〈系统与设计〉

微小型滚仰式红外导引头光机轴系一体化设计

马俊林,邢妍,高群,杜杰,刘英

(中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033)

摘要:针对导弹口径微小化的需求,为解决微小型导引头无法全方位扫描的问题,提出一种微小型滚仰式红外导引头光机轴系一体化结构。该光机结构把经典滚仰式导引头两根独立俯仰轴与光机结构本体设计成一体,通过红外探测器固定连接的方式让整体结构更加紧凑并兼具焦距微调功能,在保证成像质量的同时大大减小了光机结构的体积。将建模后的光机结构进行有限元热力耦合分析,在导引头温度、位置和角度等8组极限工作情况下,得到结构件和镜片的热变形。分析结果表明,提出的光机结构满足微小型(80mm)、抗冲击(10g)和高低温(-40℃~60℃)工作要求,可以预测实际使用时的工作情况,对设计具有重要的指导意义。

关键词: 红外导引头; 滚仰式; 有限元; 仿真分析

中图分类号: TH745 文献标识码: A 文章编号: 1001-8891(2021)05-0411-06

Design of Micro-miniature Infrared Seeker with Roll-Pitch Structure

MA Junlin, XING Yan, GAO Qun, DU Jie, LIU Ying

(Changchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of Sciences, Changchun 130033, China)

Abstract: To meet the requirements of the micro-miniature air-to-air missile and solve the problem of not reaching full field angle, this paper presents a micro-miniature infrared seeker with roll-pitch structure, applying the integration philosophy of optical-mechanical structure and pitching shaft. Compared with the classic roll-pitch frame, this new structure combines two individual pitch shafts; additionally, the optical-mechanical structureusesonly one mechanical part, thus greatly reducing its size. Moreover, this new structure has a focus function that could improve the image quality. After structure design, we conducted thermo-mechanical coupling analysis on structure parts and lens under eight extreme conditions. The results show that the optical-mechanical structure meets the requirement of micro-miniature(80 mm), shock resistance (10g), and high low temperature test (-40 $^{\circ}$ C ~60 $^{\circ}$ C). The simulated analysis can predict real conditions and has great guiding significance for optical-mechanical structure design.

Key words: infrared seeker, roll-pitch, finite element, simulated analysis

0 引言

空空导弹有很多其他导弹不具备的优点,比如搜 索范围大、跟踪速度快、机动能力强等,使其日益成 为各国大力发展的军备武器^[1]。导引头是空空导弹的 关键部件,决定了导弹的跟踪、识别和捕获能力。红 外导引头可昼夜全天候使用、导引精度高,体积小重 量轻,十分符合这一趋势。从文献[2-6]可以看出,微 收稿日期: 2020-06-09;修订日期: 2020-07-30. 小型和高性能是红外导引头的发展趋势和技术难点。 美国的 AIM-9 系列导弹的红外导引头采用滚仰式光 机结构,将探测器固定连接在导引头上使导弹整体尺 寸大大减小。世界先进的短程导弹德国 IRIS-T 红外导 引头也采用滚仰式结构,使其具有±90°的离轴角^[7-8]。

为进一步减小红外导引头的口径尺寸,增大导引 头的搜索范围,在滚仰式红外导引头光机框架的基础 上采用光机轴系一体化设计思想,让整个光机结构在

作者简介:马俊林(1985-),男,黑龙江双城人,助理研究员,硕士研究生,主要从事精密光机结构设计与分析方面的研究。

通信作者:刘英(1980-),女,副研究员,主要从事红外光学设计和分析,E-mail: liuy613@163com。 基金项目: 吉林省科技发展计划项目(20180201048GX)。

第43卷第5期	红外技术	Vol.43	No.5
2021年5月	Infrared Technology	May	2021

仅为 80 mm 口径的导引头内可以实现 360°滚摆和 ±90°俯仰,实现全方位扫描和跟踪目标。由于工作 环境温差很大,红外导引头光机结构成像质量会受到 温度因素的影响。在光机结构设计完成的基础上,本 文对光机结构进行热力耦合分析,研究温度对红外镜 片和光机结构位移的影响,求解温度变化后的光机系 统性能。

1 光机轴系一体化结构设计

按照滚仰式框架设计思想, 红外导引头整体结构 如图 1, 包括整流罩、外壳体、转台和红外光机组件。 导引头具有滚摆和俯仰两个自由度, 滚摆即转台可以 沿着导引头轴线做旋转运动; 俯仰即红外光机组件可 以沿着俯仰轴在转台内做俯仰运动, 其中俯仰轴穿过 球形整流罩的球心。

图 1 滚仰式红外导引头整体结构图

Fig.1 Overall structure of infrared optical seeker with roll-pitch structure

为了实现全方位的扫描和跟踪,需要滚摆可以达到 360°,俯仰可以达到±90°,如图2所示。这就需要红 外光机组件具有非常小的体积。为了压缩红外光机组件 的整体体积整体光机结构设计从以下3个方面进行考 虑。

第一,光学设计采用数量尽量少口径尽量小的镜 片来完成光学系统。红外光机组件的光学设计如图 3: 采用球形整流罩+3 片非球面镜片组成整个光学系 统,球形整流罩采用硫化锌材料气相沉积加工而成, 3 片镜片采用晶体锗材料加工完成。球形整流罩的底 面和侧面与导引头外壳体通过环氧树脂胶相胶接。

第二, 红外光机组件采用光机轴系一体化设计思想和红外镜头整体调焦的方式进行结构设计。如图4,整体红外光机组件包括红外镜头组件、探测器和陀螺仪组成, 红外镜头组件包括红外镜头和俯仰安装块, 红外镜头包括压圈、隔圈1、隔圈2、1镜、2镜、3 镜、镜筒。为了压缩红外镜头的整体体积, 红外镜头 采用外压圈的方式将3 块镜片固定在一个镜筒里。

第三,俯仰安装块如图 5,红外镜头通过螺纹与 俯仰安装块相连接,俯仰安装块是整个设计的核心部 件。首先,为了减小俯仰轴的长度,给固定在俯仰轴 上的控制组件和驱动组件更多的空间,俯仰安装块将 经典结构的两根俯仰轴的设计成一体,避免了两个俯 仰轴引入额外的连接方式进而带来长度的增加;其 次,俯仰安装块一端与红外镜头通过螺纹连接,另一 端通过法兰孔与探测器固定连接,红外镜头可以通过 螺纹在俯仰安装块内移动一定距离,从而调整红外镜 头与探测器之间的距离实现调焦功能。这样即使在很 小的体积空间内也能让导引头有一个微小的装调调 焦量,进而提高整个系统的光学性能和可靠性。

最后,探测器外壳根据已经布局好的红外镜头组件位置,在干涉的地方掏空或者倒角,并将具有稳定 图像功能的陀螺仪安装在探测器上让整体结构变得 更加紧凑。

凶) 俯仰女表厌凶

Fig.5 Pitch mounting

2 红外导引头光机结构热分析原理

由于红外导引头的工作环境温度范围较大,温度 变化会对红外光机组件的成像性能产生影响。当环境 温度改变时,镜头结构会因为温度的升高和降低而发 生热变形,特别是晶体锗材料的光学镜片本身和镜片 之间的位移变化会导致成像质量的下降,甚至影响导 引头整个系统的捕捉和跟踪功能,所以需要对整个光 机系统进行热分析。

一般情况下,温度的变化会使物体产生变形,称 为热变形^[9]。一般物体在热胀冷缩时会引起物体内部 应变的发生,在物体的内部各向同性材质均匀情况 下,变形没有剪切应变仅有正应变^[10],如公式(1):

$$\begin{bmatrix} \varepsilon_{x} & \gamma_{xy} \\ \varepsilon_{y} & \gamma_{xy} \\ \varepsilon_{z} & \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \alpha T & 0 \\ \alpha T & 0 \\ \alpha T & 0 \end{bmatrix}$$
(1)

式中: ε 是正应变; γ 是切应变; α 是线膨胀系数; T是温度变化。

一般情况下,由于温度变化会使微元体之间产生 相互作用力,所以温度变化产生的热应力满足胡克定 律^[11],如公式(2):

$$\begin{bmatrix} \sigma_{x} & \tau_{xy} \\ \sigma_{y} & \tau_{xy} \\ \sigma_{z} & \tau_{xy} \end{bmatrix} = \begin{bmatrix} 2G\varepsilon_{x} + \rho e + \beta T & \gamma_{xy} \\ 2G\varepsilon_{y} + \rho e + \beta T & \gamma_{xy} \\ 2G\varepsilon_{z} + \rho e + \beta T & \gamma_{xy} \end{bmatrix}$$
(2)

式中:
$$2G = \frac{E}{1+\mu}$$
; $\rho = \frac{\mu E}{(1+\mu) \cdot (1-2\mu)}$; $\beta = \alpha E(1-2\mu)$

 2μ); *E* 是弹性模量; *G* 是切应模量; μ 是泊松比。

3 光机结构有限元仿真分析

3.1 模型的导入和设置

把在 UG 中设计好的三维模型导入 Workbench 中,基于简化的原则,由于陀螺仪的热变形并不影响 光学系统的成像质量,探测器是单独的复杂组件不在 整个红外光机组件内分析,所以在导入 Workbench 中 的模型只包括红外镜头组件,这样也有利于网格的划 分和整个热应变的计算。导入 Workbench 后进行分析 前的预处理和设置,包括材料参数的设置、零件之间 的接触设置、网格划分的形式和大小以及分析的边界 条件等。其中材料的机械参数表格如表 1,各个零件 之间的接触关系如表 2。网格划分按照不同零件的特 点和分析重点采用不同的大小和划分方式,如表 3。 网格划分结构如图 6。

Material	Densit	ty/ Ruptur	Rupture modulus/		odulus/ I	oisson ratio	Thermal coefficient		Linear expansion coefficient	
	(g/cm	n²) Mpa		Gpa			<i>w</i> /(m·℃)		10 ⁻⁶ /°C	
Nc-Ge	5.33	75		103	(0.28	59		4	5.7
7075Al alloy	2.74	524		76	(0.33	237		23.5	
表 2 零件接触关系设置										
Table 2 Contacts setting										
Mating	Clamper	Clamper	Tube	Len1	Len2	Len2	Len3	Len2	Len3	Tube
part	Tube	Len1	Len1	Spacer1	Spacer1	Spacer2	Spacer2	Tube	Tube	Mounting
Contact	Bounded	Frictional	Frictional	Frictional	Frictiona	l Frictional	Frictional	Bounded	Bounded	Bounded
Mating part Contact	Clamper Tube Bounded	Clamper Len1 Frictional	Tube Len1 Frictional	Table Len1 Spacer1 Frictional	2 Contac Len2 Spacer1 Frictiona	ets setting Len2 Spacer2 I Frictional	Len3 Spacer2 Frictional	Len2 Tube Bounded	Len3 Tube Bounded	Tube Mounti Bounde

Table 1	Parameters of mechanical performance

表1 机械参数

表 3 网格划分

图 6 网格划分图 Fig.6 Meshing of the lens

3.2 热力耦合有限元分析

空空导弹导引头的工作温度范围一般是一 40℃~+60℃^[12-14],受到的冲击一般是10g^[15-16],光 机系统的成像质量要在整个温度区间内和最大冲击 下满足要求,为了减小工作量并涵盖所有工作情况, 本文考虑两种极限情况进行热分析,即一40℃和 60℃ 两种情况的每个零件的热变形,因为在这两个极限情 况下变形量最大,只要最大变形量能够满足要求,成 像质量就能够得到保证。由于该系统存在±1 mm 的 调焦量,需要镜头在整个调焦范围内都满足应变要 求,所以考虑镜头到调焦的两个极限位置作为分析位 置,这是因为这两个极限位置造成的系统变形量最 大。由于该导引头是滚仰式导引头系统,整个红外镜头组件要做±90°的俯仰运动,由于该红外镜头组件为对称结构,所以存在两个角度极限位置即0°和90°, 在这两个位置镜头组件受到的冲力最大,所以考虑0° 和90°时红外镜头组件的变形量。

通过以上的分析,我们得到3种极限(俯仰位置 极限、温度极限和调焦位置极限)位置的8组镜头组 件的变形云图如图7。

其中1镜、2镜和3镜在8种情况下的最大变形 量见表4。

单独提出镜片在3种极限位置的8组变形云图如 图8。

414

(C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

第 43 卷 2021 年	\$ 第5期 5月		马俊林等:微小型滚仰式红外导引头光机轴系一体化设计						Vol.43 May	No.5 2021
	1040900 11.49 105954 Hax 004095 004005 00405 00400000000		AULENZE 11.17 0.04005 Max 0.05440 0.05450 0.05601 0.05021 0.		0.0597 M 0.05557 0.022336 0.015554 0.015554 0.015554 0.015554 0.015554 0.015554 0.015554 0.015554 0.005310 0.005310 0.005310 0.005310 0.005310 0.005310 0.005310 0.005310 0.005310 0.005310 0.005310 0.0055555 0.0055555 0.0055555 0.0055555 0.0055555555	Ax		Unit mm Time: 1 21205/03 11.32 0.07156 Max 0.02166 0.01756 0.001756 0.001756 0.001756 0.00072 0.00031 0.00031		
	(e) 90°,−40°C	, +1 mm	(f) 90°	°,−40°C,−1 r	nm	(g) 90°,60℃	, +1 mm	(h) 90	°,60℃, —1 mm	
			图 8	三种极限位于	置下1镜、2	2镜和3镜的	J变形云图			
Fig.8 Deformation nephogram of len1, len2 and len3 under 3 extreme conditions										
			表 4	1 镜、2 镜利	口3镜在8和	帅情况下的最	大变形量			
Table 4 Maximum deformation of len1, len2 and len3 under 8 limited conditions										
		0°	0°	0°	0°	90°	90°	90°	90°	
		−40°C	$-40^{\circ}\mathrm{C}$	60°C	60°C	−40°C	-40℃	60°C	60°C	
		$+1\mathrm{mm}$	$-1\mathrm{mm}$	$+1\mathrm{mm}$	$-1 \mathrm{mm}$	$+1\mathrm{mm}$	$-1 \mathrm{mm}$	$+1\mathrm{mm}$	—1 mm	

0.0199

0.0137

0.0089

0.0195

0.0119

0.0073

通过上面的热变形数据可以看出,结构件的最大 形变值出现在8种极限情况的第二种也就是俯仰角度 为0°,温度为-40℃,调焦值为-1mm的时候,最 大值在外压圈的边缘,最大变形量 0.05 mm,对于机 械结构来说不会受到变形的影响,满足设计值要求。

0.0324

0.0202

0.0123

0.0318

0.0189

0.0114

Len 1 Len 2

Len 3

镜片的最大形变值都出现在8种极限情况的第2 种和第5种也就是俯仰角度为0°,温度为-40℃,调 焦值为-1mm 和俯仰角度为 90°, 温度为-40℃, 调 焦值为1mm的时候,在1镜的边缘,最大变形量 0.0324 mm,变形量越靠近镜片边缘越大,越靠近镜 片中心越小,对于光学设计来说满足设计值要求,不 会影响红外导引头的成像质量。

结论 4

2021

为了能在 80 mm 口径微小型红外导引头内实现 全方位扫描,提出并设计一种微小型滚仰式红外导引 头光机轴系一体化结构。该结构体积紧凑可以实现全 方位扫描和跟踪,即红外光机组件在导引头内 360° 滚摆和±90°俯仰。

1) 根据光机轴系一体化设计思想,提出一种导 引头红外镜头组件的特殊结构,通过俯仰安装块使经 典结构的两根俯仰轴、红外镜头和探测器集成为一 体。通过镜头和俯仰安装块之间的螺纹副实现调焦功 能,在压缩了整体光机结构体积的同时保证了光学系 统的成像质量;

2) 对该小型滚仰式红外导引头一体化结构进行 有限元热力耦合分析。根据机械零件的不同功能和镜

片的不同特点进行有限元网格划分。在-40℃~ 60℃、镜头组件俯仰 0°和 90°、镜头调焦±1 mm 等 3 种极限位置8种极限情况进行热力耦合分析,得到结 构件和3个镜片的热变形规律和最大热变形值,通过 与设计值对比,验证了光学系统在工作温度范围内具 有可靠的成像质量。

0.0195

0.0112

0.0068

0.0198

0.0125

0.0081

参考文献:

0.0324

0.0178

0.0099

0.0318

0.0172

0.0083

- [1] 任淼,谢翔,刘晶晶. 2019年外国空空导弹发展动态研究 [J]. 航空兵器, 2020, 27(3): 1-9. REN Miao, XIE Xiang, LIU Jingjing. Research on Foreign Air-to-Air Missiles Development in 2019[J]. Aero Weaponry, 2020, 27(3): 1-9.
- [2] DU Xiao, LV Rui, TU Haifeng, et al. The research on infrared seeker with disturbance rejection effect parasitic[J]. OPTIK, 2018, 170: 409-419.
- [3] WANG X C, MO B, LI X, et al. A line-of-sight rate estimation method for roll-pitch gimballed infrared seeker[J]. OPTIK, 2019, 192: 162935.
- [4] ZHOU Yongheng, CUI Shaohui, FANG Dan. Review of Evaluation Techniques for Infrared Imaging Seeker[C]//International Conference in Communications, Springer, 2017: 607-613.
- [5] 张明. 超远程空空导弹攻击关键技术分析[J]. 价值工程, 2020, 9(3): 297-299. ZHANG Ming. Analysis of Key Technologies for Ultra-long-range Air-to-air Missile Attack[J]. Value

415

Engineering, 2020, 9(3): 297-299.

[6] 李宇鹏. 激光/红外复合制导技术发展综述[J]. 电子质量, 2020, 2(3): 39-41.

LI Yupeng. Overview of Development of Laser/Infrared Compound Guidance Techniques[J]. *Electronics Quality*, 2020, **2**(3): 39-41.

[7] 范晋祥. 美军机载武器的新发展[J]. 航空兵器, 2020,
 5(15): 7-26.
 FAN Jinxiang. New Development of American Airborne

Weapons[J]. Aero Weaponry, 2020, 5(15): 7-26.

- [8] Sakarya D U, Bayram A. Optical design of dual mode seeker for short-wave infrared and four quadrant detectors in missile application[C]//Physics and Simulation of Optoelectronic Devices XXVIII, 2019: 109121K.
- [9] 史明东, 屈军利, 袁梦笛, 等. 导引头抗高过载技术及其 研究进展[J]. 兵器装备与工程学报, 2019, 40(7): 85-89.
 SHI Mingdong, QU Junli, YUAN Mengdi, et al. Anti-High Overload Technology and Research Progress of Missile-Borne Seeker[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 85-89.
- [10] 贺磊,张建隆,杨振,等.一种小型化滚-仰式长波红外光 学系统设计[J]. 红外技术, 2018, 40(12): 1142-1148.
 HE Lei, ZHANG Jianlong, YANG Zhen, et al. Design of a Small Rolling-pitching Long-wave Infrared Optical System [J]. *Infrared Technology*, 2018, 40(12): 1142-1148.
- [11] 王春阳,张宇,金丽漫,等. 红外连续变焦镜头的结构设 计与热分析[J]. 软件, 2020, 41(4): 178-182.
 WANG Chunyang, ZHANG Yu, JIN Liman, et al. Structural Design and Thermal Analysis of Infrared Continuous Zoom

Lens[J]. Computer Engineering & Softerware, 2020, **41**(4): 178-182.

- [12] 潘越, 徐熙平, 乔杨. 变焦红外双波段投影镜头的光机热 分析[J]. 光学学报, 2018, 38(5): 0522001.
 PAN Yue, XU Xiping, QIAO Yang. Optical-Structural-Thermal Analysis of Zoom Infrared Dual-band Projection Lens[J]. Acta Optica Sinica, 2018, 38(5): 0522001.
- [13] 李富贵, 贾生伟, 赵洪, 等. 导引头动力学建模方法研究
 [J]. 弹箭与制导学报, 2017, 37(4): 27-42.
 LI Fugui, JIA Shengwei, ZHAN Hong, et al. Research on Dynamic Modeling Method of Seeker[J]. Journal of Projectiles Rockets Missiles and Guidance, 2017, 37(4): 27-42.
- [14] 洪文鹏, 孟祥福, 李欢, 等. 红外导引头平台底座拓扑优 化设计[J]. 飞控与探测, 2020, 3(2): 64-69.
 HONG Wenpeng, MENG Xiangfu, LIHuan, et al. Topology Optimization Design of Infrared Seeker Platform Base[J]. *Flight Control & Detection*, 2020, 3(2): 64-69.
- [15] 江乐果, 胡百振, 焦形, 等. 红外导引头框架式稳定平台 非线性动态特性分析[J]. 红外技术, 2019, 41(5): 483-488. JIANG Leguo, HU Baizhen, JIAO Tong, et al. Nonlinear Dynamic Analysis of Infrared Frame Seeker Stabilization Platform[J]. *Infrared Technology*, 2019, 41(5): 483-488.
- [16] 马永忠,赵法栋. 某小型强光爆震弹的结构设计与试验 研究[J]. 兵器装备与工程学报, 2020, 41(4): 80-85.
 MA Yongzhong, ZHAO Fadong. Structure Design and Experiment Study on Miniaturization Stun Grenade[J]. *Journal of Ordnance Equipment Engineering*, 2020, 41(4): 80-85.