 (12)

 
 

where  are the three output items 
of the RBFNNs;  are the weights of the 
RBFNNs; ,  are the corresponding Gaus-
sian basis functions with input vector q; ; 

 is the corresponding Gaussian basis function with 
input vector z; and  are the 
modeling errors of  and , and we 

 

 
Fig. 2. Local approximation of  using RBFNNs.
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assume that they are all bounded. 
When building the robotic dynamic model with neural net-

works, the dynamic equation of the manipulator in the work-
space can be expressed as 

 
 (13) 

 
where  can be expressed as 

 

 (14)

 
 
Using the General-Leeway (GL) matrix and its multiplication 

operation [38],  can be written as 
 

 (15) 
 

where  and  are GL matrices whose elements are 
 and , respectively; and  is the matrix 

whose elements are the modeling errors. 
Simultaneously, for  and , we have 
 

, (16) 
 (17) 

 
where , ,  and  are GL matrices and 
GL vectors whose elements are  and , 
respectively; and  and  are the ma-
trix and vector whose elements are the modeling errors  
and . 

 
3.2 Scheme design based on the EPRBF con-

troller 

We define that  as the ideal trajectory of the manipula-
tor in the workspace. Then  and  are their ideal 
velocities and accelerations, respectively. The manipulator 
position tracking error , neural network modeling speed 

 and composite error  are as follows: 
 

 (18)

 
 

where  is the ratio of the position error of the manipulator to 
the velocity error, and  is a positive definite matrix. The 
composite error  consists of two parts: the speed error 
and position error of the robotic manipulator. 

In Fig. 3, the EPRBF controller is divided into two parts: an 
inner-loop controller and outer-loop controller. The inner-loop 
controller mainly includes three adaptive RBFNNs and a ma-

nipulator dynamic model for approximating , , 
. The outer-loop controller is designed to use a PD con-

troller and a robust controller to quickly eliminate position and 
speed tracking errors. Additionally, the outer-loop controller 
includes an EPSO optimizer, which is used to optimize the 
hyperparameters in the RBF controller using the composite 
error to eliminate errors caused by artificially selecting hyper-
parameters. In the formulation of the controller of robotic ma-
nipulators with uncertain models, the hyperparameters in the 
neural network are used as the optimization objective of the 
EPSO optimizer, and the trajectory tracking error of the ma-
nipulator is taken as the optimization target.  

According to the provisions in Sec. 2, { } { }ˆ ˆ,A B  and { }Θ̂  

are estimates of { } { }ˆ ˆ,A B  and { }Θ , respectively. The control 

law is designed as follows: 
 

{ } ( ){ } { } ( ){ }

{ } ( ){ } ( )

TT

x r r

T

r a

F Q q x A Z z x

B H q K K sat r

⎡ ⎤⎡ ⎤= Θ ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+ ⋅ + +⎢ ⎥⎣ ⎦

  (19) 

 
where 0n nRΚ ×∈ >  and aΚ  is a positive constant satisfies 

a EΚ > , ( ) ( ) ( )M r c r GE E q x E z x E q= + + . 
The first three items of the controller are model-based control 

in Eq. (19). Kr  is equivalent to PD control, and r  is defined 
in Eq. (18). The last term of the controller is a robust item 
against the modeling errors of the neural networks. ( )sat r  is 
a saturation function of r  

 

 (20)

 
 

where δ  is a defined positive constant. 
According to Eq. (19), the controller does not require the so-

lution of the Jacobian inverse matrix. In actual control, the input 
can be obtained using ( )T

xJ q Fτ = . 
The EPSO optimizer adjusts the hyperparameters b and c of 

each neural network in the RBFNN controller, and the compos-
ite error ( )r t  is used as the objective function of the EPSO 

 
Fig. 3. The control block diagram of the EPRBF controller. 
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optimizer. In Eq. (3), , where 0 is the 
width of the Gaussian function of the hidden layer neuron ; 

 is the center point vector of the jth hidden 
layer neuron. First, the EPSO optimizer randomly generates a 
set of random particle sets  within a range of values. We 
design each RBFNN with seven hidden layers; hence, the 
number of randomly generated random particle sets is 63. c-M, 
c-G and c-C represent the center point vectors of the hidden 
layer neurons in , respectively: 

 

 (21)

 
 
According to Eqs. (15)-(17) and the control law in Eq. (19), 

the tracking error equation can be obtained as follows: 
 

 (22)

 
 
The detailed derivation process is provided in Appendix. 

 
3.3 Stability analysis 

In the RBFNN controller, a neural network weight adaptive 
strategy is used to adjust the weight of the RBFNN. For the 
closed-loop system in Eq. (22), the adaptive law is designed as 

 

 (23)

 
 

where 0; 0; 0 and  
and  are vectors of elements  and , respectively. 
We can conclude that , , , ,  is 
continuous. Hence,  and  as . 

Proof. We choose the following Lyapunov function: 
 

 (24)

 

where  are symmetric and positive matrices. 
Taking the derivative of Eq. (24) yields 

 

 (25)

 
 
Because the matrix ( ) ( ),x xM q C q q− 2  is diagonally sym-

metric, ( )T
x xr M C r− =2 0 . Therefore, according to Eq. (25), 

we have 
 

 (26)

 
 
Then, substituting Eq. (25) into Eq. (26) yields 
 

 (27)

 
 
According to Eq. (25), it has 
 

. (28)

 
 
Substituting Eq. (28) into Eq. (27) yields 
 

 (29)

 
 
Substituting the adaptive law in Eq. (23) into Eq. (29), com-

bined with inequality ,  is bounded as 
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 (30) 
 
As a result of 0, 0, it follows that 

0 (0). Therefore, as , this means that 
 and . Note that ,  

and are bounded basis functions, 
so , which means that  is consistent and continuous. 
When  and 

 
0, it has 

 
0 as . 

 
4. Numerical example 

To prove the effectiveness of the proposed control scheme, 
a 2-DOF manipulator is used as the simulation object. The 
architecture of the two-link robotic manipulator is shown in 
Fig. 4. The EPRBF control scheme is simulated using the fixed 
force and time-varying force, and compared with the control 
scheme of the RBFNN controller. Furthermore, the influence of 
different numbers of iterations on the proposed control scheme 
is analyzed, and the influences of different PSO improved algo-
rithms on the adaptive RBFNN control scheme of local ap-
proximation are compared. 

 
4.1 Design parameter 

The analysis of the 2-DOF manipulator model from Sec. 2.3 
shows that the dynamic of the robotic manipulator is 

 
 (31) 

 
where 

 

, (32)
 

, (33)
 

 

 (34)
 

 
The value of  can be obtained from , 

where ,  

and ;  is external disturbance;  
and  are the length of link 1 and link 2, respectively; and  
is the parameter vector of the manipulator. 

The nominal parameters of the manipulator are chosen as 
, . To 

compare the ability of the manipulator to resist load distur-
bances in the two control schemes, two simulation analyses 
are performed. For the first simulation, the value of  at t = 3 
s changes from 0 to 2. In the second simulation, the value of 
the load is a varying force  at t > 3 s.  

The desired position tracking trajectory of end-effector in 
Cartesian space is ( ) ( ). . cosdx t tπ= +1 1 0 0 2 , ( ) .dx t = +2 1 0  

( ). sin tπ0 2 . The trajectory is a circle with a radius of 0.2 m and 
the center of the circle is ( ) ( ), . , .x x =1 2 1 0 1 0 . In the initial con-
dition, the end effector of the manipulator is at the center of the 
track circle that is ( )0 1.0 1.0x = ⎡ ⎤⎣ ⎦  m, ( )0 0.0 0.0x = ⎡ ⎤⎣ ⎦  m/s. 

Because the tracking trajectory is the Cartesian coordinates 
in the workspace, the joint position of the 2-DOF manipulator 
should be converted to the Cartesian coordinates of the joint 
end in the workspace according to the Jacobian matrix ( )J q : 

 

 (35)
 

 
and taking the derivative of ( )J q  yields 

 

 (36)

 
 
The number of hidden layers of each neural network is de-

signed to be 7. Simultaneously, for the control scheme without 
the EPSO optimizer, the center of the Gaussian function  is 
selected as 7 points of the uniform distribution in [0, 12] and the 
width of the Gaussian function bi = 5, and the initial weights of 
all the neural networks are selected as 0. The controller pa-
rameters are chosen as K = [30 0; 0 30], 0.2 and Λ = [15 
0; 0 15]. In the adaptive law in Eq. (23), the parameters are 
selected as { }diag .kΓ = 2 0 , { }diag .kΨ = 0 10  and Nk = diag 
{5.0}. 

Regarding the EPSO optimizer, the initial values of the pa-
rameters of the EPSO optimizer are defined as follows: com-
prehensive coefficient Cepso = 2; space range from -10 to 25; 
number of particles Npop = 63; number of iterations M = 40; and 
number of populations N = 10. 

 
4.2 Simulation results 

In this subsection, the comparison results between the con-
trol performance of the EPRBF controller and the RBF control-
ler are analyzed. Among them, the RBF controller is the same 
neural network as in the above scheme without the EPSO 

 

 
 
Fig. 4. Architecture of a two-link robotic manipulator. 
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optimizer. To test the performance of anti-interference, two 
external loads are considered: the fixed force pl = 2 and pl = sin 
(2πt) when time exceeds 3 s. 

Simulation 1: For the first simulation, the position tracking 
results, speed tracking results, and joint output torque results of 
the two control schemes are shown in Figs. 5-8. 

Fig. 5 shows the position tracking process and tracking er-
rors of the two control methods on the x1 and x2-axes. 
Figs. 5(b) and (d) show that the position tracking error of the 
EPRBF controller is significantly less than that of the RBF con-
troller after 0.4 s, and the disturbance error of the EPRBF con-
troller is slightly smaller than that of the RBF controller when 
the manipulator is subjected to external interference. Fig. 6 
shows the speed tracking process and speed errors of the two 
types of controllers in the x1 and x2-axes. Because the propor-

tion of the velocity error in the compound error is small, the 
speed tracking performance of the controllers is similar. Fig. 7 
shows the output torque curve of joint 1 and joint 2 as a func-
tion of time when the EPRBF and RBF control schemes are  

(a) Position tracking in the x1 direction 
 

(b) Position errors in the x1 direction 
 

(c) Position tracking in the x2 direction 
 

(d) Position errors in the x2 direction 
 
Fig. 5. Position trajectories of EPRBF and RBF by the fixed external load. 

 

 
(a) Velocity tracking in the x1 direction 

 

 
(b) Velocity errors in the x1 direction 

 

 
(c) Velocity tracking in the x2 direction 

 

 
(d) Velocity errors in the x2 direction 

 
Fig. 6. Velocity trajectories of EPRBF and RBF by the fixed external load. 

 

 
 
Fig. 7. Control input of link 1 and link 2 by the fixed external load. 
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used, respectively. The curve shows that the output torque by 
the EPRBF controller has a faster convergence speed and 
smaller convergence errors with external disturbance than the 
RBF controller. Fig. 8 shows that the EPRBF controller made 
the end of the robotic manipulator reach the ideal trajectory 
faster, and the position tracking performance is significantly 
better than that of the RBF controller. 

Simulation 2: In the second simulation, the time-varying 
force is considered, and the simulation results are shown in 
Figs. 9-11. 

In Fig. 9, in the case in which a variable external disturbance 
is applied, the position error curves fluctuated twice after 3 s. 
The fluctuation of the position error curves and the conver-
gence speed of the EPRBF control scheme are slightly better 
than those of the RBF control scheme. Fig. 10 shows that the 
fluctuations of the velocity in the EPRBF control scheme are 

 
 
Fig. 8. Tracking the trajectory of the end of the manipulator. 

 
 

(a) Position tracking in the x1 direction 
 

(b) Position errors in the x1 direction 
 

(c) Position tracking in the x2 direction 
 

(d) Position errors in the x2 direction 
 
Fig. 9. Position trajectories of EPRBF and RBF by the time-varying external 
load. 

 

 
(a) Velocity tracking in the x1 direction 

 

 
(b) Velocity errors in the x1 direction 

 

 
(c) Velocity tracking in the x2 direction 

 

 
(d) Velocity errors in the x2 direction 

 
Fig. 10. Velocity trajectories of EPRBF and RBF by the time-varying exter-
nal load. 
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smaller than those of the RBF control scheme on the x1 and 
x2-axes. Fig. 11 shows that after the external disturbance is 
applied, the joint control torque has two significant fluctuations 
in the x1-axis direction and a significant fluctuation in the x2-
axis direction. The joint control torque fluctuations in the 
EPRBF control scheme are all smaller than those of the RBF 
control scheme. 

To summarize, the EPRBF controller proposed in this paper 
has better position tracking and speed tracking performance on 
the target trajectory, in addition to better anti-interference ability. 
Simultaneously, the EPRBF controller also has smaller control 
torque fluctuation with external interference. 

 
4.3 Further analysis and discussion 

In the previous section, the superiority of the proposed 
scheme over the RBF control scheme is verified through simu-
lation results. To compare the performance of the RBF control-
ler and EPRBF controller more specifically and accurately, the 
composite error r(t) is used as the evaluation index for analysis. 
The position and velocity error curves obtained by the EPRBF 
and RBF controllers are equally distributed into 190 values by 
time and then substituted into Eq. (18). The composite error 
obtained by the RBF control scheme is 147.4373 and that of 
the EPRBF control scheme is 80.5362. The composite error of 
the EPRBF control scheme is 54.62 % of the RBF control 
scheme, and the optimal effect is remarkable. The hyper-
parameters b and c are shown in Table 1, respectively. 

Using the EPRBF control scheme to improve the tracking 
accuracy of the manipulator required a longer optimization 
calculation time as the number of EPSO iterations increased. 
The composite error r(t) is still used as the evaluation index. 
The position and velocity error curves obtained by EPRBF are 
equally distributed into 145 values by time, and the number of 
iterations is 20, 40, 50, 70, 80, 90, 100, 110, 130 and 150. The 
number of iterations, composite errors and calculation times 
are shown in Fig. 12. 

In Fig. 12, when the number of iterations is less than 80, the 
optimized composite error is random as the number of itera-
tions increased. When the number of iterations is more than 80, 
the composite error decreased as the number of iterations 

increased. Simultaneously, when the number of iterations in-
creased from 100 to 150, the composite error decreased by 
0.8842 %, but the calculation time increased by 57.2348 %. 
We can infer that better control performance and a relatively 
short calculation time can be obtained when the number of 
iterations is around 100. 

In order to further fairly compare and illustrate the advan-
tages of the proposed controller, three PSO optimization algo-
rithms, including the modified Kalman particle swarm optimiza-
tion (MKPSO) [39], the random weighted PSO (RandWPSO) 
[40], the black hole particle swarm optimization (BHPSO) [41], 
are used to optimize the RBF controller as optimizers for com-
parison. The value of compound error r(t) mentioned in this 
paper is used as the evaluation index, and the calculation time 
of each control scheme is also compared. The aforementioned 
three PSO algorithms are replaced by the EPSO algorithm 
described in this paper and the number of iterations is set to 
100. The 2-DOF manipulator model is used as the object for 
the simulation. The simulation results are shown in Fig. 13. 
Figs. 13(a) and (c) show that the EPSO optimizer enables the 
RBF controller to achieve the best optimization result, and the 
compound error obtained by the optimization is 72.2216. The 
MKPSO optimizer can no longer reduce the system com-
pounding error after the number of iterations reach 18, and it 
fell into the local optimum the earliest. By contrast, the optimi-
zation effect of the RandWPSO is the worst. Fig. 13(b) shows 

 
Fig. 11. Control input of link 1 and link 2 by the time-varying external load.

 

Table 1. Hyperparameters of the RBF and EPRBF control schemes. 
 

 RBF EPRBF 

c-M [0 2 4 6 8 10 12;
0 2 4 6 8 10 12]

[-6.196 0 11.785 -0.131 -2.444 3.582 9.078; 
0.035 -4.345 8.15 0.086 3.267 3.421 -5.383] 

c-G [0 2 4 6 8 10 12;
0 2 4 6 8 10 12]

[0.453 -1.872 3.324 2.932 0.561 0.562 2.084; 
0.321 -1.359 2.807 7.568 0.659 0.301 2.12] 

c-C

[0 2 4 6 8 10 12;
0 2 4 6 8 10 12;
-6 -4 -2 0 2 4 6 ;
-6 -4 -2 0 2 4 6]

[-4.41 -3.897 -4.846 -3.257 1.686 5.428 -1.906;
3.907 0.777 -9.515 10.295 -9.14 2.877 -2.272;
6.848 -5.096 1.747 2.785 -7.085 -3.533 10.562;
6.848 -5.096 1.747 2.785 -7.085 -3.533 10.562]

b [5 5 5 5 5 5 5] [3.891 14.989 8.082 21.546 3.259 18.170 11.24]

 

 
Fig. 12. Error and calculation time variations of the EPSO algorithm for 
different iteration times. 
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that the sequencing of calculation time required for the four 
optimization algorithms is MKPSO > EPSO > RandWPSO > 
BHPSO, and there is not a substantial difference among the 
calculation times of the latter three algorithms. From the above 
comparison results, we can see that the control scheme pro-
posed in this paper can obtain better performance in trajectory 
tracking control of uncertain manipulators. 

 
5. Experimental studies 

To demonstrate the performance of the proposed control 
scheme, experiments are conducted to test the feasibility of a 
practical application based on a 6-DOF manipulator. Figs. 14 
and 15 show the experimental test setup configuration and the 
control block diagram. The platform consisted of four parts: a 
monitoring computer, DC regulated power supply, controller 
and 6-DOF manipulator. In the joint module of the manipulator, 
a 20000-line incremental encoder is used for the angle detec-
tion of the joint torque motor of the manipulator, and a 17-bit 
absolute encoder is used to detect the joint angle. The general 
specifications of the robotic manipulator are listed in Table 2 
and the specifications of the controller are listed in Table 3. 
Compared with the traditional complex controller, this paper 

uses a rapid controller prototyping cSPACE, which can provide 
an efficient real-time control algorithm for the experimental 
platform [42]. Using the C2000 DSP embedded target toolbox 
of MATLAB R2018a, the code can be automatically generated 
online, and the rapid prototyping and embedded system devel-
opment can be realized. According to the requirements of code 
composer studio (CCS) project files, the Simulink program 
automatically generates the C code needed by TI DSP. On this 
basis, download the C code to run on the DSP target board 
and complete the real-time implementation of the algorithm. 

The following specific steps for the implementation of the ex-
periment are given: 

Step 1: The proposed control algorithm is offline programmed 
using MATLAB/Simulink (MATLAB R2018a or a higher ver-
sion). 

Step 2: Through the cSPACE control platform, the MATLAB/ 
Simulink program directly converted into C codes. 

Step 3: In the CCS environment, the converted C codes are 

Table 2. The general specifications of the robotic manipulator. 
 

Manufacturer Elmo, Israel 

DC power supply 48.0 V 

Current 4.6 A 

Rating 150 W 
Range of operation for joint 2 and joint 3 ±146° 

Sampling time 100.0 µs 

Switching frequency of the inverter 22.0 KHZ 

 

 
Fig. 13. Comparison of four different algorithms for uncertain robotic ma-
nipulator: (a) optimization processes of different optimization algorithms 
when the number of iterations is 100; (b) operation time of each optimiza-
tion algorithm; (c) optimization results of various optimization algorithms. 

 

Table 3. The general specifications of the controller. 
 

Processor TMS320F28335 DSP 

Signal input IO: 3 channels 

Signal output D/A converter: 4 channels 16 bit 

Encoder Digital incremental encoder interface
Maximum input frequency 20 MHz 

Communication interface TTL 485 CAN 

 

 
 
Fig. 14. Experimental test setup.  

 

 
 
Fig. 15. The control block diagram of robotic manipulator system. 
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downloaded to the DSP control board of the controller through 
the simulator. 

Step 4: The proposed control algorithm is employed by a DSP 
processor in the form of C codes with a sampling time of 5 ms. 

The experimental results are shown in Fig. 16. In Figs. 16(a) 
and (c), compared with the ideal joint position curve, the per-
formance of EPRBF controller is significantly better than that of 
RBF controller. Fig. 16(b) shows that the maximum trace error 
of joint 2 remained under ±75×10-4 rad by EPRBF controller 
and under ±207×10-4 rad by RBF controller. The relative error 
of joint 2 reduced from 6.9 % to 2.5 %. Fig. 16(d) shows that 
the relative error of joint 3 reduced from 6.00 % to 2.02 %. The 
experiment experimental results verify that the EPRBF control-
ler has the accuracy position tracking ability. 

6. Conclusion 
In this paper, an EPRBF control scheme for improving the 

tracking accuracy and anti-interference ability of the robotic 
manipulator is proposed. The hyperparameters in the RBFNN 
controller based on local approximation are continuously opti-
mized by the EPSO optimizer. To verify the superiority of the 
proposed control scheme, a two-DOF manipulator loaded with 
different external disturbances is simulated. In the case of the 
fixed force, the composite error decreased from 147.4373 to 
80.5362, and the error decreased to the original 54.62 %. Fur-
thermore, the control performance for different iterations is 
observed and the simulation results show that when the num-
ber of iterations is set to 100, better control performance and 
less calculation time can be obtained. To verify the feasibility of 
the proposed control scheme, experimental studies are con-
ducted and the results show that the maximum relative error 
remained under 2.5 % in the manipulator control system. The 
simulation and experimental results demonstrate the superior-
ity and effectiveness of the proposed EPSO optimizer, which 
improves the tracking accuracy and anti-interference perform-
ance of robotic manipulators. In future works, the number of 
layers of NNs and the number of neurons in the controller will 
be mainly studied to coordinate control performance and com-
putation time.  
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Nomenclature------------------------------------------------------------------ 

T : Target index  
Npop : Population size 
LB : Lower bounds of the search space 
UB : Upper bounds of the search space 
Cepos : Combined index 
Rand : A random number between [0 1] 
Xp : Sample space 
c : Center vector 
b : Width of the Gaussian function 
N : Number of nodes in the hidden layer 
w : Weight of the output layer 
J  : Number of nodes in the output layer 
y : Output of the neural network 

 : Number of hidden layer nodes 
 : Ideal bounded weights 

ε(x) : Reconstruction error 
 : Estimated value of the ideal weight 

q : Joint angular position vectors 
q  : Joint angular velocity vectors 
q  : Joint angular acceleration vectors 

(a) Position tracking of joint 2 
 

(b) Position errors of joint 2 
 

(c) Position tracking of joint 3 
 

(d) Position errors of joint 3 
 
Fig. 16. Experiment results of the EPRBF and RBF control scheme. 
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M(q) : Symmetric and positive definite inertia matrix 
C(q, q ) : Centrifugal and Coriolis forces matrix 
G(q) : Gravity vector 
τ : Torque input vector 
τd  : Unknown disturbances 
M0(q) : Nominal value of M(q) 
C0(q, q ) : Nominal value of C0(q, q) 
G0(q) : Nominal value of G(q) 
EM : Model error of M(q) 
EC : Model error of C (q, q ) 
EG : Model error of G(q) 
x : The position and orientation of the end effector 
J(q)  : Jacobian matrices 
MSNN(q), CDNN(q, q ), GSNN(q) : Output items of the RBFNN 
Xd(t)  : Ideal trajectory 

d(t) : Ideal velocities 
d(t) : Ideal accelerations 

e(t) : Position tracking error 
r(t) : Neural network modeling speed 

r(t)  : Composite error 
 : Ratio constant 

δ : Defined positive constant 
c-M, c-G, c-C : Center point vectors of the hidden layer neurons 
P : Parameter vector of the manipulator 
pl : External disturbance 
l1, l2  : Length of link 1 and link 2 
K, δ   : Controller parameters 
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Appendix  

Substituting Eqs. (15)-(17) into Eq. (13) yields 
 

 (A.1)

 
 
Substituting the control rule in Eq. (19) into Eq. (A.1) yields 
 

 (A.2)

 
 
Substituting rx x r= =  and rx x r= =  into Eq. (A.2) yields 
 

 (A.3)

 
 
Simplifying Eq. (A.3) yields 
 

 

(A.4)

 
 
Then, substituting Eqs. (15) and (16) into Eq. (A.4), the track-

ing error equation is given by 
 

 (A.5)
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