文章编号 1004-924X(2021)07-1620-11

预置曲率研磨盘提高行星研磨技术 去除函数稳定性

海 阔¹,曾雪锋^{2*},李锐钢²,李英杰²,李龙响²,张学军² (1.中国工程物理研究院机械制造工艺研究所,四川 绵阳 621900; 2.中国科学院长春光学精密机械与物理研究所,吉林长春 130033)

摘要:行星研磨技术由于提升磨削接触点相对速度,能够有效提高材料去除效率。但由于传统研磨盘不均匀磨损,导致 研磨盘形状持续改变,从而影响了研磨过程中去除函数的稳定性和准确性,限制了该技术的应用。本文针对基于小磨头 行星运动方式,通过建立构建磨损函数,预置研磨盘曲率半径,使研磨盘满足在加工单周期后各点去除量相等,从而提升 去除函数稳定性。通过实验验证,研磨去除函数与模型仿真计算结果一致,验证了模型的准确性,利用优化后的研磨盘 可获得高效稳定的去除函数。采用直径40 mm SiC 研磨盘研磨 SiC 工件,实验结果表明:对比加工前后研磨盘磨损情 况,面形变化小于1%,符合均匀去除要求;对比多组不同研磨阶段去除函数,体积去除率误差小于2.3%,满足光学研磨 去除函数稳定性要求;在公转100 r·min⁻¹,自转-100 r·min⁻¹条件下,体积去除率达到6.879 mm³·min⁻¹,比同样参数下 的平转动研磨提高了 40.9% 的去除量。证明了行星研磨技术能够通过参数设计获得高稳定性的高效去除函数,为行星 运动研磨技术应用于 SiC 镜片高效加工提了供可靠的理论指导。

关键 词:光学加工;行星运动研磨;研磨盘磨损模型;去除函数稳定性
 中图分类号:TN394.1;TH691.9 文献标识码:A doi:10.37188/OPE.20212907.1620

Method for improving the stability of removal function of planetary grinding technology by presetting curvature grinding disk

HAI Kuo¹, ZENG Xue-feng^{2*}, LI Rui-gang², LI Ying-jie², LI Long-xiang², ZHANG Xue-jun²

(1. Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China;

2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,

Changchun 130033, China)

* Corresponding author, E-mail: zengxf@ciomp. ac. cn

Abstract: Planetary grinding technology can effectively improve material removal efficiency by improving the relative velocity of grinding contact points. However, the uneven wear of the traditional grinding disk (or grinding plate) results in the continuous change of the shape of the grinding disk, which affects the stability and accuracy of the removal function in the grinding process, and also limits the application of this technology. In this study, based on the planetary motion mode of a small grinding head, the wear function

收稿日期:2020-12-24;修订日期:2021-02-17.

基金项目:国家自然科学基金资助项目(No. 61975201, No. 11903035, No. 61605202, No. 52005463);国家重点研发 计划(No. 2017YFA0701200)

was established and the curvature radius of the grinding disk was preset to ensure that the removal amount at each point of the grinding disk was equal after a single processing cycle to improve the removal function stability. Experimental verification was also carried out, and the grinding removal function was found to be consistent with the simulation calculation results obtained using the model, which verified the accuracy of the model. Finally, an efficient and stable removal function was obtained by using the optimized grinding disk. A SiC grinding disk with a diameter of 40 mm was used to grind the SiC workpiece. The experimental results showed that the surface shape changed by less than 1% after comparing the wear of the disk before and after machining, and the volume removal error was less than 2.3%, which meets the stability requirements of the optical grinding removal function. Under the conditions of revolution at 100 r·min⁻¹ and rotation at -100 r·min^{-1} , the volume removal rate reached 6.879 mm³·min⁻¹. Compared with the single rotation grinding with the same parameters, the removal amount of 40.9% was increased, which proved that the planetary grinding technology can obtain a highly stable and efficient removal function based on parameter design, and provided reliable theoretical guidance for the application of planetary motion grinding technology in the efficient processing of SiC mirror.

Key words: Optical processing; Planetary motion grinding; Wear model of grinding plate; Stability of removal function

1引言

碳化硅(SiC)材料具有比刚度高、热稳定性 好等一系列优秀的物理特性,是建造大口径、轻 量化空间望远镜的首选镜头反射镜材料。但其 高硬度、高弹性模量等性质,导致SiC光学元件 的加工难度大、效率较低,其中研磨过程材料去 除量大,但精度要求很高,研磨效率对整个元件 加工周期影响较大。

研磨过程中一种常用做法是采用 SiC 研磨 盘,添加的金刚石微粉对 SiC 光学元件进行研 磨。研磨盘与工件在材料去除的过程中,各自被 去除的材料量基本一致,最终获得目标面形^[14]。 在该工艺过程中,数控小磨头(Computer Controlled Optical Surfacing,CCOS)研抛是一种已经 验证的有效技术,但传统方法一般采用研磨盘平 转动方式研磨,研磨盘上各点去除速率基本一 致,该技术能够实现相对长时间研磨盘稳定形 状,因此,加工去除函数稳定,是目前非球面制造 商和研究所的首选方案^[5-8]。

根据 Preston 方程, 在压力恒定的情况下, 相 对速度决定去除效率。但是, 传统的平转动研磨 盘加工是离心运动方式, 过高的平转动速度严重 影响设备和研磨盘稳定性, 极易造成加工飞车, 所以, 要求平转动研磨保持在相对较低的运动速 度。这导致材料去除效率相对较低,同时其原理 决定了该方法的去除效率难以进一步提升。对 于SiC这种超硬材料,其加工去除效率不高^[5-7], 是目前该研究领域的重要难点问题。而基于行 星式运动的 CCOS 技术结合公转和自转速 度^[9-11],能够实现高相对速度。但高速研磨过程 中的去除函数模型,及其稳定性方法还需要深入 研究。该运动模式结构简单、成本较低,因此将 其运用在 SiC 光学材料的光学加工阶段具有巨 大的潜力,该研究也具有重要的价值和意义。

相关领域学者已开展了一些研究工作:其中 国防科技大学在研究行星抛光技术时,通过将研 抛盘切割成三角形或正方形,使去除函数逼近脉 冲函数,从而提高了对局部误差的修形能力^[10]。 天津大学研究了小磨头行星运动抛光时抛光垫 表面的微接触机制,以此研究抛光垫形貌对材料 去除特性的作用^[11]。复旦大学研究了行星抛光 时磨盘的压力分布,对不同曲率的工件进行接触 压力分析,补偿了传统的基于 Preston 方程的材 料去除模型^[12]。长春光机所和长春理工大学等 也着重对小磨头行星运动的抛光技术进行了一 定的理论研究和仿真对比^[13]。但是,将该技术应 用在研磨过程中的研究较少。在相对运动的研 磨阶段,相互研磨的研磨盘和工件在材料去除过 程中均有损耗。由于其研磨盘上各点运动速度

不同,导致各点损耗不同,研磨盘形状在变化,传 统的求解单一速度模型代替去除函数已经不能 够得到稳定、准确的去除函数,不能够将抛光阶 段的研究成果完全照搬到研磨阶段,这也是该技 术在研磨阶段不能够广泛应用的原因。

本文通过深入研究行星运动加工过程研磨 盘磨损函数,通过求解速度模型、压力模型,提出 了利用具有一定曲率半径的研磨盘来替代传统 平面研磨盘的方法。该研磨盘设计能够保证在 研磨过程后能够获得稳定、高效的去除函数。最 后通过利用设计好的研磨盘进行研磨实验,用来 验证该方法的正确性与去除函数的稳定性,与相 同速度的平转动研磨实验进行对比,验证其高 效性。

2 行星运动研磨的理论模型

2.1 Preston 理论模型

针对光学表面研抛技术中材料去除率理论 模型被广泛证明可以利用 Preston 方程进行 求解^[14-15]:

$$\frac{\mathrm{d}z}{\mathrm{d}t} = Kvp, \qquad (1)$$

式中:K为比例常数,由磨料等其它因素决定;v为表面某点的瞬时速度v=v(x,y,t);p为研抛压 力,p=p(x,y,t)。

由 Preston 方程可知, 在已知加工位置、研磨 工具与工件的相对速度和压力的条件下, 可以计 算出在加工时间 t 内, 被加工位置的材料去除量 $\Delta z(x,y)$:

$$\Delta z(x, y) = K \int_0^t v(x, y, t) p(x, y, t) \mathrm{d}t, \quad (2)$$

Preston方程将复杂的光学加工过程简单描述成相对速度和压力对材料去除率的影响,在一定程度上被认为是准确的。因此,将除v,p之外的所有因素都归入比例常数K并保持恒定,这样Preston方程可视为线性方程。本文基于Preston理论,下面通过分别研究速度和压力模型,研究行星运动中公转和自转的最佳速度配比,并最终获得形状较好的去除函数模型。

2.2 行星运动速度模型的选取

行星运动模式是研磨盘在平转动的同时,其

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

本身也以恒定速度自转。研磨盘或对应工件上 任一点的瞬时速度为二者速度的矢量和,如图1 所示:

图1 速度合成示意图 Fig. 1 The sketch of velocity synthesis

速度合成公式如下:

$$r = \sqrt{(x - e\cos(\phi))^{2} + (y - e\cos(\phi))^{2}}$$

$$v_{x} = \omega_{1}r\sin(\theta) + \omega_{0}e\sin(\varphi)$$

$$v_{y} = \omega_{1}r\cos(\theta) + \omega_{0}e\cos(\varphi)$$

$$v(x, y) = \sqrt{v_{x}^{2} + v_{y}^{2}}$$
(3)

其中:e为偏心距oo',单位 mm; Φ 为研磨盘中心 相对工件转过的角度,单位°; θ 为研磨盘上一点 相对于研磨盘圆心转过的角度,单位°; ω_1 为研磨 盘自转角速度,单位 rad·s⁻¹; ω_0 为研磨盘公转角 速度,单位 rad·s⁻¹;r为研磨盘上任意点的位置距 离工件中心的半径,单位 mm。

定义研磨盘自转角速度 ω_1 与磨盘公转角速 度 ω_0 之比为速度比 $n, n = \omega_1/\omega_0, 定义偏心距 e 与$ 研磨盘的半径R'之比为偏心率k, k = e/R', 本文中研磨盘口径为40 mm, 即R' = 20 mm。

设压力恒定,工件上任意一点瞬时速度为v (x,y),利用公式(3)进行计算,研究其对去除函 数的影响。为了获得平滑的,去除率较高的去除 函数,针对速度配比和偏心率进行选择与优化。

由于公转与自转合成运动的标量值依然是 旋转对称的,从对称轴(即母线)上的各点相对速 率可以得到如下图所示的不同条件下的去除曲 线。仿真结果如图2~图3所示:

1622

Fig. 2 n=-3, normalized removal amount when eccentricity changes

Fig. 3 k=0.6, normalized removal amount when velocity ratio changes

图2仿真图像通过控制速度比来对比偏心率 对去除函数的影响;由此发现,当偏心率越大,M 形中间凹陷半宽与深度变小,这种去除函数突变 小,可以更好地避免加工结果的中高频误差。

图 3 仿真图像通过控制偏心率来对比速度比 去除函数的影响;由此发现,当速度比为负时,两 侧去除量的一阶偏导数恒正,且中间 M 形凹陷深 度变小,这种去除函数有利于最大提高去除 效率。

基于以上两点去除函数较好的标准,从上述 两种仿真结果对比,选择速度比为-1,偏心率为 0.8进行研磨与抛光实验(图4所示)。

2.3 行星运动压力模型

在以往的选取平面研磨盘进行的实验中,若 选用上述参数来进行研磨实验,对工作状态下的 研磨盘测量其瞬时压力情况,如图5所示。加工 时,工件受到研磨盘的压力,研磨盘公转和自转 运动周期为0.6 s,速度运动周期为0.3 s,压力周 期是速度周期的2倍。

Fig. 5 Time-dependent pressure curve on grinding head

静止时,存在4N的水平压力,地面倾斜会导 致一部分压力的分量在水平方向上,若考虑地面 倾斜导致周期变化,则倾斜角度应为8°,与实际 情况显然不一致,那么还有一部分的压力分量则 是研磨盘面形所引起的。

研磨盘在公转运动时存在小量倾斜,导致摩 擦力做周期性变化,表现为摩擦力与压力的合力 呈现正弦变化。原因主要有以下两点:

0.8进行研磨与抛光实验(图4所示)。 (1)研磨盘的机械结构采用万向节进行传 (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 动,传动点到底面距离大,力矩大,导致传动精度 下降,从而使得研磨盘下表面压力存在周期性的 变化。

(2)在研磨过程中,由于研磨盘与工件均有 损耗,导致研磨盘由平面变成有曲率的球面,从 而使下表面压力分布呈现非线性。

根据现有的加工理论,在去除过程中,压入的深度 d 为磨料直径与表面被破坏后尖端进入的深度共同作用,其公式为^[16]:

$$d = d_{w,i} + d_s + d_{p,i}, \qquad (4)$$

其中:*d_{w,i}*为磨料破坏后尖端进入工件的深度,*d_s* 为磨料未破坏前研磨盘与工件的距离,*d_{p,i}*为磨料 破坏后尖端进入研磨盘的距离。可把此过程近 似成刚性球体和一个弹性半空间体的接触,在一 个最初为平整的表面和一个半径为*R*的刚性球 体的接触区域,压力*p*正相关于间距*d*,因此只考 虑接触力与间距*d*的关系来进行计算。

图 6 压入深度 d 的示意图 Fig. 6 Drawing of indentation depth d

构建研磨盘形状与运动情况图 7 所示:当研 磨盘静止在工件某点上时,由于下表面磨料的流

Fig. 7 Equivalent pressure state in workpiece while grinding

动性,可以将下表面与磨料组合体看作是弹性半 空间体,而研磨盘看作是一个刚性球体的表面。 其中:R为研磨盘的曲率半径,*l*。为研磨盘球面面 形的深度,*a*为接触区域半径。

假设在接触区域,被加工工件与磨料组合体 发生形变;根据赫兹接触理论^[17],从图7中可以得 出,接触区域半径a和压入深度d的关系应为:

$$a \approx \sqrt{2Rd}$$
. (5)

一个刚性球体和一个弹性半空间体的接触, 最大接触压力p₀可描述为^[17]:

$$p_0 = \frac{4}{3} E R^{1/2} d^{3/2}.$$
 (6)

因此接触压力分布为:

$$p(r) = p_0 \sqrt{1 - (\frac{r}{a})^2},$$
 (7)

其中,由实验得知d的大小在10 nm量级。经分 析可得:万向节传动力的作用点较高,机械传动 误差导致研磨盘实际呈倾斜状态;因此,研磨盘 上不同半径的点对工件的压力不同。磨料在两 个表面间的形态及运动状态如图8所示:

Fig. 8 Tilt state of grinding head in motion

在平面支撑下,处在离心位置的研磨盘在其 作用区域产生挤压,向边缘方向产生横向的形 变,并对所处一侧面形形成弯曲,产生在镜体上 的弹性势能。也因此,加工时研磨盘存在向外部 的倾斜。

在整个加工的过程中,随着研磨盘的移动, 研磨盘不断在新区域产生挤压,老区域释放变 形,从而在研磨盘与所接触镜体的局部存在动能 与势能的相互转换,形成振动。

grinding 由于机械传动误差使得下表面压力分布沿 (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net oo'的方向在原有基础上增加了一定的倾斜量,且 随运动位置周期性变化,因此该倾斜状态可近似 为 $Tilt(r, \theta)$ 。

因此,接触压力可修正为:

$$p(r) = \frac{4}{3} E R^{1/2} d^{3/2} Tilt(r, \theta) \sqrt{1 - (\frac{r}{a})^2}.$$
 (8)

3 稳定去除函数模型

为了实现行星研磨稳定,去除函数不随加工 时间变化,不仅要求设备能够维持稳定的状态, 更需要加工的工具头形状是稳定的,即研磨盘上 的各点在一个研磨周期内损耗量一致,研磨盘面 形不随加工时间变化。

由 Preston 理论和公式(2)、公式(3)得到:若 要研磨盘的去除率恒定,定义研磨盘的磨损函数 Q表示研磨盘上每点在一完整运动周期内的材 料损耗量,如下式:

$$Q(x, y) = \int_{0}^{T} K \cdot p \cdot v dt, \qquad (9)$$

式中:v是研磨盘上每点的瞬时速度,p是研磨盘 每点的瞬时压力,K为磨损常数。

$$Q(r) = p_{0} \cdot K \int_{0}^{T} \frac{Tilt(r,\phi)}{\sqrt{1 - (\frac{r}{a})^{2}}} \cdot ,$$

$$K \int_{0}^{T} \frac{Tilt(r,\phi)}{\sqrt{\omega_{0}^{2}e^{2} + \omega_{1}^{2}r^{2} + 2\omega_{0}\omega_{1}er\cos(\theta - \phi)}} dt$$
(10)

又:

$$T=2\pi/\omega_0,\qquad(11)$$

$$\frac{\mathrm{d}Q}{\mathrm{d}r} = 0, \mathrm{d}\theta = \omega_0 \mathrm{d}t, \qquad (12)$$

当 $\omega_0/\omega_1 = -1, \theta/\phi = -1$ 时,可求得在该 参数下的磨损函数的最终表达式:

$$Q(r) = \frac{4}{3} KER^{1/2} d^{3/2} \sqrt{1 - (\frac{r}{a})^2} \cdot \int_{0}^{2\pi/\omega_0} Tilt(r, -\theta) \sqrt{(e+r)^2 - 4er\sin^2\theta} \, \mathrm{d}\theta$$
(13)

式中,当Q(r)恒为常数时,即 $\frac{dQ}{dr}=0$,此时研磨 盘上每一点在一个周期内的损耗量都相同。

式(13)难以定量求解,通过Wolfram Mathematica 数学软件进行定性分析:

函数Q的积分项部分的变化曲线随r的变

化是单调递增的,而压力分布项是单调递减 的,即速度项积分使研磨盘的去除量随半径部 分增大,而去除量增大导致压力降低,从而去 除量减小,这使得磨损函数存在一种自适应的 调节过程,使最终研磨盘形成一种动态平衡的 面形。

在该面形条件下,研磨盘上各点的损耗量在 运动周期的整数倍将保持常数,即为研磨盘各点 等量磨损。此时,在对工件加工的整数倍周期, 加工零件的去除函数将始终维持不变,此时的研 磨盘的曲率半径为一确定值,可称之为特征曲率 半径,与加工参数相关。

下面将实验参数代入对应公式,求得在该曲 面研磨盘工况下的去除函数形式。

实验数据为:公转速度100 r·min⁻¹,自转速 度-100 r·min⁻¹, 压力 40 N, SiC 的弹性模量 E= 330 GPa, 压入深度^[13] d 的经验值为 10 nm。待求 解变量为a.R.l。。

磨料粒径选择14~28μm金刚砂颗粒。将下 表面看作一段圆弧,则R与l。的关系可由下式 表示:

$$l_0 = R - \sqrt{R^2 - a^2}.$$
 (14)

将参数代入式子(5),式(6),式(14),并联立 求解得:

 $l_0 = 23 \, \mu \text{m}$, $R = 400 \, \text{mm}$

用上述参数进行计算机仿真实验,模拟曲面 研磨盘的去除过程,获得最终稳定的去除函数, 如图 9~11 所示,分别为曲面研磨盘加工过程中 对工件的瞬时去除深度,最终去除函数和二维去 除函数曲线:

图 9 工件上瞬时的去除深度 Fig. 9 Grinding depth on workpiece at instantaneous time

图10 加工完整周期工件去除函数形状

由于研磨盘上不同点的瞬时速度和瞬时压 力不一致,所以如图9所示,工件上不同点的瞬时 去除率也不一致。但是,由于速度函数和压力函 数均为周期函数,所以如图10所示,在一个完整 周期内,研磨盘上相同半径的点的加工去除率均 相同,整个函数具有良好的中心对称形状。

如图 11 所示,将完整周期内的去除函数分布 沿直径进行表示,整条去除函数曲线光滑,且最 大值和边缘部分的斜率接近0,中间存在三个峰 值部分,三个峰值间差异小于10%,较为平缓,能 近似为一种类高斯形的曲线。这样的去除函数 具有较好的误差收敛能力,即能够尽快地将面形 误差收敛到最小值。

4 实验与结果分析

4.1 实验装置

实验设备选择中国科学院长春光机所光学 技术中心设计研发的FSGJ-1机床,该加工机床 是一台集抛光研磨与一体的五轴联动机床,如图 12(a)所示。行星主轴研抛运动机构,采用双电 机制动,研磨盘位置由万向节进行传动设置,如 图 12(b)所示,机床运动与公自转运动都由计算 机集成控制。

(a) 机床设备(b) 实验装置(a) Machine tool(b) Experimental setupFig. 12实验设备及装置照片Fig. 12Photos of experimental equipment and devices

4.2 稳定性实验验证

选取 Φ150 mm 的 SiC 工件进行研磨实验,研 磨盘选取 Φ40 mm 口径初始面为平面和曲率高 于目标面形的曲面进行两组实验,研磨每间隔一 段时间检测并记录研磨盘的面形变化,用研磨盘 的中心到边缘位置的矢高来表示研磨盘曲率随 时间的变化关系,具体加工参数如表1所示,每次 检测后都在新的平面上进行新一轮加工。

从图13的加工结果中可以得出如下结论:在 平面研磨的过程中,当初始面形曲率半径不等于 特征曲率半径时,研磨盘的面形随时间发生改 变,逐渐趋近于特征曲率半径,之后就不再随时 间改变,证明了公式13的理论的正确性;而具有 特征曲率的研磨盘继续加工,其上各点去除量基 本保持一致,如图14所示,研磨盘面形加工前后 形状变化小于1%,满足等厚去除。不失一般性 地,利用特征曲率研磨盘对镜片研磨,去除函数 也会是稳定的。

主 1

行星研麻实验参数

	Tab. 1 Experimental parameters of planetary motion grinding					
	基本参数	压力/N	偏心量/mm	公转转速/(r•min ⁻¹)	自转转速/(r•min ⁻¹)	
	数值	30	16	100	-100	
实验变量及具体参数						
	初始面形矢高/mm	实验次数	加工时间/min	加工时间/min	加工时间/min	
	0	3	5	5	5	
	0.17	3	10	10	5	

图 13 研磨盘面形矢高随加工时间的变化 Fig. 13 Surface sag varies with the processing time

图 14 达到稳定面形后,加工前后研磨盘形状对比

Fig. 14 After reaching the stable shape, the shape of grinding head before and after grinding is compared

4.3 去除效率对比实验

选取 Φ150 mm 的 SiC 工件进行研磨实验,表 面初始面形为平面, PV 值为 99.31 nm, RMS 值 为 21.63 nm,满足仿真实验所要求的初始表面面 形。研磨盘口径为40 mm,初始面形是曲率半径 为400 mm,矢高为25 mm的曲面;磨料为金刚石 微粉,粒径为14~28 μm。实验结果利用三坐标 测量臂对面形测量,测量精度为0.001 mm。行 星运动研磨与平转动研磨实验对比加工参数如 表2所示。

图 15 行星运动加工后镜片(左:加工后工件 右:研磨盘) Fig. 15 Lens after planetary motion grinding (left: workpiece after processing right: grinding head)

图 15 为行星运动加工后的镜片和研磨盘形 状的实物图。通过检测工件去除区域内的多条 母线去除深度,绘制了图 16 的面形轴向函数曲 线,从图中可以看出研磨区域去除函数形状较好 (平滑、对称、中间具有最大去除且斜率为0)。分 布图中间存在三个主峰,经分析,一方面峰值间 波动区域在三坐标误差范围之内,另一方面研磨 过程中磨料的非均匀分布也会导致一定程度的 顶端非均匀性。综上,实验结果与图 11 仿真结果 中的去除函数形式基本符合,这证明了去除函数 理论模型的正确性,其能够对行星运动研磨加工 工艺进行指导。

图 16 行星运动研磨后镜片去除函数曲线

表2 行星研磨实验参数

Tab. 2 Experimental parameters of planetary motion grinding

SiC 研磨	加工参数	行星运动	平转动
	压力/N	30	30
	偏心距/mm	16	16
实验参数	时间/s	300	300
	公转转速/(r•min ⁻¹)	100	100
	自转转速/(r•min ⁻¹)	-100	0
实验结果	去除效率	6.879	4.883
	(mm ³ /min)		

表2所示的对比实验中,设定行星运动研磨 SiC镜片的研磨盘公转速度为100 r·min⁻¹,速度 比-1,实验结果进行计算可知。利用该磨头进 行了三组定点研磨实验,其体积去除率分别为 7.035,6.873,6.729 mm³·min⁻¹,平均值为6.879 mm³·min⁻¹,标准差为0.223 mm³·min⁻¹,最大误

参考文献:

[1] 王旭,张学军. 固着磨料数控加工碳化硅反射镜工 艺研究[D]. 长春:长春光机所,2010.5.
WANG X, ZHANG X J. Experimental study on computer controlled grinding and polishing SiC mirror with fixed abrasive [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2010:5. (in Chi差为2.3%。基于该种研磨盘设计,证明了该曲 面研磨盘的去除函数具有较好的稳定性。

在平转动研磨 SiC 镜片实验中,设定研磨盘 的公转速度为 100 r·min⁻¹,得到单位时间体积去 除率为 4.883 mm³·min⁻¹。相比平转动小工具研 磨技术,该行星运动研磨 SiC 镜片加工效率提高 了约 40.9%,证明了该状态行星研磨技术具有一 定的高效性。

5 结 论

本文基于Preston方程对行星研磨技术进行 了深入的研究。首先,通过对公转和自转的速度 比与偏心率的仿真分析,选取了最佳参数(n= -1,k=0.8),然后对压力模型进行修正,使模型 更加符合实际的加工情况。为了提高行星研磨 技术的去除函数的稳定性,本文提出设计预置曲 率的研磨盘,结合对研磨盘的加工压力模型和速 度模型的计算,最终保证研磨盘各点的损耗量为 定值,从而保持了去除函数的稳定性。通过实验 验证了研磨盘的稳定性和高去除效率,随研磨时 间的增大,研磨盘逐渐趋于一个稳定的面形,加 工前后的面形误差小于1%,符合均匀去除,加工 后的去除函数,面形误差小于2.3%,证明了利用 这样的研磨盘进行 SiC 镜片的研磨,其去除函数 具有较好的稳定性,能够有效提高加工的准确 度。实验结果显示,在给定参数条件下,行星 研磨技术体积去除率为 6.879 mm³·min⁻¹,相比 较平转动,行星运动研磨SiC镜片加工效率提 高了约40.9%。本文探究的方法也可以用于 其他材料的研磨过程,具有一定的普适性和参 考性。

nese)

 [2] 王孝坤,薛栋林,张学军.大口径非球面系统的共 基准加工与检验[J].光学精密工程,2018,26
 (4):743-748.

WANG X K, XUE D L, ZHANG X J. Fabrication and testing of large aspheric system based on common reference [J]. *Editorial Office of Optics and Precision Engineering*, 2018, 26(4): 743-748. (in Chinese)

- [3] 殷龙海,王孝坤,李龙响,等.大口径SiC离轴非 球面的高效磨削加工[J].光学精密工程,2015, 23(9):2497-2505.
 YINLH, WANGXK,LILX, et al. Fast grinding of large SiC off-axis aspheric surface[J]. Editorial Office of Optics and Precision Engineering, 2015,23(9):2497-2505. (in Chinese)
- [4] 杨秉新.空间相机用碳化硅(SiC)反射镜的研究
 [D].北京:北京空间机电研究所,2003.3.
 YANG B X. Research of SiC Reflection Mirror for Space Camera [D]. Beijing: Beijing Institute of Space Optics and Electricity,2003.3. (in Chinese)
- [5] 张峰,徐领娣,范镐,等.表面改性非球面碳化硅反射镜的加工[D].长春:长春光机所,2008.12.
 ZHANG F, XU L D, FAN D, et al. Fabrication of Surface Modification Aspheric SiC Mirror [D].
 Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2008.12. (in Chinese)
- [6] 罗霄,张学军.采用平转动应力盘技术加工超大口 径非球面的研究[D].长春:长春光机所,2011.5.
 LUO X, ZHANG X J. Fabrication of Large Aspherics Using Stressed Lap with Orbital Tool Motion [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2011.5. (in Chinese)
- [7] 邓伟杰,郑立功,史亚莉,等. 离轴非球面数控抛光 路径的自适应规划[D]. 长春:长春光机所, 2009.1.
 DENGWJ, ZHENGLG, SHIYL, et al. Adap-

tive programming algorithm for generating polishing tool-path in computer controlled optical surfacing [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2009. 1. (in Chinese)

[8] 刘振宇,张学军.大口径非球面反射镜组合加工技 术驻留时间算法研究[D].长春:长春光机所, 2013.5.

LIU ZH Y, ZHANG X J. *Dwell Time Algorithm* of Multi-mode Technique for Fabrication of Large Aspherics [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013. 5. (in Chinese)

 [9] 孙小苑,李大琪,陈勇,鲁卫国.光学镜片平面行星 式研磨加工关键技术研究[J].应用光学,2014,35
 (4):681-685

SUN X Y, LI D Q, CHEN Y, et al. Key technolo-

gies of flat planetary lapping of optical lens[J]. *Journal of Applied Optics*, 2014, 35(4): 681-685

- [10] 尚文錦. 计算机控制确定性研抛的建模与仿真
 [D]. 长沙:国防科技大学机电工程与自动化学院,2005.
 SHANG W J. Model Building and Simulation of Computer Control Deterministic Grinding and Polishing [D]. Changsha: National University of Defense Technology, 2005.
 - [11] LIN B, LI L K, CAO ZH CH, et al. Modeling of pad surface topography and material removal characteristics for computer-controlled optical surfacing process [J]. Journal of Materials Processing Tech., 2018.
 - [12] WAN S L, ZHANG X CH, ZHANG H, et al. Modeling and analysis of sub-aperture tool influence functions for polishing curved surfaces [J]. Precision Engineering, 2018, 51.
 - [13] 王权陡,余景池,张峰,等.数控抛光中不同运动 方式下小抛光盘抛光特性之比较[J].光学精密 工程,1999,7(5):73-79.

WANG Q D, YU J CH, ZHANG F. Polishing performance comparison of small polishing pad worked in different motion model in computer controlled optical polishing[J]. *Editorial Office of Optics and Precision Engineering*, 1999, 7 (5) : 73-79.

- [14] 王旭,张学军,徐领娣,等.固着磨料加工碳化硅 反射镜的实验[D].长春:长春光机所,2009.4.
 WANG X, ZHANG X J, XU L D, et al. Experiment of Grinding SiC Mirror with Fixed Abrasive [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2009.4. (in Chinese)
- [15] 宋驰,张学军. 采用非牛顿流体磨盘技术加工超大 口径非球面的研究[D]. 长春:长春光机所, 2017.5.
 SONG CH, ZHANG X J, Fabrication of Large Aspherics Using Non-Newtonian Fluid Polishing Tool [D]. Chang chun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017.5. (in Chinese)
- [16] 李圣怡,戴一帆.大中型光学非球面镜制造与测量 新技术[M].北京:国防工业出版社,2011.8.
 LI SH Y, DAI Y F. New Technology for Manufacturing and Measurement of large and Middlescale aspheric surfaces [M]. Beijing: National De-

☞ 四,寸:1火且四竿

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

第7期

fense Industry Press, 2011. 8. (in Chinese)

[17] [德]瓦伦丁L. 波波夫. 接触力学与摩擦学的原 理及应用[M]. 李强, 維建斌译. 北京:清华大学 出版社, 2011:10 [Germany] PopovValentin L. Contact Mechanics and Friction Physical Principles and Applications [M]. LI Q, LUO J B. Peking: Tsinghua University Press, 2011:10. (in Chinese)

作者简介:

海 阔(1991-),男,吉林吉林人,博 士,工程师。2015年于西安交通大学 获得理学学士学位,2020年于长春光 机所获得博士学位。主要从事光学精 密与超精密加工与检测方面的研究。 E-mail;824639163@qq.com

曾雪锋(1987-),男,江西省抚州人, 博士,副研究员,2009年于南京理工大 学获工学学士学位,2014年于长春光 机所获得博士学位。主要从事先进光 学制造技术方面研究。E-mail: zengxf@ciomp.ac.cn