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Abstract

Oriented towards the stiffness optimization of parallel manipulators, a stiffness modeling method based on subspace
analysis was proposed. The paper revealed the “shielding effect” of passive joints, i.e. shielding the partial local stiffness of
a mechanism on Cartesian space, and accordingly brought forward the concept of Effective Stiffness Tensor (EST), which
was then obtained by introducing the orthogonal projector. The method allows a stiffness model of analytical form as
well as high computation efficiency, which makes it suitable for applications in the stiffness optimization of parallel
manipulators. Proposed method had been applied to the parallel alignment mechanism in China’s large space telescope

and verified by dynamic experiments.
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Introduction

Parallel manipulators are widely used in aerospace,
precision machine tools and other fields' > and con-
figuration parameter optimization is indispensable to
make the stiffness performance meet engineering
demands. Therefore, an accurate and efficient stiff-
ness model of parallel manipulators is fundamental.

The finite element method (FEM) has been widely
used in stiffness analysis since its potential of accu-
rately describing the stiffness characteristics of
manipulators. However, the great modeling complex-
ity, heavy computational burden and low model por-
tability also hinder its application in design.
Therefore, many efficient modelling methods were
proposed as supplements. In the field of compliant
mechanism, free-body-diagram (FBD) based model-
ling approach is one of the main methods and
constraint-force-based (CFB) approach® is one of its
fruitful developments. As for traditional manipula-
tors, matrix structure analysis (MSA) and virtual-
joint method (VIM) were proposed. MSA was
developed on the basis of the FEM using large struc-
tural elements such as beams, arcs and cables to
describe the mechanical characteristics of compo-
nents. A remarkable feature of MSA is that it
allows the convenient analysis of manipulators of
complex topology.” Hence, the Cartesian space stiff-
ness matrices of complex parallel manipulators are

simply obtained following general steps by MSA.”'*
However, MSA has a disadvantage that it has a heavy
calculation burden of the inversion of a matrix with
high dimension. Klimchik compared calculation com-
plexity of several methods measured by the number of
floating-point operations, and concluded that the cal-
culation complexity of the MSA was on the order of
10’-10% in the analysis of three types of parallel
manipulators while that of the VIM was only on
the order of 10° with comparable precision.'' On
the other hand, it’s cumbersome for an MSA model
to handle manipulators with multiple passive joints,
which made it barely applied to configuration
optimization.’

VIM is based on the idea of approximating struc-
ture deformation with the joint motion that is similar
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to pseudo-rigid-body model (PRBM). However, VIM
was originally aiming for stiffness modeling of tradi-
tional mechanisms and thus significantly different
from PRBM about key problems and mathematical
methods eventually. The VIM was first proposed by
Salisbury'2 and Gosselin,"> in which the equation
(i.e., the conservative congruence transformation)
for calculating the holistic stiffness that described by
Cartesian space compliance matrix of manipulators
was obtained after the joint space compliance
matrix was defined to describe the local compliance
distribution of manipulators. In follow-up studies, the
compliance of links was also considered and equated
to joint compliance to improve the accuracy of the
models,'* and virtual joints with elastic characteristics
in multiple directions'>'” were adopted to describe
the more complex deformation behavior of the struc-
ture as a complement of virtual joints of a single
degree of freedom (DOF) used in early works.'®
A key problem of the VIM using virtual joints with
multiple DOF is how to obtain all the elastic param-
eters of the joints. At first, researchers used a simple
cantilever beam to estimate the elastic characteristics
of the structure, which provided a rough approxima-
tion.">'® Klimchik et al. then proposed parameter
identification method based on the finite element
and a practical identification method,'”?* which sim-
plified the process of parameter estimation and great-
ly improved the precision of the VIM.

There are many research works about the applica-
tion of VJM in parallel manipulators'"** 27 since it is
very convenient to integrate configuration parameters
into a VIM model with smaller computational burden
than FEM and MSA. However, the current method
need to obtain a partition of the inversion of a
dimension-extended compliance matrix,'"*”?° which
couldn’t directly provide a stiffness formula of the
analytical and explicit form and thus unnecessarily
introduces numeric iteration computation. The ana-
lytical model could be obtained if there were proper
constraints on virtual joints, for example, the forms of
virtual joints are complete same as actuators.’” **
However, inadequate virtual joints would hinder the
application in optimization. Specifically, if the model
neglected the deformation of passive joints and links
and so on, the influence of corresponding parameters
on holistic stiffness would also deviate from the real
effect and then it would be difficult to apply the
models to comprehensive optimization of configura-
tion parameters.

To this end, the present paper introduced a stiff-
ness modeling method for parallel manipulators
based on subspace analysis. From the perspective of
linear space, the method revealed that of passive
joints would shield partial local stiffness on
Cartesian space and accordingly brought forward
the concept of EST, which was then obtained by
introducing the orthogonal projector. The method
provides a stiffness model of analytical and explicit

form and thus allows direct computation and high
efficiency. Meanwhile, by introducing the projectors,
the method also provides an open solution framework
that is compatible with the more number of efficient
algebraic tools. Proposed method had been applied to
the parallel alignment manipulator in China’s large
space telescope.

The remainder of the paper was organized as fol-
lowing. The upcoming section presented the modified
method. Next section introduced application of the
proposed method in the prototype of alignment
mechanism and corresponding validity experiments.
The last section summarized the contents and contri-
butions of the paper.

The modified virtual joint method of a
parallel manipulators

VIM formulas and requirements of
optimization model

For a general manipulator, the deformations of the
structures have also the impact on the manipulator
stiffness, such as the links, guides and so on. The
basic idea of VIM is to assume that the deformation
inside manipulators is completely concentrated on
some virtual joints and restore the motion and
mechanical characteristic of the local deformation
by these virtual joints. As a result, the stiffness char-
acteristic of manipulators can be completely described
by elastic joints.

The elastic joints on a manipulator always produce
resistance when they move. Due to the limit for prac-
tical allowable stress of traditional manipulators, the
local deformation considered in VIM is always tiny.
The basic assumption allows using Jacobian to
describe the relationship between local deformation
and motion of virtual joints as well as the relationship
between the external load newly added and local
deformation newly occurring. Therefore, the relation-
ship between variations of joint movement and
those of their resistance can be always expressed in
a linear form

0, =Cyoi;, (j=1,....N) (1)
or
o, Coi oW,
w=| ¢ |= :
S W Cyn Ny
= Cydw (2

where {9‘3. and ¥, respectively represent the joint var-
iable vector in the j-th elastic joint and the corre-
sponding resistance vector, and Cy and C; are
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respectively the compliance matrix of the j-th joint
and joint space compliance matrix, and J(-) repre-
sents the variation of a variable, and N is the total
number of elastic joints. Due to the linear expres-
sions, the positions of virtual joints are arbitrary on
the local structures and usually arranged in the
nearby physical joints. As a result, the positions of
virtual joints relative to local structures keep
unchanged and local structures could be considered
rigid.

Denote the motion Jacobian matrix of elastic
joints as J; and that of passive joints as J,, and the
variations of the end-effector Cartesian coordinates
satisfy

oG = J,00 + J, 01 (3)

where ij is the vector consisting of joint variables of
passive joints, and ¢ represents Cartesian coordinates
of the end-effector. There is not a definite relationship
between the motion of passive joints and the external
load and thus the motion of passive joints kinemati-
cally depends on that of elastic joints, so dij is always
capable to be expressed as

8 = GyydV )

where G, represents the constraint Jacobian matrix.
Therefore, we have

8G = (Jy + 3,Gp)d0 = NI (5)

According to the principle of virtual work, the vir-
tual work done by external wrench 7 satisfies

SW =1"0G = Wyod +17) 5if (6)
where 1t and ¥, respectively represents the deforma-
tion resistance of elastic joints and the force in passive

joints. Recalling equation (4) and (5) and the equa-
tion is simplified as

{Nod = (] + 77 Gy )00 7

As a result, the relationship between ', and 7 is

Wy = N7 — G, ®)

Recalling equations (2), (5) and (8), and the rela-
tionship between resultant displacement and external
wrench is

. 4T . T

53 = (7" @ NC, ) 5(vec(NT))

~ () © NCy )8 (vee(G1,)) ©)
+ NCyN'o1 — NC,G, 0%,

where symbol “®” and “vec(-)” respectively denote
the Kronecker product and vectorizing operator. In
addition, the variation of vector vec(N”) and

vec (GL) can be expressed as:
T
5(vec(NT)) = wfsq — H\oF (10)
g
dvec (GT ,)
T . n = _ oo
5(vec (Gw)) - 57 = Hod (11)

and thus we have the relationship between external
wrench and the resultant displacement of Cartesian
coordinates

64 = A(NC,N"67 — NC,G 07, ) (12)

ni!

where

A= [I(, - (,rT - NC,;) Hy — (mj ® NCU)HG] -1

(13)

It is seen that holistic mechanical characteristics
of manipulators may vary with the external
load due to the existence of passive joints even the
mechanical characteristics of local structures remain
linear.

All the Jacobian matrix in the formula can be con-
sidered constant in holistic stiffness optimization
since the concerned stiffness frees from how the defor-
mation process of a manipulator would be. In addi-
tion, the optimization targets at improving the
intrinsic attributes and thus is not interested in the
influence of external factors on the manipulator stiff-
ness. Specifically, the external wrench on the manip-
ulator would be considered constant, and the
non-perfect factors such as dead zones, saturation,
force in passive joints and so on would be neglected
because their effect on stiffness would be sensitive to
the change of the external wrench and hard to esti-
mate. In fact, the non-perfect factors are avoided in
practice as much as possible and thus their influences
on the manipulator performance are always weak. As
a result, the compliance model for optimization is
expressed as

-1
C = [1- (" e e,y )1y

X(Jal + Jr;GmJ)CU(JU + JquJ)T (14)
Taking the internal stress and preload on the

manipulator as zeros, the formula of the Cartesian
space compliance matrix could be further simplified



6896

Proc IMechE Part C: | Mechanical Engineering Science 235(23)

and we get what is so called Conservative Congruence
Transformation (CCT)

C.= NCUNT — (Ji! ¥ Jp;Gud)CrJ(JrJ + J;}Gm!)T
(15)

It is important for the stiffness model to have an
analytical form and high computational efficiency.
The computational burden of the stiffness model is
of significance to the optimization efficiency since
there are always many iteration steps during the opti-
mization process and the computation of the stiffness
model would be performed at every step. Stiffness
formulas of analytical forms would also be beneficial
since they allow more types of optimization algo-
rithms, especially those of high efficiency, which
would be fundamental to reduce the iteration steps
on the condition that there are many parameters to
be optimized.

VIM based on the subspace analysis

It would be difficult to integrate multiple virtual
joints into a VJM model through mere kinematic
methods since the manipulators with redundant
DOF of virtual joints would be kinematically indeter-
minate. Hence, an additional mechanics method is
necessary. According to the principle of superposi-
tion, the resistance wrench of a parallel manipulator
is the sum of that of each serial branch chain

Kydj=1=> % = Kidj (16)

where 7 and K, respectively represent the resistance
wrench and stiffness of the parallel manipulator and
7, and K; respectively represent the those of the i-th
branch chain, and » represents the number of branch
chains. As a result, the equivalent problem is to solve

the stiffness of several serial chains, as is shown in

Figure 1. Considering that there are always forward
motion Jacobian (i.e., Jy and J,) of explicit and ana-
lytical form for a serial kinematic chain, all that is left
is constraint matrix (i.e., G,y) of each chain, which
would be obtained by the method based on subspace
analysis in this subsection.

Denote the linear space of Cartesian coordinates as
Q. and linear space of elastic joint variables of the i-
th branch chain as Q,, and it’s natural that joint
space compliance matrix Cy; is a symmetric second-
order tensor on Q. and CCT is a linear transforma-
tion of second-order tensor in essence from the per-
spective of tensor analysis, which depends on how the
elements on ,; are mapped to those on Q. In other
words, as long as the linear transformation of vectors
is determined, the CCT is consequently obtained. For
a branch chain without passive joints, the motion of
the end-effector is completely decided by that of elas-
tic joints and thus the vector transformation is exactly
the motion Jacobian matrix of elastic joints Jy;, at
which the local compliance attributes described by
Cy; are completely projected onto holistic space Q.
However, it would be different when it comes to a
branch chain with passive joints and specifically, the
passive joints would partly “shield” the linear trans-
formation that projects the compliance.

Considering the i-th serial branch chain with pas-
sive joints, any permissible wrench on the end-effector
of the chain must ensure that the work done to pas-
sive joints keeps zero in order to make it possible that
the serial branch is in static equilibrium, i.e.,
iwLoi, =0, Yoij, €Q

L Wi
=7, 07 = T Jdif; =710 =0, Yo7 € Q,;
(17)
where Q,; denotes the linear space of passive joint
variables 7, , and Q,; represents the subspace of Q.
and also the codomain of linear transformation J,;,
whose domain is Q,; and transposition is the force

Figure |. Schematic drawing of the division of a parallel manipulator.
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Jacobian Jp,; according to the duality. However, if
passive joints on the branch satisfies

J:;Jm"?é 0 {]8}
then there always has

3(55; #+ 6 S Qdi' (S)-f{ - 6 € Qr}r’ :

=T i =T = (19}
80; J53idit; =yl #0

where

£ #0e00,8i#0eQ (20)

Cri

where Q. represents the subspace of Q. and also the
codomain of linear transformation Jy. As a result,
there must be some non-zero wrenches on subspace
Q. that makes the serial chain can’t be in static
equilibrium

3%, #0 € Q67 #0€Qq,i: T0G#£0 (1)

Therefore, to fulfil the condition of being in static
equilibrium, the external wrench 7, acted on the
branch chain can’t be the arbitrary element of Q.
while must be the element of its subspace

= = =T
QC{H‘ = {é € Q(‘|é € er!i; é 56 = OV(S';; € Q(‘i;i}
(22)

and elements on the subspace of Q, whose image is

Q‘( Wi n Q(ur’

Q= {5-5,. € Q,13007; € QeyiNQ, | (23)

is thus forbidden in practice, which results in that the
vectors on €, can’t be projected onto Cartesian
space. In terms of manipulator compliance, partial
local compliance doesn’t participate the holistic com-
pliance since the passive joints. Instead, if equation
(18) doesn’t hold, the linear transformation that proj-
ects the compliance would still be complete consider-
ing that Qohﬂﬂc,ﬂ = {0} or rather Qi = Qeyi- As a
result, CCT is just J,,C u:J,;, in this condition and it
thus is drawn that the target transformation is equal
to Jy; on Q.

To sum up from the perspective of subspace anal-
ysis, if divide the linear transformation into two parts
as shown in Figure 2(a), the part mapping from Quﬁ is
forbidden in order to keep the branch chain in static
equilibrium, while only the part mapping to Q. is
permissible and exactly the target transformation
that determines the practical holistic stiffness of the
manipulator. Describing the phenomenon in

visualizing words, the passive joints work like a
“light shield”, which partially shields the “light”
(i.e., the linear transformation that projects the com-
pliance) from Q; to Q.. Therefore, the effect of pas-
sive joints on the holistic compliance of a manipulator
is called “shielding effect” in this paper. In addition,
in order to distinguish the observable holistic compli-
ance tensor restricted to Q. from the complete holis-
tic compliance tensor on Q;, the former is called
effective Cartesian space compliance tensor and the
latter is called original Cartesian space compliance
tensor in this paper.

To obtain the target transformation, one of the
methods is to introduce an orthogonal projector.
Denote the orthogonal complement of Qoy as Qq,
and an orthogonal projector onto Qon is a linear
transformation that satisfies

Pﬂémg = ‘E Ve Q(LIH (24)
Py =0, VEeQy

where Pnu is the orthogonal projector. Obviously,
dccordmg to expression (23), compound mapping
PQE- Jyi thus satisfies

Pg%_m..]u,-é-@.,. = 6: V{sﬁj € Qb‘ﬁ (25)

In addition, considering that

T - s

£ 0G =0,¥G € Qe = ¢ € Qg (26)
we have

QCm - Q‘C ni (2?)

and thus

Po. Jodl, =150, VoU, € Q) and 63, ¢ Q,

(28)

Obviously, the compound mapping PQ. Jyi 18
exactly the target transformation as shown in
Figure 2(b).

There are many ways to obtain PQ First of all,
PQJ _ could be indirectly obtained from transforma-
tion. J,i. Considering that

Range(J,i) = Qc,; (29)

thus one of the orthogonal projectors onto subspace
‘Q('i;:' is

Pe

i

= 3 (50) T (30)
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(a)

(b)

ﬂéﬂ"

Figure 2. Schematic drawing of proposed method: (a) schematic drawing of the effect of passive joints on the local compliance; (b)

schematic drawing of the function of orthogonal projecting.

and
Pﬂéﬂﬂ
is thus
-1
_ T T
PQJL"W' = I(, - Jm' (J,?,'qu‘) Jq.-' (31)

If J,;; is not a column full-rank matrix, the redun-
dant columns could be taken out to get a column full
rank matrix and simplify the calculation of the pro-
jector. Besides, comparing compound transformation

Pq. Jyi with N in expression (15), it could be drawn
i " .
that one of the possible forms of the constraint

Jacobian matrix is that

-1
Go = (F5di) Trd (32)

So all the required Jacobian matrix has been
obtained.

In fact, if the rank of J,; is larger than 3, there is a
simpler method to obtain the orthogonal projector.
Denote the singular value decomposition of J,; as

T
Jyi = [Un UQ] [E 0] [iﬁ;] = U“EVE (33)
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U,=[a, - &, | (34)
Up = [fﬁ T 0] (335)

where r represent the rank of J,,, It is proved that
, W, and U, i  are respectively

the orthonormal basis of Q,; and Q('i and thus the
orthogonal projector onto subspace Q,; is

Po. =U, (UhU,) UL = U, UL (36)

In fact, singular value decomposition is not inevi-
table and orthogonal projectors could also be
obtained by kinematic pair screw analysis. It is
proved that the vector system corresponding to the
constraint wrench system is just the basis of Q; - and
thus the projector PQ_ _can be directly obtained using
equation (36). And it is always very convenient to
analytically obtain the constraint wrench system if
the matrix rank of J,; is larger than 3. In a word,
the method provides an open framework that any
algebraic tools that could obtain the projector
would be compatible, which make it possible to
obtain a pithier model.

Now, the CCT of a serial chain could be expressed
in an analytical form. Substitute the compound map-
ping PQ| Ji;, for the target transformation in CCT
and the éffective Cartesian space compliance tensor
of a serial branch chain is obtained as

Cri = U,UL),Cold ! U, UL = U, UL CLiU,Up
(37)

or

Cpi = (l(, — Jui (JLJ:;;‘) _IJ;{;)

T
|
C{-i (lﬁ - Ji;i (J;:.—;'qu) J;;) {38)

where C,; is the original Cartesian space compliance
tensor which is obtained using J,;{-CJ,:,-JLA Before
obtaining the stiffness, it should be noted that the
appropriate relationship between a stiffness tensor
and the corresponding compliance tensor is that
they are the Moore-Penrose pseudoinverse of each
other. The definition could be compatible even the
condition that the stiffness tensor is non-full-rank.
Therefore, EST of a serial branch chain is

Kz = (U,ULC.U,UL =U,7(U C.\; )U}r2
(39)

where “7” represents the Moore—Penrose pseudoin-
verse of a compliance tensor C,. It is seen that the
acquisition of all the Jacobian matrices frees from the
number and form of virtual joints and thus the virtual
joints of arbitrary form and the number could be inte-
grated into the VIM model. It is also seen that the
dimensions of the matrix to be inversed are 6-x
(x represents the matrix rank of J,;). By comparison,
VIM in various studies''*>?’” have to obtain the
partition inversion of an augment matrix to acquire
K,i;,'., 1.e.

Kpi Co Jyi]™
R 40)

ni

Obviously, the dimension of the augment matrix is
6+y (v represents the number of column number of
J,;i) and more than that of proposed method. Besides,
numeric solution would be necessary for VIM based
on augment matrix to obtain K since C; is usually
singular and J,; is not square matrix. In other words,
proposed method has a higher computation
efficiency.

Substitute equation (239) for the K; in equation
(16), and the holistic stiffness of a parallel manipula-
tor is

K\-l = ZUG; UI;JW JP:JJ;; ) ‘1, (41)

The formulas have explicit and analytical forms
and thus could be directly computed. which is bene-
ficial to optimizations. Considering that there are no
special restrictions on the number of branch chain,
the formula could be applied to an under, complete
or over constraints manipulator.

Extension of proposed method

If considering the preloads on the manipulator, the
VIM formula of a parallel manipulator should be
modified according to equation (14)

Ky =Y Kpl— (27 © U,UL1,C )0y @2)
i=1

where the Hessian matrix of the i-th chain
Hy:(i=1,...,n) could be directly obtained using
the Jacobian matrix of analytical form expressed in
equation (31) or (36)

Ty Ovee(JPq:
Hy — 8vec_(.;V, ) _ ( - ofr) D=1,
oq g

(43)
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The core problem left is to determine
T, (i=1,...,n) and it would vary according to the
types of the parallel manipulator.

When it comes to an under or complete constraint
manipulator, there is always not internal wrench and
any external wrench could be expressed as the sum of
a unique set of 7, (i = 1,...,n) when the manipulator
is in the equilibrium. From the perspective of sub-
space analysis, the statement is equivalent to
®Qc,, (44)

Q = Q(m@QGc T @Qc‘u‘ T

where Q, represents the permissible space of exter-
nal wrench and

reQ,; 7, €Quy, (i=1,-+-,n) (45)

1=

In addition, the vector system ‘U,
'd (---"ii , must be the basis of Q, since the
vector system i, i gi(i=1,---,n) is the
basis of Qg (i=1,---,n).As a result, the

T;(i=1,---,n) could be directly determined using
the oblique projector onto Q.. (i=1,---.n)
G =P, i=[0 Uy o 0]
[Uy - Uzu]_lr-. (i=1,-,n) (46)
Matrix [U,; --- U, | could be extended to a

full-rank matrix using arbitrary vectors linear inde-
pendent from vector system '@, ST

"l , in the case of under constraint manipulators,
at which Q, # RS. And thus the Cartesian space stiff-

ness of the parallel manipulator could be expressed as

Ky = i Kei [Iﬁ - (FTP o, @ UpUgd m‘Cm')H.-w]
i

(47)

It is seen that the modified formula retains an
explicit and analytical form and could also be directly
computed, which is friendly to the optimization.
However, things would be difficult when it comes to
an overconstraint parallel manipulator. Although the
introduction of the projectors could simplify the stiff-
ness expression of each chain, it is still hard to obtain
holistic stiffness formulas of explicit form and conse-
quently the numeric iteration would be inevitable.
Considering that the proportion of complete con-
straint manipulators is massive in practice, the pro-
posed method would be still of great practical
significance.

Application in the alignment mechanism

China’s large space telescope is one of the most sig-
nificant ongoing scientific projects, whose weight is

expected more than 15,000 kg, diameter of the prima-
ry mirror is 2m, optical resolution is comparable to
that of Hubble Space Telescope (HST) and field of
vision is 300 times that of the HST. The scientific
mission of the telescope is to survey the formation
and evolution of celestial bodies, detect dark matter
and reconstruct early universe density perturbation.
The function of the alignment mechanism is to
maneuver on large scale so that the telescope could
switch in multiple observation modes. Therefore, the
kinematics of the alignment mechanism has been
researched.” Besides, it should also provide suffi-
ciently rigid support for the optical payload in order
to ensure the optical system in good condition in orbit
and additionally the safety of the payload during
launch. The performance index of the support is the
first-order mode frequency of the combined system
consisting of the alignment mechanism and optical
payload. However, the vibration characteristics of
the combined system could be estimated using the
inertia of the payload and stiffness of the support
according to the preliminary tests. As a result, holistic
stiffness of the alignment is of great importance and
this subsection would introduce the application of the
proposed method to obtain an analytical stiffness
model for optimizations.

VIM model of the parallel alignment mechanism

The specific structure of the alignment mechanism in
China’s large space telescope is shown in Figure 3(a)
and (b). There are three main parts, namely the base,
six legs and payload platform. The base is fixed on the
truss structure of the telescope while the payload plat-
form is installed with the optical payload and the legs
support the platform. The preliminary tests showed
that the first six order mode frequencies that comput-
ed using the inertia parameters of the payload and the
holistic static stiffness of the alignment mechanism
are well consistent with the FEM results, which is
considered as the result of the high-stiffness of pay-
load as well as that the movable mass of combined
system mainly concentrates on the payload.
Therefore, the optimization of the alignment mecha-
nism as an independent module could take holistic
static stiffness as the objective.

The static stiffness of the alignment could be mod-
elled using the proposed method. First of all, the par-
allel mechanism is divided into six serial branch
chains that consist of part of the base, actuators,
eccentric dual revolute joints and part of the plat-
form. There are five motion DOF of passive joints
and one motion DOF of actuator on each branch
chain. Obviously, the parallel mechanism is a com-
plete constraint mechanism and thus the internal
force could be left out of account and external
wrench distributed to each branch chain could be
obtained using projectors. Considering that motion
DOF of passive joints is larger than 3, the method
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(b)

The upper
eccentric dual
revolute joint

eccentric dual Fe”
revolute joing} (4

Platform

The lower (z -

Figure 3. The prototype of the alignment mechanism: (a) 3D model; (b) the entity.

based on the kinematic screw analysis would be
adopted here to obtain matrix Uy, (i = 1....,6).

Take the i-th branch chain as an example (as
shown in Figure 4), the form of equivalent kinematic
pair screw system of passive joints can be expressed as

i

$”_(csccs,ﬁ,lcc;;cso)
So=(Cp S, 0 0 0 0)
Ss=(0 0 1, 0 0 0)
Se=(0 1 0: hy, 0 0)
S, = ( C,, 0 =S.i 0 hy+hsC, 0)
(48)
where C{_ and S(_] respectively represent sine and

cosine, and the definition of the parameters could
be found in Figure 4. Observing the kinematic screw
system, it is obvious that one of the constraint
wrenches of the i-th branch chain is

s = (il (7 x7)")

=(0 0 1; 00 0), (i=1,...,6) (49)

where ji; and F, respectively represent the direction of
the i-th rod and the position vector of a point on the
central axe of the i-th rod which could be arbitrarily
chosen. The left part of the formula (49) depends only
on the topology of the chain and thus holds whatever the
definition of coordinate system are. In addition, consid-
ering that five twists of the kinematic screw system are
always linear independent, the rank of the constraint
wrench system is 1 and thus matrix U,; is expressed as

I it
Uy=——7v-——+(- '
2 ﬁ' Fiox i,

Foox i

I

(f=l,...,6) (50)
AT

Therefore, according to equation (40), the CCT of
the alignment mechanism is thus expressed as

K('E ( JrhCrJ;JWU’);) U

[\/]:h

&4
Jrhca)n]

IIM:\

disi

The formula (51) could be applied to model the
stiffness of alignment mechanism when it works in
orbit. However, it is necessary to consider the preload
on the mechanism in the case of ground test and the
formula of holistic stiffness is modified as

s
K. = +
: :ZI:L JmCmJi;, i
[I(, - (f Pg( XJL_,“;L_.“,- Ju:'Cru)H.-w] (52)
where
B dvec (JL’E; E,T)
M_T
:8vec(ﬂ,—f;§?) E,E,TJ (i=1,.6)
od, et
(53)
B . 1T L oq-1
0, =0 - T - 0[5 - T
(i=1,...,6) (54)

It is seen that the analytical form of the VIM
model of the alignment mechanism is simply obtained
using the proposed method. Then all that is left is to
obtain the local compliance attributes. In order to
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Figure 4. Schematic drawing of the screw analysis of a branch chain.

achieve comprehensive optimization of configuration
parameters, all the possible deformations of each part
should be considered. All the elastic parameters are
obtained from virtual experiments in a finite element
environment'” and the results are shown in Table 2 in
the Appendix. Meanwhile, the stiffness of the base is
considered together with the actuators. The compli-
ance distribution would alter after virtual joints are
added to the alignment mechanism and relevant sche-
matic drawings is shown in Figure 5(b).

Model verification

Because of the limited experimental condition, it is
improper to carry out static tests on the prototype.
And based on the engineering demand, the dynamic
method would be adopted to verify the obtained VIM
model instead, which would take the mode frequen-
cies as a kind of convenient index of the holistic static
stiffness characteristics. Considering that all the com-
pliance parameters are obtained from finite element
(FE) model, it is necessary to ensure the verification
of FE model before verifying the VIM model and
thus the virtual dynamic experiments were also car-
ried out.

To simulate the combined system, a simulated pay-
load of 32.1kg is installed on the payload platform
and by contrast, the total mass of all the remainder
moving parts (not include payload platform) is only
2.031 kg. Therefore, the vibration characteristics of
the simulated combined system consisting of simulat-
ed payload and the alignment mechanism could be
estimated in the same manner. The total inertia
matrix of the simulated payload and platform is mea-
sured form 3 D model and all the mass information
are shown in Table 3 in the Appendix.

On the other hand, the influence is neglected
in the subsection given the small damping ratios
of a mechanical system. Therefore, the mode
frequencies of vibration system approximate mode

poles and the modal estimation equation can be sim-
plified as

(-w,?M +1<)1'r,. —0, (i=12---6) (55)

where K is the holistic compliance matrix of the align-
ment mechanism and is M, the total inertia matrix of
the payload and the platform. Considering that two
matrices in equation (55) should express in the same
coordinate system., Mp should be transformed when
the orientation of the payload platform changes

R O R" 0
Mp:[o R] MPU[O RT] (56)

where M, is the inertia matrix in the platform-fixed
coordinate system that is same as the inertia system
when the mechanism is in its original pose, and R is
the coordinate transformation matrix from inertia
system to platform-fixed coordinate system. In addi-
tion, there would be an external wrench on the align-
ment mechanism during the experiment, which
mainly coming from the gravity of simulated payload
and could be approximated as

- mg
r= (Ff, X mg') 57

where g represents the vector of gravitational acceler-
ation, and m is the total mass of the combined system
of the platform and the simulated payload, and 7, is
the position vector of the centroid of the combined
system.

The experimental arrangement used to obtain the
mode frequencies is shown in Figure 6. The hammer
(Dytran  Instruments, Inc., 11.466mV/N) was
equipped with a rubber tip is used to knock the vibra-
tion system at different points in order to only and
fully excite the six lowest modals, and the excitation
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Figure 5. Topological schematic drawing of the prototype: (a) schematic drawing of the original compliance distribution; (b) sche-

matic drawing of V)M model.

Figure 6. Test configuration of the mode frequencies.

signals and response information are acquired by the
piezoelectric sensor in the trigger and the triaxial
accelerometer (PCB Piezotronics, Inc., X:990mV/g,
Y:1048 mV/g, Z:1006 mV/g) on the platform. Sensor
data are then transmitted to the computer through
the multi-channel spectrum analyzer (DataPhysics
Instruments GmbH, max 20 kHz, 24 bit, 10 V). Then
the mode frequencies and damping ratios are
obtained by modal analysis. After measurement of

the six lowest mode frequencies in a given pose, the
alignment mechanism transfers to the next given pose
for a new measurement.

The damping ratio of each mode pole is shown in
Table 1, and it’s drawn that the damping ratio of each
pole does not exceed 3% and thus equation (55)
holds. Then mode frequencies measured from the
experiments and those obtained from the FEM and
VIM model are shown in Figure 7(a) to (d). It could
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Damping ratio of each modal pole of the combined system.

Table |I.

2nd 3rd 4th 5th 6th

Ist

Modal order

1.64%

1.86%
1.59%
1.02%
1.60%

1.34%
1.99%
1.72%
1.60%

1.48%

1.16%
1.98%
1.91%
1.67%

1.00%
2.28%
2.67%
2.43%

(0°, 0%, 0%)

1.63%
1.26%
1.94%

1.72%

2.47%

(0°, 4.5°, 0°)

(7.7°, -2°, 0°)

(97, 0% 07)

1.86%
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the RPY coordinates of the platform are (0°, 4.5, 0°); (c) the results when the RPY coordinates of the platform are (7.7°, —2°, 0°);

Figure 7. Mode frequencies results of the prototype: (a) the results when the platform is at the original position; (b) the results when
(d) the results when the RPY coordinates of the platform are (97, 0%, 07).

method based on subspace analysis, which allows

be drawn that the distribution of mode frequencies
derived from the VIM model is basically consistent

the models of analytical form and high computational

efficiency.

From the perspective of subspace, the

with that from FEM, and the relative errors do not

exceed 1.5%.

of passive joints on the local stiff-

L)

“shielding effect

Considering that direct comparison

ness was revealed and the concept of EST was
brought forward. Then the orthogonal projector
was introduced to obtain the EST, which allows the

formulas of analytical form and provides an open

results between the VIM model and experiments do
not exceed 7%, therefore, obtained VIM model can
be considered valid and be applied for the subsequent

optimization design of configuration parameters.

framework that is compatible with more numbers of

convenient algebraic tools. Meanwhile, the dimen-
sions of the matrix inversions are always limited to

Conclusion

no more than 6 and the more the number of passive
DOF, the less of the dimension of the matrix to be

Oriented towards parameter optimization of parallel

manipulators, the paper introduced a virtual joint
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inversed, which is less than 6 + x and thus leads to
higher computation efficiency. Based on the general
formulas of VIM, the method was also generalized to
the case of parallel mechanisms under preloads while
retaining the analytical form. Proposed method was
applied to the prototype of the alignment mechanism
in China’s large space telescope and results of dynam-
ic experiments showed that maximum relative errors
between the first six order mode frequencies derived
from obtained VIM model and those obtained from
experiments was less than 7%, illustrating the validity
of obtained model. The proposed method of projec-
tion is effective to model the stiffness of parallel
manipulators with perfect passive joints and we are
intending to model the stiffness of parallel manipula-
tors with imperfect passive joints next.
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Appendix
Table 2. Total inertia matrix of simulated payload and platform.
Elements of the inertia matrix Units
33.23 0 0 0 —1.38 —0.01
0 33.23 0 1.38 0 0.02 ®
0 0 33.23 0.01 —-0.02 0 kg kg -m
0 1.38 0.0l 0.32 0 0 kg - m kg - m?

—1.38 0 —-0.02 0 0.32 0

—-0.01 0.02 0 0 0 0.51

@.Units of the elements in the corresponding partition of the inertia matrix.
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Table 3. Virtual elastic parameters obtained by adopting the FE method.

Component Elastic parameters of virtual joint
1.08 x 10° 4.33 % 10 6.69 x 10* 1.52 % 10* —~7.31 x 10* 8.35 % 10°
4.33 x 10 111 % 10 427 x 10 I.14 x 10° 3.42 x 10* —2.83 x 10°
6.69 x 10° 4.27 x 10 3.39 % 10° 1.81 x 10* 1.6l x 10° —1.45 x 10*
= -
1.52 % 10 1.14 % 10% 1.81 x 10* 5.39 x 107 —2.2 % 10° 3.55 % 10°
~7.31 % 10* 3.42 « 10* 1.61 % 10° —2.2x 108 5.29 % 107 —4.75 % 10%
8.35 x 10° —2.83x10° —1.45 % 10 3.55 x 10° —4.75 x 10° 1.68 x 107
5.37 % 108 —7.8 % 107 —2.49 x 107 7.72 x 107 0. 7.8 x 10°
7.8 x 107 6.99 x 10° 8.71 x 10° —3.39 x 10° 0. ~6.99 x 10°
—~2.49 % 107 8.71 x 10 7.85 % 107 —8.35 x 107 0. 871 x 10*
Becentric dual |
lute joint:
revolute loinks 7.72 % 107 —3.39 x 10® —8.35x 107 2.45 % 108 0. 3.39 x 10°
0. 0. 0. 0. 0. 0.
7.8 % 10° —6.99 x 10® —8.71 x I10* 3.39 x 0% 0. 6.99 x 10*
2.02 x 108 4.88 x 10° 2.85 % 10° 0. —5.11 x 107 3.29 % 107
4.88 x 10° 2.09 x 108 —4.79 x 10* 0. 5.14 % 108 6.83 x 107
2.85 x 10° —4.79 x 10* 3.91 x 10° 0. ~5.75 % 107 —1.6x 10°
ROOs
0. 0. 0. 0. 0.
~5.11 % 107 5.14 x 108 —5.75 % 107 0. 8.55 x 10° 1.68 x 10°
3.29 % 107 6.83 % 107 —1.6 % 10° 0. 1.68 x 108 2.24 % 10°
1.57 = 10° ~1.51 x 10° 2.67 x 107 6.18 x 107 ~1.31 x 108 ~2.86 x 107
—1.51 % 10° 3.55 x 108 —2.8x% 107 5.6 x 10 1.69 x 108 ~2.88 % 10°
2.67 x 107 —2.8x 10 2.83 x 107 7.52 % 107 2.35 % 107 ~9.62 x 10°
Payload Platf O |
6.18 x 107 5.6 x 10° 7.52 % 107 2.25 x 108 8.93 x 107 —~1.32 x 10°
—1.31 % 108 1.69 x 108 2.35 x 107 8.93 x 107 2.09 x 108 —5.73 % 107
~2.86 x 107 —2.88 x 108 —9.62 x 10° —1.32 % 10° —5.73 x 107 48] x 10°

Units of the elements in the corresponding partition of the parameter matrix are respectively.



