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In order to meet the accuracy requirements of target geo-location of a wide-area reconnaissance camera, it is neces-
sary to calibrate the extrinsic parameters of the camera. A novel calibration method is proposed for the orientation
relationship between the camera coordinate system (CCS) and the frame coordinate system (FCS). First, the cali-
bration between the roll axis of the FCS and the CCS is carried out based on the method of the extended Kalman fil-
ter. Second, the calibration between the pitch axis of the FCS and the CCS is deduced based on the least mean square
combined with the particle swarm optimization method. Then, the calibration accuracy of the proposed method
is quantitatively analyzed by numerical simulation. Finally, a calibration experiment is conducted on verifying the
effectiveness of the method. ©2021Optical Society of America
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1. INTRODUCTION

Airborne wide-area reconnaissance cameras are widely used
in remote sensing and telemetry area due to their long oper-
ating distance and high imaging resolution [1]. With the
improvement of customer’s requirements, high-precision target
geo-location has become an indispensable function of airborne
cameras [2,3]. Many references have verified that the orien-
tation error among the camera coordinate system (CCS), the
frame coordinate system (FCS) and the position and orienta-
tion system (POS) coordinate system (PCS) is one of the main
causes of target geo-location error [3–5]. Thus, after the optical-
mechanical adjustment of an airborne camera, the calibration of
the orientation relationship between the CCS, the FCS, and the
PCS is required to achieve high-precision target geo-location.

Many researchers applied the calibration methods on visual
inertial navigation or measurement systems, which can be
classified as direct calibration methods and indirect calibration
methods [6]. Azuma et al. [7] and Bajura et al. [8] proposed a
direct calibration method based on geometric constraints and
bore-sight technology for augmented reality systems. However,
the application of the direct calibration method is limited due
to the device design. Thus, the indirect methods are widely
applied on the calibration of the orientation relationship in
engineer practice. The indirect methods are mainly based on
the camera pinhole imaging principle [9] and the mathematical
model of inertial device measurement [10,11], by which the
observation equations are established and solved. You et al. [12]

adopted an inertial sensor to measure the angular velocity in
the inertial measurement unit (IMU) coordinate system, and a
camera to obtain the moving speed of the object’s feature points
on the image plane. Then the conversion relationship between
the related coordinate systems could be obtained based on the
above two velocities. Lobo and Dias [13,14] jointly proposed
a calibration method in which the vertical direction is taken as
the reference direction. The IMU was used to measure the accel-
eration of a force-balanced carrier. On the one hand, when the
acceleration value measured by the IMU is equal to the gravity
acceleration in a certain direction, the direction is considered as
the vertical direction. On the other hand, the vertical direction
was obtained by observing the vanishing point on a vertical
side. Finally, the conversion relationship between the related
systems is obtained by Horn’s method [15]. Wang et al. [16]
used a total station as a reference and deduced the relationship
between the camera coordinate system and the total station
coordinate system through a homograph. Then, combining
with the measurement results of the IMU, the conversion rela-
tionship between the camera coordinate system and the IMU
coordinate system could be obtained. Hol et al. [17] adopted
extended Kalman filter (EKF) algorithm to estimate the extrin-
sic parameters of a camera and an IMU. The equations of the
method were established based on the geometrical constraints in
the object space and the regular movement of the platform. Its
experiments indicated that the proposed algorithm is efficient.
Ouyang et al. [18] used a similar approach to [17], the difference
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of [18] is the corner detection on the geometrical constraints,
in which linear constraint refinement and IMU-aided checker-
board corner modification were introduced to improve the
calibration accuracy. Xu et al. [19] proposed a method which
is based on the least mean square (LMS) algorithm to calibrate
the orientation and translation relationship of an inertial and
visual sensor. The method is simple and easy to be implemented,
but the calibration accuracy is slightly low limited by the LMS.
Gaurav et al. [20] adopted the Levenberg Marquardt algorithm
to calibrate the extrinsic parameters between a 3D laser scanner
and an omnidirectional camera. The calibration procedure
required a planar checkerboard to be observed simultaneously
by the laser scanner and the camera system from three views.
The normal of the planar surface and 3D points lying on one
surface provide constraints to form a non-linear optimization
problem. Similarly, Aliakbarpour et al. [21] used an IMU to
measure a freely moving bright spot instead of a checkerboard
to decrease the number of points needed to a robust calibration.
Fang et al. [22] and Dong et al. [23] established the observation
equations based on the measurement on a checkerboard by a
laser range finder and a camera. In particular, the checkerboard
in [23] is V-shaped and it can improve the calibration accuracy.
Yin et al. [24] adopted the Levenberg Marquardt algorithm
to calibrate the extrinsic parameters of a multi-camera system
of which the difficulty is that there is non-overlapping of the
field of view (FOV). Both Deng et al. [25] and Arbabmir et al.
[6] used the particle swarm optimization (PSO) algorithm to
calibrate the extrinsic parameters of a visual-inertial navigation
system. The novelty of [6] is that the PSO algorithm is com-
bined with the genetic algorithm (GA) to prevent the iteration
from premature convergence to local solution.

It can be found that the indirect calibration methods are
mainly applied on current state-of-the-arts. They establish a
unique calibration method according to the own characteris-
tics of their research objects and adopt mature algorithms or
improved algorithms to complete the calibration. However,
it is not difficult to find that the mass and the volume of the
research objects is relatively small, the focal length of the cam-
era is short, and the FOV is large, which can make the device
move according to a certain law to observe the indoor target,
i.e., checkerboard, easily. The research object of this paper is a
certain type of airborne camera with large volume, long focal
length, and small FOV, which induce difficulties to calibrate its
extrinsic parameters according to the methods in the current
arts. In addition, the calibrated objects of current state-of-
the-arts, such as an IMU and a camera, are rigidly connected
together and installed on the motion platform or frame simul-
taneously. They can measure under the same motion, which
could make full use of the complementary nature of each other
device to improve the calibration accuracy as mentioned in [18].
In contrast to our research object, the IMU of the POS and the
optical camera are installed in the fixed and rotating parts of the
frame structure, respectively. Thus, the extrinsic parameters
of the POS and frame, camera and frame need to be calibrated
separately.

In this work, we propose a novel two-step calibration method
for the extrinsic parameters between a camera and its frame of
an airborne camera. The method can well adapt to the charac-
teristics of this camera to complete its calibration. The actual

operation is simple and feasible. Meanwhile, we have improved
the matured algorithm used in each step to reduce the actual
workload and improve the calibration accuracy. Specifically, our
innovations of this paper are as follows:

(a) A novel two-step calibration method is proposed to cal-
ibrate the extrinsic parameters between the FCS and the
CCS of an airborne camera. In the method, the camera is
rotated around its roll axis and pitch axis respectively to
image a star point passing through a collimator. The cali-
bration parameters are obtained by analyzing the relation
between the trajectory of the image point and the corre-
sponding position of each axis. The mathematical model of
the calibration method is established.

(b) In the first step of the calibration, the EKF algorithm used
in this paper differs from the traditional in that during
the iteration process, when the states indicate that it has
rotated one circle around the roll axis, the measure points
in the original circle will be reused to complete the entire
iteration. That is, the real experiment only needs to measure
about 60 points in a circle, which remarkably reduces the
workload.

(c) In the second step of the calibration, a two-step optimiza-
tion algorithm, i.e., LMS-PSO, is proposed, which could
reduce the error caused by linearization and ensure that the
global optimal solution can be obtained. First, an approxi-
mate estimate of the optimal solution is obtained by the
LMS algorithm. Second, the initial population of the PSO
algorithm is generated based on this approximation, which
can obtain more accurate result. In addition, a mutation
link is introduced into the iteration of PSO, which can
ensure the optimization result will not deviate too much
from the approximation to guarantee the correctness.

Considering the conflicts of interest issues, only the calibra-
tion method of the CCS and the FCS will be included in this
paper. However, the calibration work of the PCS and the FCS
could be carried out separately which would not have an impact
on the completeness of this article. For the above content, the
remaining full text is arranged as follows: the calibration method
is introduced in Section 2; the numerical simulation is presented
in Section 3 while the experiment is depicted in Section 4;
finally, the conclusion of this paper is given in Section 5.

2. CALIBRATION METHOD

A. Problem Statement

As a general kind of aerial photograph equipment, the airborne
wide-area reconnaissance camera can achieve high-precision tar-
get geo-location. As shown in Fig. 1, the camera studied in this
paper is mainly composed of a frame system, an optical imaging
system, and a servo control system:

(a) The frame system consists of fixed and rotating structural
parts, in which the base is fixed and the roll and pitch rotary
shaft systems are rotating. In the next content, the roll
rotary shaft system is equivalent to the roll axis, while the
pitch rotary shaft system is equivalent to the pitch axis. In
working condition, the camera rotates around its roll axis
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to increase the accommodation width in the vertical direc-
tion of flight. In the same way, the camera rotates around its
pitch axis to increase the accommodation width in the flight
direction. The FCS is set on the two rotary shaft systems of
the frame system. Specifically, it is denoted as o F xF y F zF

with its original point located at the intersection of the roll
axis and the pitch axis. The X axis lies along the roll axis and
points to the head of the base. The Y axis lies along the pitch
axis and points to the right (looking from the rear to the
head). The Z axis form an orthogonal right-handed (RH)
set. This coordinate system rotates with the roll/pitch axis.

(b) The optical imaging system consists of an optical lens and
a detector. The CCS is set on the optical imaging system.
Specifically, it is denoted as oC xC yC zC with its original
point located at the optical principalpoint of the camera.
The X axis lies along the line-of-sight (LOS) and points to
the head of the base. The Y axis, which is perpendicular to
its X axis, lies along the pitch axis and points to the right in
the ideal case. The Z axis completes the RH orthogonal set.
This coordinate system rotates with the roll/pitch axis.

(c) The POS system belongs to the servo control system, which
is composed of a global position system (GPS) antenna
located at an open space on the aircraft, and an IMU device
installed at the rear of the frame base. The PCS is set on the
POS system and denoted as o P x P y P zP . In the ideal case
the match between the positioning surfaces of the POS
system and the corresponding positioning surfaces of the
frame base is perfect and the two rotary shaft systems are
at zero position. The X axis of the PCS lies along the roll
axis and points to the head of the base. The Y axis lies along
the pitch axis and points to the right (looking from the rear
to the head). The Z axis form an orthogonal RH set. This
coordinate system does not rotate with the roll/pitch axis.

Ideally, the CCS (oC xC yC zC ) and PCS (o P x P y P zP ) are con-
sistent with the frame coordinate system. However, due to
manufacture errors of optical and mechanical parts and assem-
bly errors of each group, the angle and position error between
the three coordinate systems is inevitable. As a result, the calibra-
tion of extrinsic parameters among the CCS, FCS, and PCS is
necessary for improving the target location accuracy. It should
be noted that the positional relationship of the three coordinate
systems has little influence on target geo-location accuracy
and could be ignored [26,27]; therefore, the relationship is not
within the scope of this paper.

Specifically, the angle errors between the FCS and the CCS
areαF C , βF C , and θF C , as shown in Fig. 2. In terms of the above
angle errors, a two-step calibration method is described in this
paper. In the first step, the relationship between the roll axis of
the FCS and the CCS is calibrated (αF C , βF C ). In the second
step, the relationship between the pitch axis of the FCS and the
CCS is calibrated (θF C ).

B. Calibration of the Roll Axis of the FCS and the
CCS

According to the mechanical structure of the airborne cam-
era, the pitch axis of the FCS is mounted on the roll axis of the
FCS. It must be expressed by an Euler angle with the roll axis
and an Euler angle with the pitch axis subsequently when the

Fig. 1. System model of this paper.

Fig. 2. Angle errors between the FCS and CCS.

Fig. 3. Calibration principle of the roll axis and CCS.

airborne camera rolls around with its two axes. Based on this,
the whole calibration work can be divided into two steps and
the relationship between the roll axis of the FCS and the CCS is
first calibrated here. Because the pitch axis of the FCS will not
be used in the first step, the scan head should be removed at the
beginning of this step. Then the optical system is rotated around
the roll axis of the FCS to image a star point passing through
a collimator at different roll angles. The constraint equations
can be established considering the relationship among the roll
angles, the image point coordinates, and the parameters to be
calibrated. The specific calibration principle is shown in Fig. 3.

In Fig. 3, oC xC yC zC is the coordinate of the airborne camera,
o F xF y F zF is the coordinate of the frame, which is consistent
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with the relationship depicted in Fig. 1. (αF C , βF C ) are the
Euler angles of the roll axis vector of the FCS in the CCS. The
rotation sequence of the roll axis in the CCS is the CCS rotates
around oC zC with the angle of αF C first, and then rotates
around oC yC with the angle of βF C . In this way, the oC xC will
coincide with the o F xF . These two angles are the calibration
parameters of this step, which should be calibrated together
to determine the roll axis vector in the CCS. In the same way,
(α0, β0) are the two Euler angles of the target ray vector in the
CCS. During this calibration step, the CCS rotates around
o F xF and images a star point passing through a collimator
at different angles. The non-linear constraint equations can
be established through studying the relationship among the
roll angles, the image point coordinates, and the parameters
(αF C , βF C ), (α0, β0). According to the pinhole camera model,
we have

PC =

∣∣∣∣∣∣
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∣∣∣∣∣∣= Lz(−α0)Ly(−β0)

∣∣∣∣∣∣
1
0
0

∣∣∣∣∣∣ , (1)

pC =

∣∣∣∣ pC
y

pC
z

∣∣∣∣= ∣∣∣∣ 0
0
− f /P C

x
0

0
− f /P C

x

∣∣∣∣
∣∣∣∣∣∣

P C
x

P C
y

P C
z

∣∣∣∣∣∣ , (2)

where Ly(β)=

∣∣∣∣∣∣
cos β 0 − sin β

0 1 0
sin β 0 cos β

∣∣∣∣∣∣, Lz(α)=∣∣∣∣∣∣
cos α sin α 0
− sin α cos α 0

0 0 1

∣∣∣∣∣∣ are the rotation matrices; PC is the tar-

get ray vector in the CCS; f is the focal length of the optical
system; and pC is the coordinate of the image point in the CCS.
The focal length and the principal point coordinate could be
obtained through Zhang’s [28] or Yuan’s [29] method.

While the CCS is fixed, the rotation angle −θ of the optical
system around the roll axis is equivalent with the rotation angle θ
of the target ray. Then the target ray vector in the CCS could be
expressed as

PC (θ)=R(θ)PC , (3)

where R(θ)= I + (sin θ)K+ (1− cos θ)K2 is the Rodrigues’
rotation formula. K is the skew-symmetric matrix which is
defined as

K= [k×]=

∣∣∣∣∣∣
0 −kz ky

kz 0 −kx

−ky kx 0

∣∣∣∣∣∣ , (4)

where k= (kx , ky , kz)
T is the roll axis vector calculated by

k=
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Therefore, the target ray vector after rotation θ can be
rewritten as



P C
x (θ) = cos α0 cos β0[1− (1− cos θ)(sin α2

F C cos β2
F C

+ sin β2
F C )] + sin α0 cos β0[sin βF C sin θ

+ (1− cos θ) cos αF C sin αF C cos β2
F C ]

− sin β0[sin αF C cos βF C sin θ
− (1− cos θ) cos αF C cos βF C sin βF C ]

P C
y (θ) = cos α0 cos β0[− sin βF C sin θ

+ (1− cos θ) cos αF C sin αF C cos β2
F C ]

+ sin α0 cos β0[1− (1− cos θ)
× (cos α2

F C cos β2
F C + sin β2

F C )]

+ sin β0[cos αF C cos βF C sin θ
+ (1− cos θ) sin αF C cos βF C sin βF C ]

P C
z (θ) =− cos α0 cos β0[sin αF C cos βF C sin θ

+ (1− cos θ) cos αF C cos βF C sin βF C ]

+ sin α0 cos β0[cos αF C cos βF C sin θ
− (1− cos θ) sin αF C cos βF C sin βF C ]

− sin β0[1− (1− cos θ) cos β2
F C ]

.

(6)
Then the observation equations can be deduced by substituting
Eq. (6) into Eq. (2):{

pC
y = f1(α0, β0, αF C , βF C , θ)

pC
z = f2(α0, β0, αF C , βF C , θ)

, (7)

where θ is the dynamic variable, and (α0, β0, αF C , βF C ) is the
variable vector to be solved. These non-linear equations will be
solved through EKF in this paper in Section 3.

C. Calibration of the Pitch Axis of the FCS and the
CCS

After calibrating the Euler angles (αF C , βF C ) of the roll axis,
there is one Euler angle θF C of rotation around o F xF left to
set up the relationship between the FCS and the CCS. It needs
to be explained here that although (αF C , βF C ) are both quite
minimal where o F xF almost coincides with oC xC . Therefore,
the Euler angle of rotation around o F xF is approximately equal
to the angle of rotation around oC xC regardless of its value.

The calibration principle of the Euler angle θF C in this paper
is shown in Fig. 4. As can be seen from Fig. 4, the actual FCS is
obtained by rotating the CCS around its X axis with the angle
θF C . By rotating the scanning mirror around the pitch axis,
the star point coming from a collimator can be observed. Then
the θF C can be obtained through studying the trajectory of the
above image points. According to Fig. 3, the optical system
rotates a certain angle around the roll axis to image the target
point, and its mathematical model can be expressed as follows:

p′C =

∣∣∣∣∣∣
0
p ′C y
p ′C z

∣∣∣∣∣∣= T

L−1
x (θF C )MLx(θF C )Lx(δ)

∣∣∣∣∣∣
x0

y0

H

∣∣∣∣∣∣+
∣∣∣∣∣∣

L1

0
0

∣∣∣∣∣∣


+

∣∣∣∣∣∣
f
0
0

∣∣∣∣∣∣ ,
(8)

where (x0, y0, H)T is the object coordinate in an ideal FCS
when the roll angle equals to zero; the rotation matrix of x axis
Lx(·) can be expressed as
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Lx(·)=

∣∣∣∣∣∣
1 0 0
0 cos(·) sin(·)
0 − sin(·) cos(·)

∣∣∣∣∣∣ , (9)

where δ is the roll angle of the optical system; θF C is the Euler
angle to be calibrated; M can be expressed as [30,31]

M= I− 2NNT, (10)

where N= (cosγ, 0,− sin γ )T ; γ is the angle between the nor-
mal of the scanning mirror and the optical axis; and I is the iden-
tity matrix, then T can be expressed as

T=
f

f + x0 cos 2γ − sin 2γ [H cos(δ + θF C )− y0 sin(δ + θF C )] − L1
I,

(11)
where L1 is the distance between the intersection of the scan-
ning mirror and the optical axis and the principal point. Then,
by substituting Eqs. (9)–(11) into Eq. (8), p′C can be obtained:

p′C =

∣∣∣∣∣∣
0
p ′C y
p ′C z

∣∣∣∣∣∣= f
f + x0 cos 2γ − H1 sin 2γ − L1

Lx(−θF C )

×

∣∣∣∣∣∣
0
B
x0 sin 2γ + H1 cos 2γ

∣∣∣∣∣∣ ,
(12)

where H1 and B can be denoted respectively as

H1 = H cos(δ + θF C )− y0 sin(δ + θF C ), (13)

B = y0 cos(δ + θF C )+ H sin(δ + θF C ). (14)

An auxiliary camera coordinate system (ACCS) can be intro-
duced. The ACCS can be transformed by rotating the CCS
around its X axis with θF C and denoted as o ′C x ′C y ′C z′C . Then p′C
of Eq. (12) can be expressed in the ACCS as

p′′C =

∣∣∣∣∣∣
0
p ′′C y
p ′′C z

∣∣∣∣∣∣= f
f + x0 cos 2γ − H1 sin 2γ − L1

×

∣∣∣∣∣∣
0
B
x0 sin 2γ + H1 cos 2γ

∣∣∣∣∣∣ . (15)

Through rigidly deriving, the coordinate value (p ′′C y , p ′′C z) satis-
fies the condition[

p ′′C y +
f B( f−L1)

H2
1+x2

0−( f−L1)
2

]2

f 2 B2(H2
1+x2
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−
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2

f 2(H2
1+x2

0 )
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0−( f−L1)
2

= 1. (16)

It can be concluded from Eq. (16) that the trajectory of the
image point in the ACCS is a hyperbola, where the symmetry
axis of the hyperbola o ′C y ′C will pass through the two focuses.
And the angle between o ′C y ′C and oC yC is the Euler angle to be
calibrated, i.e., θF C .

Fig. 4. Calibration principle of θF C .

3. NUMERICAL SIMULATION

A. Simulation for the Calibration of the Roll Axis of
the FCS and the CCS

The calibration method of the roll axis of the FCS and
the CCS is simulated based on the EKF in this section.
(α0, β0, αF C , βF C ) is the state variable vector, and the EKF
model can be expressed as{

Sk
= ISk−1

+ sk

pk
C = f(Sk)+mk , (17)

where Sk
= (α0, β0, αF C , βF C )

T is the state variable vector of
step k; I is the identity matrix; sk is the process noise of step k;
pk

C is the measure result of the image point coordinate of step k;
f(·)= ( f1(·), f2(·))

T , where f1(·) and f2(·) are seen in Eq. (7);
and mk is the measurement noise of the step k.

The dynamic variable of the above EKF model is θ in Eq. (7).
MATLAB is utilized to simulate the calibration method with the
simulation parameters shown in Table 1.

According to the parameters in Table 1, the numerical simu-
lation is carried out by using the EKF method. The convergence
process of the state variables and observation image points are
shown in Fig. 5.

As can be seen from Fig. 5, when the number of iteration steps
exceeds 1044, each error of the state variables is ≤0.00028◦.
It should be emphasized here that the measure points in one
circle will be reused when the iteration step is greater than
60, to ensure the convergence accuracy and reduce the actual
workload. In order to fully illustrate the convergence situation

Table 1. Simulation Parameters of Calibrating the
Roll Axis of the FCS and CCS

Parameters Value

Camera Size of pixel (m) 7.4× 10−6

parameters Focal length (m) 1.85
True value State variable (◦) (0.022, 0.031, 0.013, 0.015)T

Initial value State variable (◦) (0.056, 0.056, 0.056, 0.056)T

Noise Noise of process (“·”) diag(100, 100, 100, 100)
Noise of measure (pixel2) diag(1, 1)

Dynamic
variable

Roll angle (◦) (0, 6, 12, ... , 354)T
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Fig. 5. Simulation results: (a) the convergence process of state variables; (b) the convergence process with maximum state variables error
≤0.00028◦; (c) the measured image points of simulation.

and eliminate accidental factors, the above simulation proc-
ess is repeated 10,000 times in this paper. The iteration step
value is extracted when the maximum error of state variables is
≤0.00028◦ and its frequency distribution histogram is depicted
in Fig. 6.

As can be seen from Fig. 6, the probability density distribu-
tion is a bi-modal function distribution, where the peak interval
is either at [945, 950] or [990, 995] and the entire distribution
interval is [890, 1133]. In order to ensure the actual calibration

Fig. 6. Frequency distribution histogram of iteration step with
0.00028◦ accuracy.

accuracy, the number of iteration steps is required to be above
1133 and 0.00028◦ (3σ ) is treated as the calibration accuracy of
the roll axis under this condition.

B. Simulation for the Calibration of the Pitch Axis of
the FCS and the CCS

The method to solve the Euler angle θF C is simulated in this
section. And the general route of the method is to solve an initial
value through an analytical method first and to refine the cali-
bration parameters through an optimization algorithm second,
which is inspired by [32]. According to the previous description,
the calibration of θF C can be transformed into the calculation of
the coordinates of the hyperbolic focuses. The coordinates of the
two focuses are set as F1(y F 1, zF 1) and F2(y F 2, zF 2) under the
condition of y F 1 > y F 2. Then the hyperbolic equation can be
denoted as√
(y − y F 2)

2
+ (z− zF 2)

2
−

√
(y − y F 1)

2
+ (z− zF 1)

2
= 2a ,
(18)

where (y , z) is the imaging point coordinate of the target and
(y F 1, zF 1, y F 2, zF 2, a) is the vector to be solved. The above
formula is an implicit non-linear observation equation, which
can be linearized through the Taylor expansion:
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Fig. 7. Simulation process of θF C . It should be noted that the matrix
[h i j , e j ] is ill-conditioned. Equation (21) cannot be solved through
the Jacobian iterative method, Gaussian–Seidel iterative method, etc.,
when the LMS is adopted to solve the equations. We would adopt the
upper triangle method to solve these equations in this paper.

E =
√
(y − y F 2)

2
+ (z− zF 2)

2

−

√
(y − y F 1)

2
+ (z− zF 1)

2
− 2a

≈ E 0
+

∂E
∂ y F 1

(y F 1 − y 0
F 1)+

∂E
∂zF1

(zF 1 − z0
F 1)

+
∂E
∂ y F 2

(y F 2 − y 0
F 2)+

∂E
∂zF 2

(zF 2 − z0
F 2)+

∂E
∂a (a − a0)

= E 0
+

∂E
∂ y F 1

1y F 1 +
∂E
∂zF 1

1zF 1

+
∂E
∂ y F 2

1y F 2 +
∂E
∂zF 2

1zF 2 +
∂E
∂a 1a ≈ 0,

(19)
where

E 0
=

√
(y − y 0

F 2)
2
+ (z− z0

F 2)
2

−

√
(y − y 0

F 1)
2
+ (z− z0

F 1)
2
− 2a0, (20)

(y 0
F 1, z0

F 1, y 0
F 2, z0

F 2, a0) is the initial value, and ∂E
∂·

is the func-
tion value of the corresponding partial derivative at the initial
value and observation value. n is set as the total number of the
observation, then it can be deduced:∣∣∣∣∣∣∣

h11 · · · h51
...

...
...

h1n · · · h5n

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
1y F 1

1zF 1

1y F 2

1zF 2

1a

∣∣∣∣∣∣∣∣∣=−
∣∣∣∣∣∣∣
e1
...
en

∣∣∣∣∣∣∣ , (21)

where h1 j is the function value of the partial derivative ∂E
∂ y F 1

at
j th observation value and initial value, and the other h i j denotes
the meaning in the same way and e j is the j th observation error.

In order to reduce the linearization error, a two-step opti-
mization algorithm, i.e., LMS-PSO, is proposed here. First, an
approximate solution of Eq. (18) is obtained through solving
linearized Eq. (21) based on the LMS. It is reasonable to insist
the accurate solution is near this approximation. Second, the ini-
tial population of PSO is generated randomly around the result
of the LMS. In detail, the LMS result is taken as the median of
the initial population and forced as one initial particle, which
could guarantee that the final optimization result must be better
than the LMS result. In addition, a mutation link is introduced
into the optimization process while the difference between
the value of a particle and the median exceeds the threshold.
After the coordinates of the two focuses are calculated, the angle

Table 2. Simulation Parameters of θFC

Parameters Value

True value Coordinate of focus (pixel) (180000,0), (−180000,0)
a (pixel) 3500
θF C (◦) 0.008

Noise Sampling noise of pixel
(pixel)

(0.212,0.229,0.364,0.541)
a

aFrom [33].

Table 3. Calibration Accuracy of Different Sampling
Noise

Sampling noise (pixel) 0.212 0.229 0.364 0.541
RMS of error (◦) 0.0012 0.0014 0.0021 0.0029

Fig. 8. Variation curve of calibration accuracy with different
sampling noise.

between the vector
⇀

F2 F1 and the axis oC yC is taken as the Euler
angle θF C . The whole simulation process is shown in Fig. 7.

According to Fig. 7, the simulation parameters are listed in
Table 2.

The above simulation is repeated 100 times for each sampling
noise value of pixel. The variation curve of simulated calibra-
tion accuracy, i.e., the root mean square (RMS) of error with
sampling noise of pixel, is shown in Table 3 and Fig. 8.

It can be seen from Table 3 and Fig. 8 that the simulated
RMS of error is positively correlated with the sampling noise
of pixel. Accord to [33], the main influence on the sampling
noise of pixel is environment vibration, i.e., the coordinate of
the image point varies with the random environment vibration.
In addition, [33] points out this influence will induce less than
0.5 pixel with single captured image on the vibration isolation
foundation usually. According to the error theory in [34], the
best way to eliminate random errors is to repeat sampling. When
resampling a pixel 25 times, the synthetic sampling noise is
0.229 pixel while the contribution of environment vibration
is 0.1 pixel. And when the times of the resampling increase to
100 times, the noise is 0.212 pixel with 0.05 pixel caused by
vibration. According to the curve shown in Fig. 8, when the
sampling noise is 0.229, the simulated RMS of error is 0.0014◦

while the simulated RMS of error slightly descends to 0.0012◦
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Fig. 9. Fluctuate curve of calibration accuracy with different θF C .

when its sampling noise is 0.212. On the other hand, when
the sampling noise is 0.364 pixel with 0.25 pixel caused by
vibration, i.e., resampling a pixel 4 times, the simulated RMS of
error will ascend to about 0.0021◦ urgently. As a result, the noise
value 0.229 pixel with 0.1 pixel vibration induced component
(i.e., resampling a pixel 25 times) is taken as a balance between
the accuracy and workload.

In addition, in order to show the stability of calibration accu-
racy of different θF C , the calibration accuracy of different values
is also simulated in the interval, i.e., [−0.014◦, 0.014◦] where
θF C may probably exist, and the result is shown in Table 4 and
Fig. 9.

As can be seen from Table 4 and Fig. 9, the range of simu-
lated calibration accuracy is [0.0011◦, 0.0016◦] of which the
mean is 0.0013◦ and the standard deviation is 0.0001◦. It can
be concluded that the calibration accuracy is stable no matter
what the value of θF C is and the calibrated accuracy of this
method is 0.0047◦ (3σ ). The simulation result at typical value,
i.e., θF C = 0.008◦, is shown in Fig. 10.

In Fig. 10, the red dashed line denotes the original hyper-
bola, the red dashed–dotted line denotes the hyperbola after
rotation 0.008◦, the red solid line with black diamond denotes
the sampling pixel data from the red dashed–dotted line, the
black dotted line denotes the simulation result by LMS, while
the black solid line denotes the simulation result by LMS-PSO.
It could be found obviously that the result of LMS-PSO is closer
to the true value compared to the result of LMS.

4. EXPERIMENT AND RESULTS

A. Experiment Setting

In order to verify the validation and actual calibration accuracy
of the proposed method, a real-world experiment is conducted.
Based on the method proposed in this paper, the calibration
work between the FCS and the CCS is divided into two steps.
The specific calibration experiment architectures are shown in

Fig. 10. Simulation result of typical value θF C = 0.008◦.

Table 5. Main Parameters of the Experiment Devices

Device Manufacture Model Main Parameters

Collimator CIOMP 10 m Focal length: 10067 mm
Airborne
camera

CIOMP EO-08 Focal length: 1815 mm

Detector GPIXEL,
China

GMAX0603 Number of active pixels:
7542× 5144

Electric
encoder

Netzer DS-90-64-
35H-S0

Bit: 19

Static error:< 0.01◦

Fig. 11, while the main parameters of the experiment devices are
given in Table 5.

The experiment steps are designed as follows. In the first step,
the relationship between the roll axis and the CCS is calibrated.
First, the scan head of the airborne camera is taken off. Second,
the airborne camera without the scan head is placed in front
of the collimator, as is shown in Fig. 11(a). Third, the relative
position of the camera with the collimator is adjusted. (Both the
camera and the collimator are located on the isolation founda-
tion.) As a result, when the camera rotates around its roll axis
with one circle, the image point which passes the collimator
could be imaged by the camera. Then the encoder reader and
image acquisition computer are connected with the camera
respectively. The encoder output value of the roll axis and the

Table 4. Calibration Accuracy of Different θFC

θF C (◦) −0.0139 −0.0125 −0.0111 −0.0097 −0.0083 −0.0069 −0.0056
RMS of error (◦) 0.0014 0.0014 0.0013 0.0013 0.0013 0.0015 0.0012
θF C (◦) −0.0042 −0.0028 −0.0014 0.0014 0.0028 0.0042 0.0056
RMS of error (◦) 0.0014 0.0012 0.0013 0.0013 0.0013 0.0015 0.0012
θF C (◦) 0.0069 0.0083 0.0097 0.0111 0.0125 0.0139
RMS of error (◦) 0.0013 0.0016 0.0014 0.0011 0.0015 0.0013
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(a) (b)

Fig. 11. Experiment architectures: (a) calibration of the roll axis and CCS; (b) calibration of the pitch axis and CCS.

corresponded star point image are recorded at 60 different roll
angles of one circle which are approximately equidistant inter-
vals. The image is resampled three times at the same roll angle
to obtain the average of the image point coordinate in order
to decline the impact of random error. Finally, the acquisition
data is disposed to calculate the Euler angle (αF C , βF C ). The
above process is repeated 10 times to calculate the calibration
accuracy. In the second step, the relationship between the pitch
axis and the CCS is calibrated. First, the scan head is mounted
back on the camera. Second, the camera is placed in front of the
collimator, as shown in Fig. 11(b). Third, the relative position
of the camera with the collimator is adjusted to image the star
point by the camera when the scan mirror sways around its pitch
axis. Then the encoder reader and image acquisition computer
are connected with the camera respectively. The encoder output
value of the pitch axis and the corresponded star point image
are recorded at 40 different positions which evenly divide the
longitudinal direction (i.e., 7542 pixels) of the detector. The
image is resampled 25 times at the same pitch angle to obtain the
average of the image point coordinate. Finally, the acquisition
data is disposed to calculate the Euler angle θF C . The above
process is repeated 10 times to calculate the calibration accuracy.

B. Experiment Result and Discussion

The calibration experiment of the roll axis and the pitch axis
is conducted 10 times respectively. During the experiment,
the acquired star image is shown in Fig. 12. The image point
coordinates on each image are extracted based on the pixel
interpolation subdivision technology [35]. In detail, it takes
advantage of the biorthogonal adaptive wavelet algorithm to
determine an image gray threshold first which can distinguish
the point target from the background accurately. Then the
image coordinates are calculated by solving the centroid of
the weighted point target. The calibration results are listed in
Table 6. As can be seen from Table 6, the calibration uncertainty
of the angle coordinate (αF C , βF C ) is (0.0025◦,0.0015◦), and
the calibration uncertainty of the angle coordinate (α0, β0) is
(0.0014◦,0.0017◦), which are obviously greater than the sim-
ulation results. While the calibration uncertainty of the Euler
angle θF C is 0.0037◦, which is relatively consistent with the
simulation results.

Fig. 12. Star image of the calibration experiment.

Table 6. Calibration Results of Experiment

Parameter
No. α0 (◦) β0 (◦) αF C (◦) βF C (◦) θF C (◦)

1 0.0946 0.0720 0.0147 0.0104 0.0047
2 0.0948 0.0725 0.0155 0.0108 0.0015
3 0.0954 0.0719 0.0165 0.0109 0.0041
4 0.0953 0.0720 0.0162 0.0111 0.0062
5 0.0946 0.0723 0.0164 0.0101 0.0040
6 0.0948 0.0732 0.0152 0.0098 0.0055
7 0.0946 0.0721 0.0147 0.0098 0.0042
8 0.0950 0.0730 0.0149 0.0109 0.0048
9 0.0957 0.0723 0.0151 0.0105 0.0039
10 0.0957 0.0733 0.0167 0.0107 0.0040
Error (3σ ) 0.0013 0.0016 0.0024 0.0014 0.0037

Fig. 13. Different ground targets of the flight experiment.



1396 Vol. 60, No. 5 / 10 February 2021 / Applied Optics Research Article

Table 7. Geo-Location Error of Flight Experiment

Target Geographic Geo-Location Error (m) Target Geographic Geo-Location Error (m)
No. Position

a
Uncalibrated Calibrated No. Position

a
Uncalibrated Calibrated

1 (34◦25′42.4′′N,
113◦0′54.2′′E)

430.8 142.6 21 (34◦21′19.6′′N,
113◦6′30.5′′E)

383.0 47

2 (34◦25′42.4′′N,
113◦1′53.1′′E)

245.1 49.4 22 (34◦22′01.6′′N,
113◦6′30.5′′E)

483.7 62.1

3 (34◦25′42.4′′N,
113◦2′52.0′′E)

351.9 63.7 23 (34◦22′43.7′′N,
113◦6′30.5′′E)

229.6 101.7

4 (34◦25′42.4′′N,
113◦3′51.0′′E)

368.6 39.1 24 (34◦23′25.7′′N,
113◦6′30.5′′E)

251.6 26.4

5 (34◦25′42.4′′N,
113◦4′49.9′′E)

253.3 52.1 25 (34◦24′07.7′′N,
113◦6′30.5′′E)

334.8 100.8

6 (34◦25′42.4′′N,
113◦5′48.8′′E)

395.2 36.8 26 (34◦24′49.8′′N,
113◦6′30.5′′E)

249.8 50.6

7 (34◦25′42.4′′N,
113◦6′47.7′′E)

149.7 57.4 27 (34◦25′31.8′′N,
113◦6′30.5′′E)

213.2 80.3

8 (34◦25′42.4′′N,
113◦7′46.7′′E)

361.6 61.2 28 (34◦26′13.8′′N,
113◦6′30.5′′E)

514.2 116.1

9 (34◦25′42.4′′N,
113◦8′45.6′′E)

647.1 125.9 29 (34◦26′55.9′′N,
113◦6′30.5′′E)

523.4 136.8

10 (34◦25′42.4′′N,
113◦9′44.5′′E)

472.3 51.8 30 (34◦27′37.9′′N,
113◦6′30.5′′E)

321.5 66.7

11 (34◦24′58.0′′N,
113◦0′54.2′′E)

373.7 79.4 31 (34◦01′19.4′′N,
113◦7′23.5′′E)

435.4 86.5

12 (34◦24′58.0′′N,
113◦1′53.0′′E)

306.6 55.4 32 (34◦02′01.4′′N,
113◦7′23.5′′E)

167.9 40.3

13 (34◦24′58.0′′N,
113◦2′51.8′′E)

399.5 85.3 33 (34◦02′43.4′′N,
113◦7′23.5′′E)

179.1 53.7

14 (34◦24′58.0′′N,
113◦3′50.6′′E)

280.4 94.8 34 (34◦03′25.4′′N,
113◦7′23.5′′E)

513.6 43.2

15 (34◦24′58.0′′N,
113◦4′49.4′′E)

156.4 116.8 35 (34◦04′07.4′′N,
113◦7′23.5′′E)

259.9 61.9

16 (34◦24′58.0′′N,
113◦5′48.1′′E)

561.8 127.8 36 (34◦04′49.5′′N,
113◦7′23.5′′E)

539.3 131.6

17 (34◦24′58.0′′N,
113◦6′46.9′′E)

409.4 58.4 37 (34◦05′31.5′′N,
113◦7′23.5′′E)

370.1 98.3

18 (34◦24′58.0′′N,
113◦7′45.7′′E)

398.4 132.7 38 (34◦06′13.5′′N,
113◦7′23.5′′E)

291.1 72.7

19 (34◦24′58.0′′N,
113◦8′44.5′′E)

312.1 99.2 39 (34◦06′55.5′′N,
113◦7′23.5′′E)

301.9 27.5

20 (34◦24′58.0′′N,
113◦9′43.3′′E)

370.5 78.2 40 (34◦07′37.5′′N,
113◦7′23.5′′E)

343.2 59.9

Uncalibrated RMS of Geo-location error (m) 372.6 Calibrated RMS of Geo-location error (m) 83.3
aAltitude of the ground targets: 2002 m.

After the ground calibration experiment, an actual flight
experiment is also conducted to fully illustrate the effect on the
improvement of the target geo-location accuracy. The camera is
mounted on a certain type of aircraft to image the 40 targets laid
on the ground. The ground targets are shown in Fig. 13. First,
the geographic positions of these ground targets are measured
through a GPS device and treated as the true values. Second, the
geographic positions of the targets are directly calculated based
on the image and its remark information by Qiao’s method [3].
Then, the calibrated parameters in this paper are introduced
into the solving process of Qiao’s method [3] to calculate the
geographic positions of the targets. The two calculation values

are compared with the true values and the statistical error result
is shown in Table 7.

It can be seen from Table 7 that the target geo-location
accuracy of the airborne camera without extrinsic parameters
calibration is 372.6 m while the target geo-location accuracy
with extrinsic parameters calibration is 83.3 m. It can be con-
cluded that the method in this paper is effective and feasible, and
the final target geo-location accuracy can meet the customer’s
requirements. In addition, in order to further illustrate the supe-
riority of our improved algorithms, a comparative experiment
with the matured algorithms, i.e., LMS and PSO-GA, in current
state-of-the-arts has been conducted. Specifically, the original
experimental data of the extrinsic parameters calibration are
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Table 8. Geo-Location Error Compared with
State-of-the-Art

Algorithm
Geo-Location

Error (m)
Comparative
Result (m)

LMS 137.1 −53.8
PSO-GA 109.2 −25.9
Improve algorithm of this paper 83.3 –

used to calibrate the extrinsic parameters again by the LMS and
PSO-GA, respectively. Then the calibrated results combined
with the flight experiment images are used to calculate the geo-
graphic positions of the ground targets through Qiao’s method
[3]. The target geo-location accuracy is shown in Table 8.

It can be seen from Table 8 that the target geo-location accu-
racy with our improved algorithms is 53.8 m higher than the
accuracy with the LMS, while the target geo-location accuracy
with our improved algorithms is 25.9 m higher than the accu-
racy with the PSO-GA. Therefore, in view of this problem, it can
be concluded that the improved algorithms in this paper have
advantages over the matured algorithms LMS and PSO-GA,
under the same condition.

In view of the calibration problem in this paper and the above
experiment results, the existing problems and the prospect of
future work are discussed as follows:

1. There are differences between the experiment results and
simulation results of the roll axis calibration. It may be
explained by the following reasons. When the camera
rotates around its roll shaft system, the roll axis is wobbling
rather than a fixed vector in space. The second possible
reason is that there are various errors in the angle encoder
and its reader which could result in the deviations of the
dynamic variable. Another possible reason is that the
sampling error of image points is large due to the large
foundation vibration during image acquisition.

2. The experiment results of the pitch axis are relatively con-
sistent with the simulation results. Although the pitch shaft
system also has the problem of wobbling, the influence of
shaft wobbling can be almost ignored because the angle
of view of the optical system is small and it can be covered
when the scanning mirror sways a small angle near 45◦.

3. There is a slight principle error in the calibration of θF C ,
i.e., when θF C is being calibrated; it is considered that the
angle coordinate of the roll axis (αF C , βF C ) is very small
and about equal to 0, so its influence on the calibration can
be ignored on which the subsequent derivation is based.
In addition, the LMS-PSO method used in this paper can
effectively reduce the principle error caused by linearization
of non-linear equations and find a better solution than the
LMS method.

4. From the result of the actual flight experiment, it can be
seen that the target geo-location accuracy has been remark-
ably improved from 372.6 to 83.3 after using the calibrated
parameters in this paper. This might not be only attributed
to the extrinsic parameters calibration, but also the intrinsic
parameters calibration is helpful to increase the accuracy.
However, by comparing with current state-of-the-arts, the
method proposed in this paper does have its advantages.

5. In the future, we can focus on the influence of shaft wob-
bling on the extrinsic parameters of the camera and the
influence of orthogonality between the roll axis and the
pitch axis on the target geo-location accuracy. In addition,
as mentioned above, the calibration method for the pitch
axis can establish more rigorous mathematical model to
eliminate the existing principle errors. We can also verify
the effect of the work of this paper on the improvement
of target geo-location accuracy through the actual flight
experiment.

6. The two-step calibration method is not limited to the
algorithms proposed in this paper. In addition, the method
proposed in this paper can simultaneously calibrate the
intrinsic parameters of the airborne camera.

5. CONCLUSION

This paper proposes a calibration method for the extrinsic
parameters of an airborne camera, i.e., the orientation rela-
tionship between the FCS and the CCS. The calibration
mathematical principle is given, and its numerical simulation is
carried out. Finally, the effectiveness of the proposed method is
verified through a real-world experiment. And the experiment
results show that the calibration accuracy of each Euler angle can
reach 0.0037◦ (3σ ).
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