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Abstract
Asynchronous sampling and the ghost point are significant issues in the track‐to‐track
association (TTTA) for passive multisensor system. A TTTA algorithm is proposed based
on a trajectory parameter to address these issues. According to advantages in which the
trajectory information can represent the target motion state and will not change with the
sampling time, we turn the TTTA problem into the trajectory parameter matching
problem. First, a TTTA model is established by the heading angle and the target velocity.
Then, an estimation of target velocity that is suitable for asynchronous sampling is
modelled using trajectory parameters from different sensors. Furthermore, to avoid the
ghost point in the data association, we use only the bearing measurement of a single
sensor to derive the trajectory parameters. Finally, an assignment method is adopted to
determine the correspondence between different tracks. The simulation results demon-
strate the effectiveness of the proposed method compared with competing algorithms.

1 | Introduction

Track‐to‐track association (TTTA) is a fundamental problem in
the field of passive multisensor networks [1]. It determines
whether two tracks from different sensors correspond to the
same target [2]. It is the prerequisite for target tracking and
location. For the TTTA problem, most previous work employs
position components of local tracks to establish the association
model [3]. However, the passive sensor can provide only
bearing measurements, which are nonlinear functions of the
target position. To acquire the target position and further
determine the correspondence, the two‐step (TS) method is
widely adopted. It first estimates the target position using
fundamental trigonometric identities and defines a cost
function of the estimation and measurement. Then, the
optimal correspondence is determined by a linear assignment
algorithm [4].

In practice, two major problems affect the accuracy of the
traditional TS algorithm in TTTA. The first problem is asyn-
chronous sampling. The commonly suggested assumption in
the TTTA problem is that each sensor works synchronously

and the data are transferred to the fusion centre at the same
time [5]. However, in the real‐world association system, sensors
in the working scenario often have different sampling rates and
sensors have different communication delays. The second
problem is the ghost point, which is defined as incorrect as-
sociation results [6]. This inherent problem is inherent in the
cross‐location principle that is commonly adopted by
numerous data association models. The problem becomes
more serious when the target number increases. In this sense,
these two challenging problems lead to the performance
degradation of traditional TTTA algorithms.

To overcome asynchronous sampling, many methods re‐
arranged bearing measurements based on time alignment
before TTTA [7,8]. To avoid the ghost point, an extra sensor is
used to verify the correctness of the association result [9–11].
However, these approaches require the fusion centre to have a
high sampling frequency and bring extra computation to the
data association [12]. Recently, more attentions has been paid
to bearing‐only target motion analysis (TMA) [13]. This adopts
a filtering method to improve the estimation accuracy of the
target state and suppress the ghost point in the time dimension
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[14]. For example, the pseudo‐linear estimation (PLE) method
[15] converts the nonlinear estimation model to a linear one
through the cross‐location principle and adopts the least‐
squares method to obtain the target state. Another general
TMA uses the maximum‐likelihood (ML) method [16]. In this
technique, no approximation to the original nonlinear equa-
tions is needed as in the derivation of the PLE. Although, these
methods are widely used to solve the TTTA problem, they are
suitable for only a single target and are still challenging with
asynchronous sampling.

We propose a novel TTTA algorithm based on trajectory
parameter to overcome the problems of asynchronous sam-
pling and the ghost point. Based on the advantage that the
trajectory information can represent the motion state of the
target and will not change with the sampling time [17], we turn
the TTTA problem into the trajectory parameter matching
problem. Under the assumption that the targets in the obser-
vation scenario have a constant velocity (CV), the mathematical
model of TTTA is established by the heading angle and target
velocity. Then, we associate the trajectory parameters from
different sensors to estimate the velocity. Furthermore, a
filtering method is provided to obtain the trajectory parameters
by the bearing measurement from a single sensor. Finally,
simulation results demonstrate that the proposed algorithm
can achieve superior performance in terms of the probability
of correct association (PCA).

2 | Problem formulation

In the distributed passive multisensor system, each sensor de-
tects and tracks multiple moving targets and reports the tracks
to the fusion centre independently. Then, the fusion centre
finds the correspondence between different tracks based on the
TTTA algorithm. The cost function of TTTA model is
commonly established by errors between measurements and the
real target position [18]. To solve this TTTA model, previous
work commonly adopted the TS method, which includes target
position estimation and optimal assignment. The accuracy of
target position estimation directly affects the performance of
TTTA. Assume that there are two passive sensors and two
targets in the surveillance region. The location of each sensor
{(xoi,yoi)}(i = 1,2) is assumed to be known exactly. As shown in
Figure 1, the measurement process is implemented in the global
Cartesian coordinate system (GCCS). Let βj,ni denote mea-
surement j from sensor i at sampling time ni. Tj (j = 1,2) denote
the real target. Each sensor i sends the measurements to the
fusion centre. Then, the estimation position (xj,ni

,yj,ni
) of the

target at time ni can be calculated by:

tan βj;ni
¼

xj;ni − xoi

yj;ni
− yoi

ð1Þ

However, Formula (1) is efficient only in the synchronous
sampling system, tn1 = tn2. In practice, the sampling times of
different sensors do not coincide. Figure 2 depicts a situation

in which the sampling time and sampling rate of two sensors
are different. In this case, the target location estimated by
Formula (1) will deviate from the real track.

Besides asynchronous sampling, the problem of ghost
point affects the estimation accuracy. As shown in Figure 1,
β2;n1

and β1;n2
do not correspond to the same target. However,

according to Formula (1), a ghost point will be formed, which
is marked by a triangle in Figure 1. This is the inherent
problem in the cross‐location principle and will be more
serious with an increasing number of targets.

The problems of asynchronous sampling and ghost points
directly affect the estimation accuracy and lead to a dramatic
deterioration of the traditional TTTA algorithm. To overcome
these problems, a TTTA model is established based on the
trajectory parameters here.

3 | Proposed track‐to‐track association
algorithm

The objective of the proposed algorithm is to turn the TTTA
problem into a trajectory parameter matching problem. It is
assumed that the motion of all targets follows the CV model in
the GCCS. In this model, the heading angle and velocity are
reliable trajectory parameters. Thus, a TTTA model is first
established based on these trajectory parameters in this section.
Then, to estimate the heading angle and target velocity, we
propose a data association method and a filtering method,
which are suitable for asynchronous sampling and can effec-
tively avoid the ghost point.

F I GURE 1 The estimation model of target position

F I GURE 2 Example of asynchronous sampling of two sensors
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3.1 | Track‐to‐track association model based
on trajectory parameter

We define the heading angle α as the angle between the y axis
and the target motion direction in the GCCS. According to the
bearing‐only TMA (BO‐TMA) [13], the heading angle of the
target track can be obtained by the bearing measurement of a
single passive sensor. However, target velocity V should be
estimated by data association. We define Vj1ji as the velocity
estimation by track j1 from the fusion centre and track ji from
sensor i. There are s sensors in the surveillance region. Let Ji
denote the number of measurements detected by sensor i.
Given the estimation sets of local trajectory parameters
ℜ1 ¼ fαj1;V j1j2; :::;V j1jsg

J1
j¼1 and ℜi ¼ fαji; V jij1g

Ji
j¼1 (i = 2,...,

s), the objective of TTTA is to determine the correspondence
between these sets. Here, transformation Q is expected to
approximate the relationship between these sets:

Qj1…js

¼

Π
s

i¼1
Pdi

W
∑
W

n¼1

h
μq2j1…js;v

ðtnÞ þ ð1 − μÞq2j1…js;α
ðtnÞ
i
; ∀js ≠ 0

Π
s

i¼1
Pf a
�
Pdi

�
; otherwise

8
>>>>>>><

>>>>>>>:

ð2Þ

where Pdi is the detection probability of sensor i, μ is the
weight factor, W is the association time of the fusion centre,
q2j1…js;v

ðtnÞ and q2j1…js;α
ðtnÞ denote the association costs of the

velocity and the heading angle, respectively, and tn is the
sampling time of the fusion centre, tn = tn1 . Pfa[⋅] denotes the
false alarm rate of the association system, which is related to
the detection probability of each sensor. It can be calculated by:

Pf a½ ⋅ � ¼
�

Pdi ∀ji ≠ 0
1 − Pdi otherwise ð3Þ

According to the matching algorithm, the TTTA problem
based on the trajectory parameter is modelled as:

min
ρj1…js

∑
J1

j1¼0
… ∑

J s

js¼0
Qj1…js

ρj1…js
ð4Þ

subject to the constraints:

∑
J2

j2¼0
… ∑

Js

js¼0
ρj2…js ¼ 1 ∀ j1 ¼ f1; 2;…J1g

M

∑
J1

j1¼0
… ∑

Js−1

js−1¼0
ρj1…js−1

¼ 1;∀js ¼ f1; 2;…J sg

8
>>>>><

>>>>>:

ð5Þ

where ρj1L⋯js denote the corresponding matrix taking the value
in set {0,1}. If ρj1j2 = 1 (j1 = 1,2, … J1, j2 = 1,2, … J2), it
indicates that track j1 from the fusion centre corresponds to
track j2 from sensor 2. When sensors have different surveil-
lance regions or the detection probabilities of sensors are less
than 1, one track from a certain sensor may have no corre-
spondence to the other sensors. Here, we use ‘unpaired’ to
refer to such an isolated track. Dummy parameters fα0;V 00g

are introduced to deal with this case. If ρji = 0, that means
track ji from sensor i may be unpaired.

To solve this optimization model, it is critical to implement
an evaluation of the cost function. Cost function Q is split into
two parts, q2j1…js;v

ðtnÞ and q2j1…js;α
ðtnÞ, which can be computed

respectively. For trajectory parameter sets from different
sensors, the set of fusion centre ℜ1 ¼ fαj1;V j1j2; :::;V j1jsg

J1
j¼1

is regarded as the reference. Other sets of trajectory parameter
are needed to associate with ℜ1. We adopt the sum of the
square errors to establish association costs q2j1…js;v

ðtnÞ and
q2j1…js;α

ðtnÞ, which are defined as:

q2j1…js;v
ðtnÞ

¼

�

∑
s

i¼2

�
V jij1 − V j1ji

�2
þ ∑

s

m¼iþ1

��
V j1ji − V j1jm

�2

þ
�
V j1ji − V jmj1

�2
þ
�
V jij1 − V j1jm

�2
þ
�
V jij1 − V jmj1

�2
��1=2

ð6Þ

q2j1…js;α
ðtnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
s

i¼1
∑
s

m¼iþ1

�
cot αji − cot αjm

�2

s

ð7Þ

Here, the estimation result is related to the order of the
track index. If ℜ1 and ℜi are not from the same target,
V jij1 ≠ V j1ji. Under the assumption of the CV model, the
trajectory parameters of the heading angle and target velocity
will not change with the sampling time, which can be described
as V = V(tn), αji ¼ αðtniÞ.

3.2 | Target velocity estimation

According to the BO‐TMA, the data association is necessary to
estimate the target velocity. As illustrated in Section 2, in the
traditional TTTA model, the performance of the data associa-
tion will be affected by asynchronous sampling and the ghost
point. To overcome these problems, we use the trajectory pa-
rameters from different sensors to estimate the target velocity.

Figure 3 depicts a scenario with two sensors tracking one
target. S1 is the fusion centre, L1,2 represents the distance
between two sensors, and γ1;2 represents the angle between the
line of the double sensors and the north axis. d⊥i is the radial
distance from sensor i to the target track. αi and d⊥i are the
trajectory parameters derived by sensor i. For the same target,
the heading angle is independent of the sensor location. Thus,
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α1 ¼ α2. To estimate the target velocity, we focus on describing
the relationship between two sets of trajectory parameters and
the target velocity. According to the geometric relationship in
Figure 3, the velocity can be estimated by:

V 1;2ðtn1Þ ¼
L1;2 sin

�
γ1;2 − α1ðtn1Þ

�

d⊥1=V ðtn1Þ − d⊥2=V ðtn2Þ
ð8Þ

The advantage of the proposed association method can be
seen from Formula (8) and Figure 3. On the one hand, the
target velocity estimation is modelled based on the geometric
relationship between the target track and the relative location
of two sensors, rather than the cross‐location principle. The
cross of two sensors' line of sight (LOS) is not needed in the
velocity estimation. Therefore, the problem of the ghost point
is directly avoided. On the other hand, α and d⊥=V are the
constant values that represent the target motion in the GCCS.
They will not be affected by sampling time tni. In other words,
although the sampling time of different sensors is asynchro-
nous, tn1 ≠ tn2, the heading angle and velocity estimated from
different sensors are equal, which can be expressed as
αðtn1Þ ¼ αðtn2Þ and V(tn1) = V(tn2).

3.3 | Trajectory parameter filtering method

The proposed TTTA model consists of some trajectory
parameters to be solved. To avoid the ghost point, these
parameter sets should be obtained by each sensor indepen-
dently rather than using the data association method. In this
section, we represent a filtering method that is suitable for the
single sensor observation. An overview of the passive sensor
observing the target continuously in the GCCS is shown in
Figure 4. The relationship between the trajectory parameters
and bearing measurement is modelled by:

cotðα − βnÞ ¼ ðtn − t⊥ÞV=d⊥ ð9Þ

where βn is the bearing measurement observed by the passive
sensor at time tn, which is defined as the angle between the y
axis with LOS; t⊥ denotes the moment when the LOS of
sensor is perpendicular to the target track.

In practice, the measurement is usually corrupted with
noise; that is, βn ¼

�βn þ wn. �βn is the true bearing, wn is the
zero‐mean, white Gaussian with standard deviation (STD) Rn.
It is assumed that the noise measurement is irrelevant to the
sampling time, R¼ Rn. Considering that each measurement
has a different effect to the total noise, the calculation model of
trajectory parameters could be established by the weighted
least square principle. For the sequential associate time, we
have:

f ðα;V=d⊥; t⊥Þ ¼ ∑
W

n¼1
Cn½cotðα − βnÞ − V ðtn − t⊥Þ=d⊥�

2
ð10Þ

where Cn ¼ d⊥sin2ðα − βnÞ=ðRV 2sin2 αÞ is a constant value.
To simplify the operation, we define the pseudo‐variate:

X ¼
�

t⊥ þ
d⊥

V
cot α

d⊥

V
− t⊥ cot α cot α

�T

ð11Þ

When ∂f ðα;V=d⊥;t⊥Þ

∂X ¼ 0, the minimisation solution of
f ðα;V=d⊥; t⊥Þ can be derived. Furthermore, the trajectory
parameters can be obtained. The matrix equation of ∂f

∂X ¼ 0 can
be expressed as:

AnX ¼ Bn ð12Þ

where:

An ¼

2

6
6
4

cos β1 sin β1 t1 sin β1
cos β2 sin β2 t2 sin β2

M M M
cos βW sin βW tW sin βW

3

7
7
5 ð13Þ

Bn ¼ ½ t1 cos β1 t2 cos β2 … tW cos βW �
T

ð14Þ

The noise of coefficient matrix An and data vector Bn is
nonlinear. To obtain the precise solution, the measurement

F I GURE 3 Target velocity estimation

F I GURE 4 Schematic diagram of bearing‐only observation
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noise should be separated. We retain the linear parts and omit
items more than two orders by the Taylor series expansion.
Thus, the solution of Formula (12) is transformed into a
constrained least squares (CTLS) problem:

min
X
kuk2F

s:t: AnX − Bn þ ∑
3

i¼1
gixi − g4

� �

u¼ 0

8
>><

>>:

ð15Þ

where ‖ ∗ ‖2
F is the Frobenius norm:

u¼ ½ ~β1
~β2 … ~βW �

T
ð16Þ

g1 ¼ diagfsin βngW�W ð17Þ

g2 ¼ diagf−cos βngW�W ð18Þ

g3 ¼ diagf − tn sin βngW�W ð19Þ

g4 ¼ diagftn sin βngW�W ð20Þ

Minimising the noise u of the sequential sampling times,
the trajectory parameters can be obtained. Moreover, the
sensors can submit these parameter sets to the fusion centre
for the TTTA.

Combing the matching model and the optimal estimation
of the trajectory parameters, the proposed parametric TTTA
model can be rewritten as:

EðρÞ ¼ min
ρj1…js

∑
J1

j1¼ 0
… ∑

J s

js¼ 0
Qj1…js

ρj1…js þmin
X

∑
s

i¼1
∑
J i

ji¼0

�
�uji

�
�2

F ð21Þ

where uji is the measurement noise of target ji from sensor i.
The proposed model in total consists of two parts. The

first part is used to describe the similarity of the trajectory
parameters between targets obtained by different sensors. The
second part represents the trajectory parameters (velocity and
heading angle) calculated from observation angles with
measurement noise.

4 | Solution to the optimization model

The optimization model of Formula (21) is a mixed‐integer
nonlinear programing problem consisting of an optimal
S‐dimensional (S‐D) assignment problem and a CTLS
problem. The method for solving the S‐D assignment
problem has been deeply investigated using neural networks
[19], genetic algorithms [20], and Lagrangian relaxation
[21]. The method in a previous study [22] is used here to
solve the problem owing to computational efficiency. The
current work focuses on the solution and analysis of
Formula (15).

Formula (15) is a quadratic minimisation problem that is
subject to a quadratic constraint equation. A closed‐form

solution to it may not exist. However, Coello et al. [23]
demonstrated that the CTLS problem can be transformed into
an unconstrained one over variable X . Consequently, the CTLS
solution of Formula (15) can be obtained by minimising:

FðXÞ ¼ uTu

¼

�
X
−1

�T

½An Bn �
T
�
GxGT

x

�−1
½An Bn �

�
X
−1

�

ð22Þ

where Gx ¼∑3
i¼1 giXi − g4. Xi is the ith column vector of X.

Many solution strategies exist to solve this optimization
problem. A basic approach is the Newton method. However,
the second partial derivative of F(X) is difficult to calculate. To
simplify the computation of the second partial derivative of F
(X), we adopt the BFGS (Broyden, Fletcher, Goldfarb and
Shanno (BFGS) method, which is a popular quasi‐Newton
method widely used in many fields [24]. The pseudo‐code of
the BFGS to calculate the trajectory parameter is described in
Table 1. The calculation of first partial derivative ∇FðXÞ is
given in the Appendices.

Unlike the traditional approaches, the proposed TTTA
algorithm does not need the interpolation of sampling time in
advance and the estimation of the target position in data
association. It includes two steps, which is similar to the
framework of the traditional TTTA method. First, according to
the filtering method, each sensor can derive the trajectory
parameters for all of the detected target tracks, which include
α, V=d⊥ and t⊥. Then, the fusion centre associates the
parameter sets submitted from different sensors to estimate
the target and further determine the correspondence of
different tracks. The flowchart of the proposed TTTA algo-
rithm based on trajectory parameter is shown in Figure 5, in
which it is assumed that there are two sensors and two targets
in the scenario. The indexes of sensors are 1 and 2. The targets
are expressed as i and j.

5 | Simulation and analysis

In this section, we design two simulation scenarios to illustrate
the effectiveness of the proposed algorithm.

5.1 | A case of targets moving in constant
velocity model

First, we consider a case of targets moving in CV model. As
shown in Figure 6, there are 10 targets and three sensors in the
simulation scenario. The trajectory parameters of targets are
shown in Table 2. Sensors are located at (−10 km,0 km),
(0 km,0 km) and (10 km,0 km), respectively. The first sensor is
assumed to be the fusion centre. In Figure 6, we have marked
the starts, ends and indexes of the tracks. For each sensor, the
measurement‐to‐track association is assumed known. The
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detection probability is set to Pd1 ¼ Pd2 ¼ Pd3 ¼ 0:8. The STD
of bearing measurement noise is R = 0.1 degrees. In addition,
we assume the STDs of measurement noise of three sensors
are same. The sampling interval is 1 s, and 200 discrete time
instants are used in the simulation.

Pca ¼
1
K

∑
K

i¼1

ni
a

ntotal
ð23Þ

The association performance is evaluated by the PCA [25],
which where K is the number of Monte‐Carlo runs. ntotal is the

number of common targets observed by both three sensors. ni
a

is the number of targets with the correct association at the ith
Monte‐Carlo. Here, the correct association means that three
local tracks come from the same target which is represented by
ρj1j2j3 = 1. Experiment results are an average of 50 times
Monte‐Carlo simulation.

To demonstrate the advantage of the proposed algorithm,
we compared the simulation results between the proposed
algorithm, the classical TS algorithm with time alignment
(TS‐TA) [8], the TS algorithm with confirmation by third
sensors [10], the PLE algorithm [15] and the ML algorithm [16].

The influence of the measurement noise on the perfor-
mance of the proposed algorithm is first tested. To verify the
adaptability of the algorithms to measurement noise, we
appropriately alter the STD of measurement noise and keep
other simulation parameters invariable. The STD of measure-
ment noise R varies from 0.1 to 1 degrees. The association
results are shown in Figure 7.

Figure 7 shows that the performance of the proposed
algorithm remains stable and obviously outperforms other
comparison algorithms. This demonstrates that the proposed
filtering method can suppress the measurement noise

TABLE 1 Pseudo‐code of Broyden,
Fletcher, Goldfarb and Shanno for trajectory
parameter calculation

Define F(X) = uTu and error factor τ. D1, X are initialised to an identity matrix and unit
vector, respectively. Initialise k = 1.

Calculate ∇FðXkÞ and F(Xk), k = k+1

DO WHILE(F(Xk)−F(Xk−1)>τ)

Step 1)Xk = Xk−1−Dk−1gk−1

Step 2) s = −Dk−1gk−1

Step 3) y¼ ∇FðXkÞ − ∇FðXk−1Þ

Step 4) Dk ¼

�

I − sy
ys

�

Dk−1
�

I − yT sT
ys

�

þ ssT
ys

Step 5) k = k+1

REPEAT

F I GURE 5 Flowchart of the proposed algorithm. GCCS, global
Cartesian coordinate system

F I GURE 6 Simulation scenario 1
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effectively. When the measurement noise increases, the prob-
lem of the ghost point will be serious, which directly results in
the decline of the performance of the TS algorithm. Because
the PLE algorithm is a biased estimation, it has a maximum
impact of measurement noise. The ML algorithm adopt the
nonlinear method to solve the estimation problem. Thus, it has
a better performance than PLE.

Second, we test the influence of distance bias δL between
sensors on the performance of the proposed algorithm. It is
assumed that the distance bias satisfies a Gaussian distribution
with zero mean and the distance bias of any two sensors is
same, described as δL¼ δL1;2 ¼ δL1;3 ¼ δL2;3. The STD of
δL varies from −1.5 to 1.5 km. The STD of measurement
noise is kept at R = 0.1∘. The association results are shown in
Figure 8.

Figure 8 shows that because all of the algorithms use the
distance between two sensors, they are all sensitive to the
distance bias. However, the proposed algorithm is better than
other comparisons.

Third, we use the sampling delay to test the influence of
asynchronous sampling on the performance of the proposed
algorithm. Sampling delay δT 1;i is defined as the delay between
the fusion centre (sensor 1) and the other sensor i. It is assumed
that δT ¼ δT 1;2 ¼ δT 1;3. The δT varies from 0 to 50 s. Other
simulation parameters are invariable. The association result is
shown in Figure 9.

Figure 9 shows that the proposed algorithm remains stable
with the increase in the sampling delay. Thus, it demonstrates
that the proposed algorithm is adaptive to the asynchronous
sampling. When sampling delay increases, the performance of
the classical TS algorithm, PLE algorithm and ML algorithm
declines dramatically. However, with the time alignment
method, the TS‐TA algorithm has better performance than the
other comparison algorithms.

Finally, we analyse the influence of association time W,
which is an important parameter in all of the cost functions of
TTTA algorithms. The STD of measurement noise R is set to
0.1 degrees. The distance bias is kept at δL = 0.5 km. It is also

TABLE 2 Trajectory parameters of
targets in scenario 1

Target index Initial state (km) Heading angle (degrees) Velocity (m/s)

1 (−30,60) 116.6 335.4

2 (30,60) −116.6 335.4

3 (−25,40) 116.6 223.6

4 (25,40) −116.6 223.6

5 (−20,45) 45.0 150.0

6 (20,45) −45.0 150.0

7 (−35,35) 51.3 320.2

8 (35,35) −51.3 320.2

9 (−5,20) −20.6 215.4

10 (5,20) 20.6 215.4

F I GURE 7 Performance of algorithms at different measurement
noises for scenario 1. ML, maximum‐likelihood; PLE, pseudo‐linear
estimation; TS‐TA, two‐step time alignment

F I GURE 8 Performance of algorithms at different distance biases for
scenario 1. ML, maximum‐likelihood; PLE, pseudo‐linear estimation; TS‐
TA, two‐step time alignment
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assumed that there is no sampling delay in TTTA. Association
time W varies from 5 to 25 s. The simulation results are shown
in Figure 10.

With the increase in association time, more valid
measurements are available. They help to improve the
performance of all algorithms gradually. For the traditional
TS algorithm, too little time is equivalent to inadequate data,
which fail to reveal the dominant similarity of different
tracks. Because the time alignment is adopted before TTTA,
the TS‐TA has improved the performance of the TS algo-
rithm. The estimation of PLE algorithm is biased. Thus,
when the association time is greater than 10, the PCA
increases slowly. Because the proposed algorithm can obtain
precise trajectory parameters in a short time, it has a higher
PCA than other algorithms.

These simulation results have shown that the proposed
algorithm has a better performance than traditional TTTA
algorisms. Moreover, they demonstrate that the proposed
algorithm can fit the situation of asynchronous sampling and
effectively avoid the ghost point.

In the proposed TTTA model, we assume that targets
satisfy the CV model in the observation scenario. In fact,
the target velocity is changeable. Thus, another simulation
is used to illustrate the adaptation of the proposed algo-
rithm for maneuvering targets. The tracks of all targets are
shown in Figure 11. The initial states and velocities are
same as in scenario 1. The detailed trajectory parameters of
targets are shown in Table 3. The sampling interval is 1 s
and 100 discrete time instants are used in the simulation.
In the first 50 s, targets move with a constant acceleration.
At 50 s, the acceleration directions change abruptly and
remain stable until the end of the simulation. Hence, the
heading angles and velocities change over the sampling
time.

Figures 12–15 illustrate the PCAs of all algorithms via
different measurement noise, distance biases, sampling delays
and association times, respectively. The sets of simulation
parameters and comparison algorithms are same as in scenario 1.

Figure 12 indicates that with small measurement noise, the
competing algorithms achieve well. When the noise is serious,
the association performances given by the comparison
algorithms experience severe degradation. However, with the
increase in the STD of measurement noise, the proposed
algorithm remains stable. Figures 13 and 14 show that the
PCAs of all algorithms are no more than 50%. When the
targets are maneuvered, the proposed algorithm and compar-
ison algorithms are sensitive to the distance bias and sampling
delay. Figures 12 and 14 demonstrate that when target

F I GURE 9 Performance of the algorithms in different sampling delays
for scenario 1. ML, maximum‐likelihood; PLE, pseudo‐linear estimation;
TS‐TA, two‐step time alignment

F I GURE 1 0 Performance of algorithms in different association times
for scenario 1. ML, maximum‐likelihood; PLE, pseudo‐linear estimation;
TS‐TA, two‐step time alignment

F I GURE 1 1 Simulation scenario 2
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maneuver occurs, the performances of the proposed algorithm
with different measurement noise, distance biases and sam-
pling delays are similar to the situation of targets with the CV
model.

Figure 15 shows that with an increase in the association
time, the proposed algorithm becomes more accurate to
determine the correspondence between different targets,
whereas the association results of the comparison algorithms
degenerate rapidly. Figure 15 also shows that when W > 35,
the PCA of the proposed algorithm reduces gradually. This
simulation result demonstrates that the association time has a
significant effect on association results for all of the algorithms
when the target maneuver occurs. This is because the
competing algorithms need to estimate the targets states before
determining the correspondence. Because the association time
is small, although targets are maneuvered, the states will not
obviously change. Thus, the target states can be estimated
exactly. With the increase in association time, the estimation

accuracy degenerates rapidly and the PCA declines. However,
within a short sampling time, the changes in heading angles
and velocities of targets are not obvious. Because the proposed
TTTA model uses trajectory parameters, the PCA of the
proposed algorithm is higher than for other algorithms.
However, if the association time is too short, the information
obtained by sensors is unavailable. The proposed algorithm
cannot determine the correspondence. In addition, when the
association time is too long, the trajectory parameters of the
same target in these times are different. The proposed TTTA
algorithm also cannot acquire good performance. Therefore,
the trajectory parameters can be used to solve the TTTA
problem in a certain association time when the targets are
maneuvered.

These simulation results demonstrate that when the targets
are maneuvered, the proposed algorithm still produces good
association results and outperforms other competing algo-
rithms. Certainly, it needs a suitable association time.

TABLE 3 Trajectory parameters of
targets in scenario 2

Target index Initial state (km) Acceleration in 1–50 s (m/s2) Acceleration in 50–100 s (m/s2)

1 (−30,60) (30,−15) (30,−15)

2 (30,60) (−30,−15) (−30,15)

3 (−25,40) (20,−10) (20,10)

4 (25,40) (−20,−10) (−20,10)

5 (−20,45) (15,15) (−15,15)

6 (20,45) (−15,15) (15,15)

7 (−35,35) (25,20) (25,−20)

8 (35,35) (−25,20) (−20,−20)

9 (−5,20) (−8,2) (−8,−2)

10 (5,20) (−8,2) (−8,−2)

F I GURE 1 2 Performance of algorithms with different measurement
noise for scenario 2. ML, maximum‐likelihood; PLE, pseudo‐linear
estimation; TS‐TA, two‐step time alignment

F I GURE 1 3 Performance of algorithms with different distance biases
for scenario 2. ML, maximum‐likelihood; PLE, pseudo‐linear estimation;
TS‐TA, two‐step time alignment
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6 | Conclusion

To deal with the problems of asynchronous sampling and the
ghost point in a passive multisensor system, a TTTA algorithm
based on trajectory parameters is investigated. According to the
heading angle and target velocity, a cost function is established to
evaluate the similarity of different tracks from each sensor.
Specifically, to fit asynchronous sampling, a velocity estimation
method is designed by associating the trajectory parameters from
different sensors. Finally, to obtain the trajectory parameters and
avoid the ghost point, a filtering method is provided that is
suitable for the single sensor observation.Numerical simulations
are performed to demonstrate the effectiveness of the proposed
TTTAmodel. The superiority has been illustrated and discussed

for four aspects: measurement noise, distance bias, sampling
delay and association time.
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APPENDICES
Remark 1 g(X) = XTAX . ∇gðXÞ ¼ ðAT þ AÞX

Remark 2 ∇gðXÞ−1 ¼ −gðXÞ−1 ∇ gðXÞgðXÞ−1

According to the two remarks, we can derive the ∇FðXÞ.
First, we define gðXÞ ¼GxGT

x
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