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Abstract: Anomaly perception of infrared point targets has high application value in many fields,
such as maritime surveillance, airspace surveillance, and early warning systems. This kind of
abnormality includes the explosion of the target, the separation between stages, the disintegration
caused by the abnormal strike, etc. By extracting the radiation characteristics of continuous frame
targets, it is possible to analyze and warn the target state in time. Most anomaly detection methods
adopt traditional outlier detection, which has the problems of poor accuracy and a high false alarm
rate. Driven by data, this paper proposes a new network structure, called AC-LSTM, which combines
Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM), and embeds the
Periodic Time Series Data Attention module (PTSA). The network can better extract the spatial and
temporal characteristics of one-dimensional time series data, and the PTSA module can consider the
periodic characteristics of the target in the process of continuous movement, and focus on abnormal
data. In addition, this paper also proposes a new time series data enhancement method, which
slices and re-amplifies the long time series data. This method significantly improves the accuracy of
anomaly detection. Through a large number of experiments, AC-LSTM has achieved higher scores
on our collected datasets than other methods.

Keywords: infrared point targets; anomaly state perception; CNN; LSTM; attention mechanism

1. Introduction

Infrared images are obtained by “measuring” the radiant heat of the object or scene [1].
Infrared images are often used to dynamically observe and capture objects such as drones
and helicopters. During the flight of the above target, many abnormal states may occur,
such as the unusual trajectory of the target due to unexpected mechanical malfunction, and
explosion or disintegration of the target due to its cause or abnormal strike. These states
are categorized as abnormal events that differ from the normal flight state. The target’s
radiated energy and flight speed change significantly when abnormal events happen.
These two characteristics (especially the radiation characteristics) are easily captured in
infrared images. Figure 1 shows a typical state of inter-stage separation of targets (only
show a few frames of typical state in continuous flight state). Figure 2 shows the radiation
characteristic curves of targets in continuous frames extracted from the multi-frame images
shown in Figure 1. Obviously, in this state, the radiation characteristics of the target change
dramatically. The target lights up quickly when an abnormal event occurs (the fragment
separates from the main body). After the debris completely separated from the target,
the target gradually darkened. As this phenomenon is shown in Figure 2, the radiation
intensity increases rapidly and then decreases. It is necessary to capture and prompt this
state in time. However, capturing and judging these abnormal states is mostly only done
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manually under current conditions. It is prone to make mistakes, delaying observation,
and it is also a waste of human resources.
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With the advent of the era of big data, mining and utilizing massive data has become
a new idea of abnormal perception. The target will generate a large amount of time se-
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ries correlation data during the flight process. Long Short-Term Memory (LSTM) [3,4]
can use the time series correlated radiant energy and motion characteristics to discover
the abnormal state of the target in time. In fact, LSTM is often used to predict data for
anomaly sensing in many fields [4,5]. Anomaly detection using LSTM for near-periodic
web traffic prediction and anomaly-inducing time series data has achieved good results [6],
but anomaly detection for flighting infrared targets has not received widespread attention.
Unlike those cases, the radiation characteristics and trajectories of different infrared targets
are changeable. It is difficult to achieve robust and excellent anomaly detection by predic-
tion from time series data only. To better achieve anomaly detection for such targets, we
propose a novel structure of CNN+LSTM, called AC-LSTM. Compared with the general
LSTM which focuses only on the temporal characteristics of the target, our AC-LSTM can
extract the spatio-temporal characteristics of the target when it is abnormal and can detect
the abnormal state of the target in a more timely and accurate way.

The technical innovation of this work can be summarized as follows:

• A spatio-temporal hybrid network (CNN+LSTM) is designed for infrared target abnor-
mal event sensing, called AC-LSTM, which focuses not only on the abnormal temporal
characteristics of the target, but also on the spatial feature changes between the abnor-
mal and normal states. It allows online real-time pre-processing and analysis of the
target’s radiation characteristics and motion characteristics, instead of the traditional
method that can only be processed afterward, to promptly observe and deal with the
target during its flight. Moreover, compared with the traditional manual methods, our
AC-LSTM has higher recognition accuracy and higher stability.

• A Periodic Time Series Data Attention (PTSA) module is proposed, which is incorpo-
rated into our AC-LSTM model with negligible overheads. It adaptively strengthens
the “period” features to increase the representation power of the network by exploiting
the inter-batch relationship of features. A large number of experimental results with
real cases demonstrate that the PTSA module can help our AC-LSTM model better
grasp the time-series data changes.

• A data expansion method is proposed to improve the generalization ability of our
model. This method uses the time window method to expand a large number of data
while keeping the overall trend of the target unchanged.

2. Related Work

Our work is inspired by the recent progress in time series anomaly detection in various
fields. In this section, we describe related work for using the CNN+LSTM structure briefly.

2.1. Time Series Anomaly Detection Method

This “anomaly” is mostly defined as an irregularity in the data, as a deviation from
the rules [7]. In the field of anomaly detection, Markov model-based approaches are
widely used [8]. Markov models can predict future states using previous information. It
can establish transfer probability relationships between states [9,10]. Gu et al. propose
a stream-based mining algorithm combining Markov models and Bayesian classification
methods, used for online anomaly prediction [11]. Their anomaly prediction scheme can
alert impending system anomalies in advance and suggest possible causes of the anomalies.
Sendi et al. [12] use Hidden Markov Models (HMM) to extract the interactions between the
attacker and the network. Actually, machine learning-based anomaly detection is the adap-
tation of some data structures or classification models from machine learning to apply to
anomaly detection tasks [13]. For example, Isolation Forest (IFF) uses a random hyperplane
to cut the data space, where anomalous samples or outliers with sparse distribution den-
sity are more easily sliced into a subspace [14,15]. The One-Class Support Vector Machine
(OCSVM) does not rely on density partitioning to find anomalies, by improving the support
vector machine and using classification techniques for anomaly detection on time series
data with extreme class imbalance [16–18]. Essentially, it converts binary classification into
a single classification and marks the data as anomalous samples whenever they do not be-
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long to the normal class. In recent years, deep learning methods based on neural networks
have been widely used in prediction problems [19]. Recurrent neural networks (RNNs)
and their advanced variants have shown higher performance than traditional methods in
prediction tasks [20,21], capturing the features of input time series data by memorizing its
historical information. Hochreiter et al. [22] propose LSTM units, a special type of RNN,
to address the vanishing gradient problem that occurs in traditional RNNs, which results
in the inability to learn long-term correlations. LSTMs introduce gating mechanisms to
control the entire flow of information within a neuron, with both short-term and long-term
dependencies. LSTM networks are particularly suitable for modeling multivariate time se-
ries and time-varying systems [23], and LSTM-based methods have demonstrated excellent
anomaly detection capabilities. For example, Malhotra et al. [24] propose a stacked LSTM
structure to detect anomalies in time series data. In contrast to the denoised LSTM, features
without dimensionality reduction are used as input. Detection is achieved by assessing the
bias of the predicted output based on analyses of variance. Bontemps et al. [25] present
a method for detecting collective anomalies using LSTM. The novelty lies in evaluating
the prediction error of multiple advance steps compared to evaluating each time step indi-
vidually. The LSTM network improves the detection accuracy by modeling the prediction
of smooth and non-smooth time correlations. As a result, efficient detection of temporal
anomalous structures is achieved. Lee et al. [26] propose a real-time detection method
implemented based on two LSTM networks. One is used to model short-term features and
is capable of detecting individual upcoming anomalous data points within a time series,
and the other is used for long-term threshold-based control detection.

2.2. Application of CNN+LSTM Algorithm

To implement multidimensional time series anomaly detection, convolutional neural
networks (CNNs) and LSTMs are proposed to be combined, which allow anomaly detection
in multiple and interconnected dimensions, such as spatial, temporal, or other application-
specific dimensions [27–29]. In short, it is possible to detect complex anomalous structures
by correlating different dimensions.

The combination of CNN, LSTM, and DNN is proposed in [6] to extract more complex
features that can achieve anomaly detection of web traffic. Yao et al. [30] combine CNN and
LSTM for traffic data prediction; this method proposes to combine the temporal dynamics
and spatial dependence of traffic flow. Renjith et al. [31] use CNN+LSTM anomaly detection
technique to detect suicidal ideation in social media platform posts, combining anomaly
detection with user multidimensional thought logic. The same CNN+LSTM model is
used in [32] for user evaluation, which can detect anomalies in text analysis to determine
psychiatric categories. Convolutional neural networks are used to extract local information
from text, and long- and short-term memory networks are used to extract contextual
relevance. In [33], CNN-LSTM is used for multi-step wind power prediction, and CNN is
used to extract spatially correlated feature vectors of meteorological elements at different
sites and temporally correlated vectors of ultrashort-term meteorological elements, which
are reconstructed by time series and used as input data for LSTM. Then, the LSTM extracts
the temporal feature relationships between historical time points for multi-step wind power
prediction. Rojas-Dueñas et al. [34] propose a method to detect the health status of electric
vehicle power supply converters by training a CNN+LSTM model to predict the remaining
service life of the device and the fault diagnosis of the device. In [35], a one-dimensional
CNN+LSTM network structure is used for short-time traffic flow prediction, and the
effectiveness of the algorithm is verified by conducting experiments on collected real data.

The above-related work verifies that CNN combined with LSTM can perform better
anomaly detection than CNN-only or LSTM-only, but this method has not been applied
for anomaly state perception of infrared point targets. As far as we know, our work is
the first to apply anomaly detection to infrared point targets, which fills the gap in this
field. Moreover, on the one hand, the target does not produce serious anomalies in most
cases, and the abnormal state becomes missing compared to the normal state; on the other
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hand, different target characteristics have very obvious changes, and the data seriously lack
periodicity. These bring higher requirements on the generalization and real-time analysis
abilities of the algorithm.

3. The Proposed Method
3.1. Data Enhancement

The infrared target feature data are closely linked with temporal information, and
the temporal data of different targets will have great variability, resulting in a serious
imbalance of data size. The high-dimensional input space corresponding to small samples
is sparse, so it is difficult for neural networks to learn the mapping relationship from it.
Data enhancement becomes an essential step in the process of network training. In order
to enlarge the amount of data input and keep the length of the input data in the network
consistent, the general data enhancement method will scale the input dataset to a certain
length. This scaling is usually achieved by interpolation. However, this simple and basic
method cannot increase the robustness of network learning, and it is easy to produce an
over-fitting phenomenon in the training process. Inspired by [36,37], this paper proposes a
sliding window slicing method to enhance data. This method can add random noise to the
original data without changing the data distribution. The specific implementation process
is shown in Figure 3.
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Xori = (x1, x2, . . . , xN) is the input vector of the target’s infrared characteristic data with
length N, which is represented as sparse points in Figure 3. The original time series is sliced
into data fragments x1 = (x1, x2, . . . , xn) x2 = (x2, x3, . . . , xn+1), xi = (xi, xi+1, . . . , xi+n)
according to a certain length n, where xi refers to the first frame of each sliced sequence.
Here, n can be set according to the total length of the sequence. In this paper, one slice
is used every 500 frames. At the same time, each slice overlaps 100 frames of data of the
previous slice. After splitting the original data slices, we calculate the average and standard
deviation of each slice level.

µi =
∑ xi

n
(1)

σi =

√
∑ (xi − µi)

2

n
(2)



Remote Sens. 2022, 14, 3221 6 of 19

Generate a set of random arrays γi according to the standard deviation of each slice
data, where the length of γi is the same as that of slice data. At the same time, the
enhancement factor b is set, which can be modified according to the situation. In this article,
the default setting is 0.05. Multiply the random array with the standard deviation and
add its result to the slice data. It is equivalent to generating a set of new data with the
same data distribution as the slice data, but the data at each moment is randomly changed.
The specific implementation procedure is shown in Equation (3), where vector σi is the
expansion of standard deviation σi to the same dimension as xi.

Xi = b ∗ γi ∗ σi + xi (3)

X = Xori +
i=N/n

∑
i=1

Xi (4)

The max data length is set to 100,000. In this way, the data are supplemented until the
set data length is reached, and finally the enhanced data X (dense points in Figure 3) is
obtained. There are 4900 original data segments in the figure, which can reach 100,000 data
points after data expansion. During training, all data will be sent to the network for testing,
and the amount of data sent to the network will be the same every time.

3.2. CNN-LSTM for Anomaly Detection

The CNN model is widely used in the field of feature engineering because of its focus
on features. LSTM has the characteristics of time series expansion and is widely used in
time series. The anomaly detection in this paper is a kind of spatial feature extraction
which is highly correlated with time series. Therefore, this paper combines two structures
for anomaly detection of infrared point targets. Inspired by state-of-the-art CNN+LSTM
algorithms [6,38,39], we propose the AC-LSTM network, which consists of CNN and LSTM
layers, and PTSA module with the self-attention mechanism (this part will be described
in Section 3.3) [40]. Its structure is shown in Figure 4. The network uses fixed-length time
series data as input. The time series has been greatly expanded by the data enhancement
module, and the amount of data is dozens of times larger than the original data. The spatial
elements of the abnormal part of the input data are extracted by the CNN network, and
the time characteristics of the data are extracted by LSTM. Then, the anomaly score of
each point after single-step prediction is calculated, and the anomaly location is judged
by adaptive threshold determination, and then fed back to the temporal data to obtain the
specific moment when the anomaly occurred in the process of target flighting.
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The first part of our network adopts CNN structure. Figure 5 shows the specific
structure of the network, which is mainly composed of the Convolution layer, Batch Norm
(BN) layer, Pooling layer, and Full Connection (FC) layer. Before starting the training, the
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time series data with a fixed length of M (the max data length mentioned in Section 3.1)
are divided into a small data window containing m data according to batch_size, which
is expressed as X = (x1, x2, . . . , xm). Subscript m represents the size of the batch. X is
taken as input and sent into the convolution layer. After that, the data in each window
pass through the convolution layer, and the spatial features of each part of the data can be
extracted. Sending the feature map to the BN layer for normalization can accelerate the
convergence speed of the network and prevent the gradient explosion. Then, the data are
processed by activating the function to complete the data. The specific implementation
process is expressed in Equation (5). xi represents each value in the output feature map,
where i is the index of the characteristic value. yi

T represents the output value of t time step,
Wi is the corresponding weight coefficient, σ is the activation function, which can be tanh
or relu. We also add a dropout layer to the first convolution layer, which can effectively
prevent the data from over-fitting. It should be noted that in this process, each slice window
is fed into the convolutional neural network in a sequential manner. In this paper, the
pooling layer adopts adaptive average pooling of Pytorch, which will control the output
size according to the input parameters. The pooling layer can effectively reduce the size of
the parameter matrix, thus reducing the number of parameters in the final connection layer.
Therefore, adding pooling layer can speed up the calculation and prevent over-fitting.

yi
T = σ(bi +

m

∑
i=1

Wixi) (5)
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The second part of our network adopts LSTM structure. CNN acquires complex spatial
features of the input signal. After that, the feature vector of each data window is sent into
LSTM. WT which in Equation (6) represents the total weight coefficient of the CNN, yi

T is
the output feature vector of the CNN at each time step, FT represents the output of each
time step through the LSTM cell, and F represents the process of the feature vector through
the LSTM.

FT = F
(

WT ∗ yi
T
)

(6)

The LSTM in Figure 4 is a repeatable stacked unit. These units acquire the temporal
characteristics of data in different time steps T through continuous learning. The process
mainly includes three different gate structures: forgetting gate, memory gate, and output
gate. These three gates are used to control the information retention and transmission in
the long- and short-term memory network, which can be expressed as follows [3].

• Forgetting phase. The forgetting gate ft consists of a Sigmoid neural network layer
and a per-bit multiplication operation. The ht−1 in Equation (7) is previous hidden
layer status. The xt is the input of data. The b f is offset value. The σ represents the
Sigmoid function.
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ft = σ
(

W f ·[ht−1, xt] + b f

)
(7)

• Selective memory stage. The role of the memory gate is the opposite of the forgetting
gate, which will determine among the newly entered information xt and ht−1, what
of the information will be retained. The C̃t in Equation (9) is the out-of-selective
memory stage.

it = σ(Wi·[ht−1, xt] + bi) (8)

C̃t = it ∗ tanh(Wc·[ht−1, xt] + bc) (9)

The results obtained from the above two steps are added together to obtain the Ct.

• Output phase. This phase will determine what will be treated as the output of the
current state. Then, at the t time, we input the signal xt. Later, the corresponding
output signals are calculated according to Equations (10) and (11).

ot = σ(Wo[ht−1, xt] + bo) (10)

ht = ot ∗ tanh(Ct) (11)

The cell output cells of different time steps are concurrently connected, and the purpose
of this step is to learn the anomalous part with fewer data and finer details when the feature
map goes through several time steps of the LSTM. The output of the first LSTM layer is
passed as input to the second layer. This is also capable of temporally associating data from
each time period over a long period of time, which is equivalent to temporally associating
the entire data with strong data. The CNN is equivalent to narrowing down a certain
retrieval range for the input of the LSTM, while the LSTM is still able to perform internal
temporal data prediction within each small time segment to obtain the anomalies of the
data within each time segment.

The red part in Figure 4 is the last part. It performs the anomaly location determination.
Calculate the mean value µt and standard deviation σt

2 for each region xt. For each anomaly
point, xi can be computed as an anomaly score p(xi).

p(xi) =
i=t

∏
i=1

1√
2πσi

exp(− (xi − µi)
2

2σ2
i

) (12)

As the target exception needs to continue online judgment, set the judgment threshold
ε. Threshold value ε is set using the local average method, and the data are calculated in
a stepwise flow. The µT which is the average of the abnormal scores is calculated within
each time step T. Order ε = µT , If p(xi) > ε, then this place is identified as an abnormal
point, and the timing data are combined with locking the abnormal frame and filtering out
the final abnormal location.

3.3. Periodic Time Series Data Attention

The attention mechanism [41] has demonstrated excellent performance in 2D image
feature extraction in recent years, thus we try to use it in 1D time series data that propose
the periodic time series data attention (PTSA) module. Unlike two-dimensional image data,
our one-dimensional input data have a very strong temporal correlation. Although they
still need to be split into many batches for training, there is a very tight connection between
each batch. This requires that our attention model cannot focus only on the features of
each part. Inspired by [42,43], our proposed PTSA module is able to combine the data
features of each batch periodically. The implementation process is mainly shown in Figure 6.
The attention mechanism is mainly to judge the importance of each input by weighting.
Within each batch, we still adopt the simplest one-dimensional data attention method. The
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working principle of the LSTM encoder-decoder integrated with the attention mechanism
can be expressed by the following equations. The hidden state of the current LSTM unit in
the LSTM encoder is H, and the hidden state of the first LSTM unit in the LSTM decoder is
h1. First of all, it is necessary to score the degree of correlation.

Score = F(H, h1) (13)
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In this paper, the F function used in scoring is the bilinear function, where W is the
weight matrix that can be learned.

F(H, h1) = HTWh1 (14)

Next, the attention weighted distribution matrix a = (a1, a2, a3, . . . , am) is generated
by the softmax function, where each item corresponds to the input, where hi is the hidden
state of the ith LSTM unit.

Finally, these attention distributions can selectively extract relevant information from
the input information. The final attention weighting matrix is linked with the hidden layer
unit of LSTM, and the final output prediction value is obtained. Our proposed periodic
attention mechanism realizes weight sharing among each LSTM unit to realize the final
network prediction jointly.

yi = ai ∗ hi (15)

4. Experiment
4.1. Experimental Setup
4.1.1. Training Details

Since the experimental network model deals with one-dimensional time series data
variables, it does not require a very powerful hardware configuration (it takes about 10s
to run an epoch using a single GeForce RTX 2080ti GPU). The problem of data latency
is unavoidable when using LSTM for temporal data prediction due to the fact that the
predicted values produce very large deviations in the first prediction to keep the same size
as the original data. Thus, many works use the mean or median of the data instead of the
first prediction, but this will also lead to the anomaly scores of the first frame tending to
be very high. This problem is exacerbated by the fact that our dataset has very large data
variations. Therefore, we avoid this problem by adding a start point and an endpoint to the
prediction and calculation of the anomaly scores.
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4.1.2. Datasets

The datasets we use are all real infrared images obtained in our work accumulation,
which are the continuous frames of data captured during the motion of the flying target,
and it contains roughly 30 groups, each group containing 3000–8000 frames, and the
anomalous frames are manually marked by experts to be used to analyze and label the
target anomalous events. Figure 7 shows some of our data. The red box is where the
abnormal event occurs. The curve in the figure is the effect of drawing one-dimensional
time series data. In fact, the data we send into the network are data of a certain length,
abnormal data are marked as 1, and normal data are marked as 0. Although the data
volume is very large, the number of anomalous frames is still very small in the total data
volume. That led to our dataset of anomaly detection being not as easy to obtain as car
traffic monitoring and various machine fault detection, thus we use a sliding window
slicing method to enhance our dataset (introduced in Section 3.1).
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4.1.3. Evaluation Metric

We use the evaluation metrics Precision, Recall, Accuracy, and F1 score that are
commonly used in anomaly detection to determine the effectiveness of our proposed
method [44].

TP (True Positive): Abnormal point is predicted to be abnormal.
FP (False Positive): Normal points are predicted to be abnormal.
FN (False Negative): Abnormal point is predicted to be normal.
TN (True Negative): Normal point is predicted to be normal.
TP, TN, FP, and FN rates are used to evaluate each algorithm in our experiment.

precision =
TP

TP + FP
(16)
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recall =
TP

TP + FN
(17)

accuracy =
TP + TN

TP + TN + FN + FP
(18)

Precision in Equation (16) is the percentage of relevant instances among all retrieved
instances and recall in Equation (17) is the percentage of relevant instances retrieved among
all relevant instances. Accuracy in Equation (18) is the proportion of the whole sample
that is judged correctly. The recall is a particularly important metric for anomaly detection
because it represents the ratio of the number of anomalies found to the total number of
anomalous instances.

F1 Score = 2× precision× recall
precision + recall

(19)

Using precision and recall, we can derive F1 scores, as shown in Equation (19). We
used these evaluation metrics to make a quantitative comparison of the test results.

4.2. Ablation Studies
4.2.1. Performance Comparison of Model Combinations

We verify the performance of our network model by combining different structures.
Our benchmark method is LSTM single-step prediction [45]. On this basis, we add different
convolution layers and change the network structure. In fact, using LSTM or CNN alone
for anomaly detection of infrared point targets is not satisfactory. The LSTM prediction
method (the first row of Table 1) has very low precision, although its F1 Score is higher than
that of CNN. A large number of false alarms will be generated when an abnormal event
occurs, which is an excessive reminder for the early warning work and will consume a lot
of labor costs to maintain. The CNN method (the second row of Table 1) performs worst on
all indicators. Our AC-LSTM adds a one-dimensional convolution layer to LSTM to help
the network get more information, and the effect is significantly higher than that of the
two models alone. The second half of the table shows the test of our model by changing the
number of convolution layers. The accuracy has been obviously improved by adding three
convolution layers. This result confirms our previous point of view that joining CNN can
obtain more spatial characteristics of data based on the original network structure. On this
basis, we added a Batch Normalization (BN) layer [46] after each convolution layer and
found that the effect was obviously improved. However, with the deepening of network
layers, the experimental results were not improved again. This phenomenon may be due to
the simple structure of time series data, and even the complex model has a limited ability
to extract features from one-dimensional data.

Table 1. Performance comparison of different model combinations.

Method Precision Recall F1-Score

LSTM 0.27 0.9 0.41

CNN 0.63 0.8 0.27

LSTM+CNN

Conv(3) 0.77 1.0 0.36
Conv(3) + BN(3) 0.82 1.0 0.47
Conv(4) + BN(4) 0.83 1.0 0.47
Conv(5) + BN(5) 0.83 1.0 0.47

4.2.2. Effect of Sliding Window Enhancement

In Table 2, we evaluate the effect of our data expansion method (introduced in
Section 3.1). We take AC-LSTM, which uses the original data as input, as the basic network,
comparing it with ones adding long-term noise and segmented noise. The results show
that adding noise to our input data can effectively improve the generalization ability of our
model, especially adding segmented noise by our proposed sliding window brings more



Remote Sens. 2022, 14, 3221 12 of 19

significant performance improvement (the third row of Table 2). The input data used in the
other experiments are all processed through our expansion method.

Table 2. The effect of different enhancement methods. (Long-term noise refers to the enhancement of
all data once in the way of interpolation instead of window slicing, and segmented noise refers to the
enhancement method of sliding window proposed in this paper.).

Precision Recall F1-Score

AC-LSTM 0.53 0.8 0.37
AC-LSTM+Long-term noise 0.75 1.0 0.42
AC-LSTM+Segmented noise 0.83 1.0 0.47

4.2.3. Effect of Periodic Time Series Data Attention (PTSA) Module

To thoroughly evaluate the effectiveness of our proposed PTSA (see Section 3.3), we
take AC-LSTM without any attention module as the basic network. In the second row of
Table 3, we add a basic attention module of one-dimensional time series data to judge the
importance of elements by encoding and decoding. However, it hardly brings increases or
decreases to three indicators, which can be attributed to the fact that conventional attention
modules are ineffective for anomaly detection. In the third row of Table 3, we add our
periodic attention model (PTSA) to the basic network, bringing better performance on three
indicators. It validates our assumption that data pays great attention to time series, and the
periodic attention model can closely combine the data of each batch, which improves the
correlation degree of data in time.

Table 3. The effect of attention module.

Method Precision Recall F1-Score

AC-LSTM 0.83 1.0 0.47
AC-LSTM+Attention 0.83 1.0 0.47

AC-LSTM+PTSA 0.84 1.0 0.49

4.3. Comparison with State-of-the-Art Methods

In this section, we evaluate our implementation, which refers to AC-LSTM containing
sliding window enhancement, CNN-LSTM layers, and periodic time series data attention
modules (introduced in Section 3). We compare ours with several classical anomaly de-
tection algorithms as comparisons including the Isolated Forest algorithm [14], the KNN
algorithm [47], and the DBSCAN clustering algorithm [48], using the same data and pa-
rameters setup. Figure 8 demonstrates that our method far outperforms current classical
algorithms in terms of accuracy. We believe that this is because these classical methods
using clustering are always applied to isolated anomalies (as shown in Figure 9), but our
infrared point targets are a rapid change when anomalies occur, the so-called isolated
points do not easily exist due to the very dense shooting frames. As far as we know, there
are fewer current machine learning methods published for anomaly state perception of
infrared point targets (our proposed method fills in the gaps). Hence, we just compare
LSTM [24] (a stacked LSTM structure to detect anomalies in time series data) with ours
(in Table 1), and our scores significantly outperform it, which proves that our network
has a powerful and robust learning ability to grasp nuances of different changes from
limited samples.
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4.4. Qualitative Analysis
4.4.1. Visualization of Anomaly Detection Results

From Figures 10 and 11, it can be clearly seen that LSTM-only performs reasonably
effectively when the first abnormal event occurs, but it accumulates errors in long-term
prediction, resulting in poor performance of the second abnormal event (not as good as
the classical absolute mean prediction error score), although the abnormal scores of some
non-abnormal areas can be kept low by learning. Notably, our model can perfectly detect
these two kinds of abnormal events and the abnormal score can be kept very low in the
non-abnormal area. As can be seen from the figures, although using LSTM-only has a
higher abnormal score than our model when the first abnormal event occurs, it is not good
for the later threshold judgment. This situation will correspondingly raise the threshold of
the abnormal score, resulting in the second abnormal being completely discarded. On the
whole, the performance of our model is better than that of using LSTM-only for anomaly
detection. Figure 12 shows the effect of LSTM-only and our AC-LSTM on various indicators.
It is obviously superior to LSTM-only in Accuracy, Recall, and overall F1 Score index, and
the accuracy and recall can keep a good balance. It further validates that our model is
obviously better than that of using LSTM-only for anomaly detection.
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Figure 13 shows other detection results on our datasets. It can be seen that our methods
can clearly detect the abnormal position and the abnormal score is much higher than that
of the non-abnormal area.
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4.4.2. Comparison of Single-Step and Multi-Step Prediction Results

The data we use are time series data sampled at equal intervals. For such data,
our “single-step prediction” means that an input data sequence is a complete event con-
taining unusual moments. “Multi-step prediction” means that the intermediate results
of predicting are used in the predicting process, resulting in an accumulation of errors.
However, in scenarios that require real-time anomaly detection and early warning, the
estimation of future values by multi-step prediction is very important. As can be seen from
Figures 14 and 15, when our network adopts multi-step prediction, although the general
data trend can be learned, the detailed prediction of the data is not good and needs to be
further strengthened.

4.5. Error Analysis

Figure 16 shows the cross-entropy loss function curves for LSTM and AC-LSTM with
different convolution layers. It is intuitive to see that our proposed model has the lowest
cross-entropy versus only using LSTM. Moreover, our model is relatively stable, and there
is no big fluctuation. When four convolution layers are added, the model reaches the
best, and adding more convolution layers will slow down the convergence rate. This
experimental phenomenon is the result of network structure and experimental data. The
network structure is too complex, the training is more difficult, and it is not suitable for our
data volume, which may lead to our training embedding being locally optimal, making it
difficult to get better results, or even degrading to a certain extent.
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5. Conclusions

In this paper, we propose a new algorithm model AC-LSTM for anomaly detection of
infrared point targets. As far as we know, this is a brand-new application scenario in the
field of anomaly detection and has very important practical application value. In our work,
many classical methods are applied to the anomaly perception of infrared point targets and
compared with our proposed methods. We have explored many algorithms for anomaly
detection based on intelligent methods (mainly LSTM-based predictive learning methods).
On this basis, we have improved our algorithm, mainly including (1) adding convolution
layers in the network to abstract more comprehensive data features, (2) proposing the
periodic time series attention module, and (3) expanding input data through the sliding
window in preprocessing stage. In the ablation experiment, it was confirmed that the
modules we added can be improved on the baseline, each module has played a role,
and relatively optimal results have been obtained. Through a large number of qualitative
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experiments, we find that our algorithm keeps a low abnormal score for non-abnormal data,
and the algorithm as a whole has better performance and a more robust abnormal score.

However, there are still many shortcomings in our algorithm, so we cannot make
leap-forward progress in F1 Score, and the multi-step prediction results are not so perfect
due to the accumulation of errors. Moreover, the infrared point target will face numerous
special situations in real situations, and our dataset cannot cover all the abnormal situations,
which is why we will continue to accumulate and improve the algorithm in the future.

Author Contributions: Conceptualization, J.S. and J.W.; software, J.S.; validation, J.S., M.Z. and
H.S.; investigation, M.W. and J.S.; data curation, J.S.; writing—original draft preparation, J.S.;
writing—review and editing, J.S., Z.H., M.Z. and K.D.; visualization, J.W. and M.W.; supervision,
M.Z.; project administration, J.W.; funding acquisition, J.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Science and Technology Department of Jilin Province,
China under grant number 20210201137GX.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yamazaki, S. Investigation on the usefulness of the infrared image for measuring the temperature developed by transducer.

Ultrasound Med. Biol. 2008, 35, 1698–1701.
2. Wang, P. Research on Infrared Target Detection and Tracking Technology in Complex Background with Large Field of View; National

University of Defense Technology: Changsha, China, 2018.
3. Gf, A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. In Proceedings of the Istituto Dalle

Molle di Studi Sull Intelligenza Artificiale, Lugano, Switzerland, 15 August 1999.
4. Loganathan, G.; Samarabandu, J.; Wang, X. Sequence to Sequence Pattern Learning Algorithm for Real-Time Anomaly Detection

in Network Traffic. In Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering, Quebec, QC,
Canada, 13–16 May 2018; pp. 1–4.

5. Zenati, H.; Foo, C.S.; Lecouat, B.; Manek, G.; Chandrasekhar, V.R. Efficient GAN-Based Anomaly Detection. arXiv 2018,
arXiv:1802.06222.

6. Kim, T.Y.; Cho, S.B. Web Traffic Anomaly Detection using C-LSTM Neural Networks. Expert Syst. Appl. 2018, 106, 66–76.
[CrossRef]

7. Ullah, W.; Ullah, A.; Haq, I.U.; Muhammad, K.; Baik, S.W. CNN Features with Bi-Directional LSTM for Real-Time Anomaly
Detection in Surveillance Networks. Multimed. Tools Appl. 2020, 80, 16979–16995. [CrossRef]

8. Tan, X.; Xi, H. Hidden semi-Markov model for anomaly detection. Appl. Math. Comput. 2008, 205, 562–567. [CrossRef]
9. Tan, Y.; Hu, C.; Zhang, K.; Zheng, K.; Davis, E.A.; Park, J.S. LSTM-based Anomaly Detection for Non-linear Dynamical System.

IEEE Access 2020, 8, 103301–103308. [CrossRef]
10. Xia, Y.; Li, J.; Li, Y. An Anomaly Detection System Based on Hide Markov Model for MANET. In Proceedings of the 2010

6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), Chengdu, China,
23–25 September 2010.

11. Gu, X.; Wang, H. Online anomaly prediction for robust cluster systems. In Proceedings of the 2009 IEEE 25th International
Conference on Data Engineering, Shanghai, China, 29 March–2 April 2009; pp. 1000–1011.

12. Sendi, A.S.; Dagenais, M.; Jabbarifar, M.; Couture, M. Real Time Intrusion Prediction based on Optimized Alerts with Hidden
Markov Model. J. Netw. 2012, 7, 311.

13. Kaur, H.; Singh, G.; Minhas, J. A Review of Machine Learning based Anomaly Detection Techniques. arXiv 2013, arXiv:1307.7286.
[CrossRef]

14. Fei, T.L.; Kai, M.T.; Zhou, Z.H. Isolation Forest. In Proceedings of the IEEE International Conference on Data Mining, Washington,
DC, USA, 15–19 December 2008.

15. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation-Based Anomaly Detection. ACM Trans. Knowl. Discov. Data 2012, 6, 1–39. [CrossRef]
16. Olkopf, B.S.; Williamson, R.; Smola, A.; Shawe-Taylor, J.; Platt, J. Support Vector Method for Novelty Detection. In Proceedings of

the Advances in Neural Information Processing Systems, Denver, CO, USA, 11 May 2000.
17. Jing, S.; Ying, L.; Qiu, X.; Li, S.; Liu, D. Anomaly Detection of Single Sensors Using OCSVM_KNN. In Proceedings of the

International Conference on Big Data Computing and Communications, Taiyuan, China, 1–3 August 2015.
18. Kittidachanan, K.; Minsan, W.; Pornnopparath, D.; Taninpong, P. Anomaly Detection based on GS-OCSVM Classification.

In Proceedings of the 2020 12th International Conference on Knowledge and Smart Technology (KST), Pattaya, Thailand,
29 January–1 February 2020.

19. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 1–58. [CrossRef]
20. Park, Y.H.; Yun, I.D. Comparison of RNN Encoder-Decoder Models for Anomaly Detection. arXiv 2018, arXiv:1807.06576.

http://doi.org/10.1016/j.eswa.2018.04.004
http://doi.org/10.1007/s11042-020-09406-3
http://doi.org/10.1016/j.amc.2008.05.028
http://doi.org/10.1109/ACCESS.2020.2999065
http://doi.org/10.7753/IJCATR0202.1020
http://doi.org/10.1145/2133360.2133363
http://doi.org/10.1145/1541880.1541882


Remote Sens. 2022, 14, 3221 18 of 19

21. Nanduri, A.; Sherry, L. Anomaly detection in aircraft data using Recurrent Neural Networks (RNN). In Proceedings of the
Integrated Communications Navigation & Surveillance, Herndon, VA, USA, 19–21 April 2016.

22. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
23. Lindemann, B.; Müller, T.; Vietz, H.; Jazdi, N.; Weyrich, M. A Survey on Long Short-Term Memory Networks for Time Series

Prediction. Procedia CIRP 2021, 99, 650–655. [CrossRef]
24. Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long Short Term Memory Networks for Anomaly Detection in Time Series. In

Proceedings of the 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning,
ESANN 2015, Bruges, Belgium, 22–24 April 2015.

25. Bontemps, L.; Cao, V.L.; McDermott, J.; Le-Khac, N.-A. Collective anomaly detection based on long short-term memory recurrent
neural networks. In Proceedings of the International Conference on Future Data and Security Engineering, Can Tho City, Vietnam,
23–25 November 2016; pp. 141–152.

26. Lee, M.-C.; Lin, J.-C.; Gan, E.G. ReRe: A lightweight real-time ready-to-go anomaly detection approach for time series. In
Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain,
13–17 July 2020; pp. 322–327.

27. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks.
In Proceedings of the ICASSP 2015—2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
South Brisbane, Australia, 19–24 April 2015.

28. Lih, O.S.; Ng, E.; Tan, R.S.; Rajendra, A.U. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques
with variable length heart beats. Comput. Biol. Med. 2018, 102, 278–287.

29. Liu, S.; Chao, Z.; Ma, J. CNN-LSTM Neural Network Model for Quantitative Strategy Analysis in Stock Markets. In International
Conference on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2017.

30. Yao, H.; Tang, X.; Wei, H.; Zheng, G.; Yu, Y.; Li, Z. Modeling spatial-temporal dynamics for traffic prediction. arXiv 2018,
arXiv:1803.01254.

31. Renjith, S.; Abraham, A.; Jyothi, S.B.; Chandran, L.; Thomson, J. An ensemble deep learning technique for detecting suicidal
ideation from posts in social media platforms. arXiv 2021, arXiv:2112.10609. [CrossRef]

32. Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 2017,
28, 162–169. [CrossRef]

33. Wu, Q.; Guan, F.; Lv, C.; Huang, Y. Ultra-short-term multi-step wind power forecasting based on CNN-LSTM. IET Renew. Power
Gener. 2021, 15, 1019–1029. [CrossRef]

34. Rojas-Dueñas, G.; Riba, J.-R.; Moreno-Eguilaz, M. CNN-LSTM-Based Prognostics of Bidirectional Converters for Electric Vehicles’
Machine. Sensors 2021, 21, 7079. [CrossRef]

35. Qiao, Y.; Wang, Y.; Ma, C.; Yang, J. Short-term traffic flow prediction based on 1DCNN-LSTM neural network structure. Mod.
Phys. Lett. B 2021, 35, 2150042. [CrossRef]

36. Parvathala, V.; Kodukula, S.; Andhavarapu, S.G. Neural Comb Filtering using Sliding Window Attention Network for Speech
Enhancement. TechRxiv 2021. [CrossRef]

37. Azahari, S.; Othman, M.; Saian, R. An Enhancement of Sliding Window Algorithm for Rainfall Forecasting. In Proceedings of the
International Conference on Computing and Informatics 2017 (ICOCI2017), Seoul, Korea, 25–27 April 2017.

38. Liu, F.; Zhou, X.; Cao, J.; Wang, Z.; Zhang, Y. Anomaly Detection in Quasi-Periodic Time Series based on Automatic Data
Segmentation and Attentional LSTM-CNN. IEEE Trans. Knowl. Data Eng. 2020, 34, 2626–2640. [CrossRef]

39. Shroff, P.; Chen, T.; Wei, Y.; Wang, Z. Focus longer to see better: Recursively refined attention for fine-grained image classification.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA,
14–19 June 2020; pp. 868–869.

40. Gao, C.; Zhang, N.; Li, Y.; Bian, F.; Wan, H. Self-attention-based time-variant neural networks for multi-step time series forecasting.
Neural Comput. Appl. 2022, 34, 8737–8754. [CrossRef]

41. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014,
arXiv:1409.0473.

42. Cinar, Y.G.; Mirisaee, H.; Goswami, P.; Gaussier, E.; Ait-Bachir, A.; Strijov, V. Time Series Forecasting using RNNs: An Extended
Attention Mechanism to Model Periods and Handle Missing Values. arXiv 2017, arXiv:1703.10089.

43. Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. In
Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor,
MI, USA, 8–12 July 2018. [CrossRef]

44. Geiger, A.; Liu, D.; Alnegheimish, S.; Cuesta-Infante, A.; Veeramachaneni, K. TadGAN: Time Series Anomaly Detection Using
Generative Adversarial Networks. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA,
USA, 10–13 December 2020.

45. Park, J. RNN Based Time-Series Anomaly Detector Model Implemented in Pytorch. Available online: https://github.com/
chickenbestlover/RNN-Time-series-Anomaly-Detection (accessed on 18 April 2021).

46. Shuang, G.; Deng, L.; Dong, L.; Xie, Y.; Shi, L. L1-Norm Batch Normalization for Efficient Training of Deep Neural Networks.
IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 2043–2051.

http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1016/j.procir.2021.03.088
http://doi.org/10.1016/j.jksuci.2021.11.010
http://doi.org/10.21629/JSEE.2017.01.18
http://doi.org/10.1049/rpg2.12085
http://doi.org/10.3390/s21217079
http://doi.org/10.1142/S0217984921500421
http://doi.org/10.36227/techrxiv.15051972.v1
http://doi.org/10.1109/TKDE.2020.3014806
http://doi.org/10.1007/s00521-021-06871-1
http://doi.org/10.1145/3209978.3210006
https://github.com/chickenbestlover/RNN-Time-series-Anomaly-Detection
https://github.com/chickenbestlover/RNN-Time-series-Anomaly-Detection


Remote Sens. 2022, 14, 3221 19 of 19

47. Yang, L.; Fang, B.; Li, G.; You, C. Network anomaly detection based on TCM-KNN algorithm. In Proceedings of the 2nd ACM
Symposium on Information, Computer and Communications Security, Singapore, 20–22 March 2007; pp. 13–19.

48. Feng, S.R.; Xiao, W.J. An Improved DBSCAN Clustering Algorithm. J. China Univ. Min. Technol. 2008, 37, 105–111.


	Introduction 
	Related Work 
	Time Series Anomaly Detection Method 
	Application of CNN+LSTM Algorithm 

	The Proposed Method 
	Data Enhancement 
	CNN-LSTM for Anomaly Detection 
	Periodic Time Series Data Attention 

	Experiment 
	Experimental Setup 
	Training Details 
	Datasets 
	Evaluation Metric 

	Ablation Studies 
	Performance Comparison of Model Combinations 
	Effect of Sliding Window Enhancement 
	Effect of Periodic Time Series Data Attention (PTSA) Module 

	Comparison with State-of-the-Art Methods 
	Qualitative Analysis 
	Visualization of Anomaly Detection Results 
	Comparison of Single-Step and Multi-Step Prediction Results 

	Error Analysis 

	Conclusions 
	References

