
micromachines

Article

Towards Application-Driven Task Offloading in Edge
Computing Based on Deep Reinforcement Learning

Ming Sun 1,2,*, Tie Bao 1, Dan Xie 1, Hengyi Lv 2 and Guoliang Si 2

����������
�������

Citation: Sun, M.; Bao, T.; Xie, D.; Lv,

H.; Si, G. Towards Application-

Driven Task Offloading in Edge

Computing Based on Deep

Reinforcement Learning.

Micromachines 2021, 12, 1011.

https://doi.org/10.3390/mi12091011

Academic Editors: Roberto

Cavicchioli and Paolo Burgio

Received: 20 June 2021

Accepted: 16 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Computer Science and Technology, Jilin University, Changchun 130012, China;
baotie@jlu.edu.cn (T.B.); xiedan@jlu.edu.cn (D.X.)

2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; lv_hengyi@163.com (H.L.); siguol@163.com (G.S.)

* Correspondence: sunm19@mails.jlu.edu.cn

Abstract: Edge computing is a new paradigm, which provides storage, computing, and network
resources between the traditional cloud data center and terminal devices. In this paper, we concentrate
on the application-driven task offloading problem in edge computing by considering the strong
dependencies of sub-tasks for multiple users. Our objective is to joint optimize the total delay and
energy generated by applications, while guaranteeing the quality of services of users. First, we
formulate the problem for the application-driven tasks in edge computing by jointly considering
the delays and the energy consumption. Based on that, we propose a novel Application-driven
Task Offloading Strategy (ATOS) based on deep reinforcement learning by adding a preliminary
sorting mechanism to realize the joint optimization. Specifically, we analyze the characteristics of
application-driven tasks and propose a heuristic algorithm by introducing a new factor to determine
the processing order of parallelism sub-tasks. Finally, extensive experiments validate the effectiveness
and reliability of the proposed algorithm. To be specific, compared with the baseline strategies, the
total cost reduction by ATOS can be up to 64.5% on average.

Keywords: task offloading; edge computing; application-driven task; deep reinforcement learning

1. Introduction

With the increasing amount and variety of application data, users’ demand for high-
quality services has been growing. As a new computing model of IoT, edge computing has
become a highly virtualized platform to provide computing, storage, and network services
between terminal devices and traditional cloud data centers. As an important infrastructure
of edge computing network, edge node includes the switch, router, and embedded server.
With the continuous development of Internet terminal devices, smartphones and other
terminal devices are widely used. So far, the penetration rate of smartphones in the United
States has reached 80%. According to the results released by Cisco, the average number
of connected devices per capita will reach 3.6 by 2023 [1]. In edge computing, due to
the increasing variety and quantity of data producing from IoT devices, the demand of
end-users for high-quality mobile services also increases. In addition, due to the increasing
number of connected devices on edge nodes, insufficient resource supply will also lead
to high costs and serious load imbalance between edge nodes. Therefore, a complete and
comprehensive task offloading strategy is particularly critical for the development of the
edge computing network and better application performance promotion.

Figure 1 shows the overview of the system architecture that referring to in this paper.
We suppose that the system architecture contains three layers which are cloud, edge, and
user. In the edge layer, there are several edge nodes with different limited capacities. We
suppose that the connections and locations of the edge nodes have been fixed by the third-
party service providers or the cloud data centers. For each user, the connection scope is
within a certain area, as shown in the dotted circle in Figure 1. In this area, users can offload

Micromachines 2021, 12, 1011. https://doi.org/10.3390/mi12091011 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-3628-0991
https://doi.org/10.3390/mi12091011
https://doi.org/10.3390/mi12091011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12091011
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12091011?type=check_update&version=1

Micromachines 2021, 12, 1011 2 of 15

tasks to the corresponding edge node or process through a local device. This paper studies
the application-driven tasks constructed by several sub-tasks with strong dependencies,
and the sub-tasks that belong to one application can process on different devices. In our
system architecture, the provisioning process of the application is to decide the locations
of sub-tasks. For example, we use Ai to denote the ith application that contains three sub-
tasks: a1, a2, and a3. The dependencies of these sub-tasks is a1 → a2 → a3. One extreme
solution is offloading strategy by minimizing the transmission cost for Ai, which processes
all sub-tasks on local devices with the order a1 → a2 → a3. However, this solution has the
highest delay due to the limited capacity of local devices. Another extreme solution is the
offloading strategy by minimizing the processing delay for Ai, which processes all sub-tasks
on edge nodes. The user transmits the sub-tasks to the edge node for processing through the
wireless channel, and the results are returned after all sub-tasks are completed. However,
when the sizes of sub-tasks are large, the total transmission cost will be correspondingly
large due to the dependencies between the precursor and the successor, which will lead
to a decreasing in the quality of service of users. In this paper, we propose an efficient
offloading strategy for multiple users that jointly considering the processing delay and
transmission cost.

…

…

……

…

Figure 1. An overview of the system architecture.

In this paper, we concentrate on the application-driven task offloading problem in
edge computing by considering the strong dependencies of sub-tasks. The most important
point under this problem is to determine the offloading locations of sub-tasks for users, so
as to joint optimize the total delay and energy consumption generated by applications while
guaranteeing the quality of services for users. Our problem poses several unique challenges
as follows: (i) Since the capabilities of edge nodes and local devices are limited and different,
it is nontrivial that finding a feasible strategy to complete the sub-task within improving
the total cost for users during the offloading process. (ii) In our problem, we consider the
applications with strong dependencies which can not achieve complete parallelism. Thus,
it is challenging to find a solution that satisfies the dependency relationship with lower
cost. The major novel contributions of this paper are as follows:

• We discuss the offloading problem for the application-driven tasks in edge comput-
ing, and we optimize the total cost of users which jointly consider the delays and
energy consumption.

• We propose an application-driven task offloading strategy (ATOS) based on deep
reinforcement learning (DRL) by adding a preliminary sorting mechanism to realize
the joint optimization of the delays and energy consumption. Specifically, we analyze
the characteristics of application-driven tasks and propose a heuristic algorithm by
introducing a new factor to determine the processing order of parallelism sub-tasks.
Based on that, we propose a task offloading strategy based on the deep Q-learning
network (DQN) by training a fully connected neural network.

Micromachines 2021, 12, 1011 3 of 15

• We design a simulator to evaluate our strategy ATOS by comparing it with sev-
eral state-of-the-art ones. The results are presented from different perspectives to
provide conclusions.

The remainder of this paper is organized as follows. Section 2 surveys related works.
Section 3 describes the model and then formulates the problem. Section 4 investigates
the application-driven task offloading strategy based on DRL. Section 5 presents the
experiments. Finally, Section 6 concludes the paper.

2. Related Work

The concept of edge computing was introduced to extend the cloud to the edge of the
network, thus enabling a new breed of applications and services. There are numerous novel
strategies on the task offloading problem in edge computing that have been proposed.
Mao et al. [2,3] introduced an online learning assignment strategy based on dynamic
computing offloading that is applicable to a single user. During the offloading process,
the execution cost (time delay and offload failure rate) of performing the offloading was
measured at each time interval. The online learning allocation strategy only depends
on the current system state and did not need to calculate the task feedback results, the
distribution information of the wireless channel, and the energy collection. Chen et al. [4]
discussed the solution of moving edge computing to meet the low latency requirements in
an ultra-dense network. Using the idea of a software-defined network, the task offloading
problem was expressed as a mixed-integer nonlinear computing process, and the delay
reduction problem was transformed into two sub-problems: task offloading problem and
resource allocation problem. Yu et al. [5] considered the application scenarios of the IoT
(Internet of Things) and reduced the computing delay by allocating resources reasonably
for the program. Then, a complete polynomial-time approximation scheme was proposed,
which was more effective in shortening the computing delay than the heuristic algorithm.
Spatharakis et al. [6] proposed a two-level Edge Computing architecture to offer computing
resources for the remote execution of location based services (LBS). Xu et al. [7] proposed
a distributed computing offloading algorithm designed with the method of game theory,
and the calculation delay index was quantified to achieve a lower calculation time cost.

In recent years, with the continuous development of machine learning methods, it
has gradually infiltrated into various fields, among which reinforcement learning has also
found a good application in the offloading decision to reduce the time delay. Meng et al. [8]
proposed a delay-sensitive task offloading algorithm based on deep reinforcement learning
(DRL) to improve the task processing speed and reduce the task timeout. A new reward
function was designed to guide the algorithm to learn offloading decisions from the envi-
ronment by combining timeout signals and deceleration signals. In addition, intelligent
algorithms have also been applied to various fields. Li et al. [9] proposed a joint opti-
mization method of task allocation ratio, channel bandwidth, and computing resources
of mobile edge servers based on genetic algorithm, aiming at the situation that part of
computing tasks can be partially allocated to the mobile edge server. Under the constraints
of wireless transmission resources and mobile edge server processing resources, a genetic
algorithm is used to solve the optimization problem of minimizing user task completion
time, and the optimal offloading task strategy and resource allocation scheme were ob-
tained. All the above offloading decisions have achieved the purpose of reducing time
delay, but they failed to consider the energy consumption at the end of terminal devices
during the calculation of the task offloading. The terminal devices may not be able to
operate normally due to the lack of power, which has a huge impact on users’ experience.

There are also many solutions for the task offloading problems in different environ-
mental scenarios from the perspective of optimizing energy consumption. Zhang et al. [10]
adopt the artificial fish swarm algorithm to design the offloading strategy for energy
consumption optimization under the constraint of delay. This strategy takes full account
of the link conditions in the task data transmission network and effectively reduces the
energy consumption of the equipment. However, this strategy has the defect of too high

Micromachines 2021, 12, 1011 4 of 15

algorithm complexity. In a multi-resource environment, Xu et al. [11] designed an energy-
minimization particle swarm task scheduling algorithm for multi-resource matching to
reduce the energy consumption of edge terminal devices. Wei et al. [12] proposed that
the task offloading problem can be divided into mobile management and energy-saving
optimization, and they use a greedy algorithm to minimize the energy consumption of
mobile devices. Lu et al. [13] focus on minimizing the total cost for multiple mobile users
to provide an efficient resource provisioning scheme by considering three different cases
in edge computing. Yu et al. [14] studied the problem of task offloading in ultra-dense
network scenarios. They proposed a task offloading algorithm based on Lyapunov opti-
mization theory, which minimizes the overall energy consumption of the base station and
equipment. In order to solve the privacy leakage problem that may occur in the computing
offloading decision of mobile edge computing, Zhao et al. [15] proposed a privacy percep-
tion computing offloading algorithm. This algorithm has low computational complexity
and maintains low terminal energy consumption while ensuring high privacy security.
Liu et al. [16] studied the offloading problem based on deep learning, and they proposed a
group sparse beamforming framework to optimize network power consumption.

Some studies jointly considered the energy consumption and delay in offloading trade-
off optimization problems and put forward some ideas and solutions. Zhang et al. [17]
proposed an offloading mechanism assisted by SDN-V, which is suitable for the scenario of
the IoV (Internet of Vehicles). The mechanism considered the task diversity, establishes
the mathematical model of importance degree, and designed the task offloading sorting
algorithm according to the model. Finally, an offloading algorithm based on Q-learning is
constructed to optimize the energy consumption and time delay during task offloading. In
the case of mobile edge computing, there are many reinforcement learning methods to solve
optimization. Zhang et al. [18] proposed a policy-based DRL scheme to solve the problem
that a single mobile device offloads tasks to a single mobile edge server. However, there is a
question of how much to tweak the network each time that the policy is updated. Too large
an amplitude may lead to the problem of non-convergence, while too small an amplitude
may lead to the problem of slow convergence. Song et al. [19] proposed a semi-online
computational offloading model soCoM based on dueling deep-Q network to explore
the user behaviors in sophisticated action space by reinforcement learning for catching
unknown environment information. Liu et al. [20] proposed an improved scheme. In this
scheme, an artificial neural network was firstly used to learn strategies and make decisions,
and another artificial neural network was used to score this decision [21]. In order to
improve this problem, Zhan et al. [22] proposed a scheme of disengagement strategy. Firstly,
two artificial neural networks were used to approximate the behavior strategy and the
target strategy respectively. Then, learning data was generated from behavioral strategies
to train the neural network of target strategies. Finally, the parameters of the trained
target policy were assigned to the behavior policy. After repeated iterative learning of the
target strategy [23], it introduced more artificial neural networks and more parameters.
In this paper, we are committed to designing an offloading strategy based on DRL for
application-driven tasks that jointly optimize the total delay and energy consumption.

3. Model and Problem Formulation

In this section, we first describe our system model which includes the application
model, execution model, and transmission model. Then, we present our problem formulation.

3.1. System Model

The system model is abstracted by the architecture in Figure 1, which is constructed by
three layers. The cloud layer is located at the top that is a core in the whole system model
which is far from the users. In order to avoid the long-distance transmission and relieve
the pressure of the cloud, this paper considers the offloading decision of applications
between edge and user layers. In the edge layer, users connect with edge nodes through
base stations and wireless channels. In our model, the edge layer is composed of several

Micromachines 2021, 12, 1011 5 of 15

small areas according to the locations of edge nodes, and each of them is independent.
The edge nodes are heterogeneous, in that they own different capacities. Let V = {Vi}
denote the set of edge nodes, where Vi represents the ith one. We use Ci to represent the
computing capacity of edge node Vi. In the user layer, users are connecting with the edge
node located in their area. Here, the users are local devices, such as mobile phones, laptops,
smart bracelets, and so on. Let Ui = {uk

i } represent the set of users that connecting with
edge node Vi. We use uk

i to denote the kth user in set Ui. We use ck
i to denote the computing

capacity of uk
i . The main notations that are commonly used throughout the paper are listed

in Table 1.

Table 1. Notations.

Symbols Definitions

V Set of edge nodes, where V = {Vi}.
Vi The ith edge node set V.
Ci The computing capacity of Vi.
Ui Set of users that connecting with edge node Vi, where Ui = {uk

i }.
uk

i The kth user in set Ui.
ck

i The computing capacity of uk
i .

Ak
i The application generated by uk

i , where Ak
i = {Ak

i , Ek
i }.

Ak
i

The set of sub-tasks in Ak
i , where

Ak
i = {ak

i (1), ak
i (2), . . . , ak

i (l), . . . , ak
i (n)}.

rak
i (l),Vj

The rate of uk
i that transmits ak

i (l) to Vj.
Dk

i The total delay of user uk
i .

Ek
i The total energy consumption of user uk

i .

3.1.1. Application Model

In this paper, we assume that the applications are generated by the set of users which
composed of several fine-grained sub-tasks. We use a Directed Acyclic Graph (DAG) to
represent the application. Let Ak

i = {Ak
i , Ek

i } denote the application generated by uk
i , where

Ak
i = {ak

i (1), ak
i (2), ..., ak

i (l), ..., ak
i (n)} is the set of sub-tasks. ak

i (l) denotes the lth sub-task.

We use a vector to describe the demand of ak
i (l), where ak

i (l) =
〈

wk
i (l), δk

i (l), tk
i (l)

〉
. Here,

wk
i (l) refers to the workload of vk

i (l), which indicates the CPU clock cycles required to
execute sub-task ak

i (l). δk
i (l) indicates the ratio of the output data size to the sub-task

ak
i (l). tk

i (l) refers to the maximum tolerant delay. We use a boolean variable ζk
i (l) to record

the offloading decision, where ζk
i (l) = {0, 1}. When the sub-task vk

i (l) execute locally,
ζk

i (l) = 0; otherwise, ζk
i (l) = 1.

3.1.2. Transmission Model

The transmission model is defined for the condition that sub-tasks offloading on the
edge nodes. According to the Rayleigh fading channel model in Reference [24], the rate of
uk

i that transmits ak
i (l) to the edge node Vj is defined as

rak
i (l),Vj

= Bi,j · log2(1 +
pi,jhi,j

dωi
i,j Ni

), (1)

where Bi,j represents the transmission bandwidth between uk
i and Vj, and pi,j represents

the transmission power from uk
i to Vj. hi,j and dωi

i,j represent the channel gain and distance

between uk
i and Vj, respectively. ωi denotes the path loss exponent, and Ni denotes the

Gaussian noise.

Micromachines 2021, 12, 1011 6 of 15

3.1.3. Execution on Local Devices

We consider the offloading problem for the fine-grained sub-tasks that decide to
perform either locally or edge nodes. We first discuss the total delay when the sub-tasks
execute on local devices. For each sub-task, the total delay consists of two components,
which are the computing delay and the waiting delay. In the application model, we use
wk

i (l) to denote the workload of ak
i (l), which indicates the CPU clock cycles required to

execute. The computing delay De
local(ak

i (l)) is defined as:

De
local(ak

i (l)) =
wk

i (l)
ck

i
. (2)

There are two scenarios of waiting delays in local: one is the waiting delay for the
execution of the k predecessor sub-tasks and returning the results, and the other one is the
delay of waiting for the local execution of the sub-tasks. We use Dp

local(ak
i (l)) to denote the

waiting delay for the execution of the k predecessor sub-tasks, and Dr
local(ak

i (l)) to denote
the delay of returning the results.

Dr
local(ak

i (l)) =
pre(wk

i (l)
ηk

i (l)
) · δk

i (l)

rak
i (l),Vj

. (3)

pre(wk
i (l)

ηk
i (l)

) represents the data size of precursor sub-tasks of ak
i (l), where ηk

i (l) denotes the

CPU cycles required for each MB of the sub-task ak
i (l). δk

i (l) represents the ratio of the
output data size to the sub-task ak

i (l). rak
i (l),Vj

is the transmission rate that transmits ak
i (l) to

the edge node Vj. We use Dq
local(ak

i (l)) to denote the queuing delay of local execution of k
predecessor sub-tasks.

Therefore, the total waiting delay Dw
local(ak

i (l)) is defined as

Dw
local(ak

i (l)) = max{Dp
local(ak

i (l)) + Dr
local(ak

i (l)), Dq
local(ak

i (l))}. (4)

The total delay is defined as

Dlocal(ak
i (l)) = Dw

local(ak
i (l)) + De

local(ak
i (l)). (5)

The total energy consumption for sub-task ak
i (l) on uk

i is defined as

Elocal(vk
i (l)) = εk

i · wk
i (l) · (ck

i)
2. (6)

Here, εk
i is the coefficient factor [25] of chip architecture on uk

i .

3.1.4. Execution on Edge Nodes

Comparing with the sub-tasks executing locally, the total delay under the edge nodes

includes the transmission delay. We use D
ti,j
edge(ak

i (l)) to represent the transmission delay

from uk
i to Vj.

D
ti,j
edge(ak

i (l)) =
wk

i (l)
ηk

i (l) · rak
i (l),Vj

. (7)

We use ηk
i (l) to denote the CPU cycles required for each MB of the sub-task ak

i (l).

Since wk
i (l) is the workload of sub-task ak

i (l), the data size is wk
i (l)

ηk
i (l)

.

Micromachines 2021, 12, 1011 7 of 15

The computing delay De
edge(ak

i (l)) is defined as:

De
edge(ak

i (l)) =
wk

i (l)
Cj

. (8)

Cj is the computing capacity of edge node Vj.
In this case, the waiting delay for the sub-task ak

i (l) involves the preparation time
for the precursor sub-tasks of pre(ak

i (l)) and the return time of the result. In addition, we
suppose that the capacities of the edge nodes are also limited, and one edge node can
only execute one sub-task at the same time. The abstract model is shown in Figure 2. The
waiting delay is defined as

Dw
edge(ak

i (l)) = max{Dp
edge(ak

i (l)) + Dr
edge(ak

i (l)), Dq
edge(ak

i (l)), D
ti,j
edge(ak

i (l))}. (9)

Dp
edge(ak

i (l)) and Dr
edge(ak

i (l)) are the preparation time for the precursor sub-tasks of

pre(ak
i (l)) and the return time of the result, respectively. The total delay is defined as

Dedge(ak
i (l)) = Dw

edge(ak
i (l)) + De

edge(ak
i (l)). (10)

The total energy consumption for sub-task ak
i (l) on edge node Vj is defined as

Eedge(ak
i (l)) = pi · D

ti,j
edge(ak

i (l)) + pj · Dr(ak
i (l)). (11)

Here, pj and pj are the transmission power of local device uk
i and edge node Vj,

respectively.
Since the types of sub-tasks vary according to the application scenarios. Some of

them are sensitive to the delay, while others are more sensitive to the energy consumption.
Therefore, we jointly consider the total delay and energy consumption. Let Dk

i denote the
total delay of user uk

i , where

Dk
i = ζk

i (l) · Dedge(ak
i (l)) + (1− ζk

i (l))Dlocal(ak
i (l)). (12)

…

ai
k
(1) ai

k(3) ai
k(4) ……

ai
k
(0) ai

k(5) ai
k(8) …… ai

k
(2) ai

k(6) …… ai
k
(7) ai

k(9) ……

ai
k(1)

ai
k(2) ai

k(3) ai
k(4) ai

k(5)

ai
k(6) ai

k(7) ai
k(8) ai

k(9)

ai
k(10) ai

k(11) ai
k(12) ai

k(13)

ai
k
(14)

Ai
k Vj

Figure 2. An abstraction of the system model.

Let E denote the total energy consumption, where

Ek
i = ζk

i (l) · Eedge(ak
i (l)) + (1− ζk

i (l))Elocal(ak
i (l)). (13)

Therefore, the total cost of user uk
i is defined as

Tk
i = ρ · Dk

i + (1− ρ)Ek
i . (14)

Micromachines 2021, 12, 1011 8 of 15

In this paper, we consider the delay and energy consumption of applications gener-
ated by users. Our objective is to minimize the total cost, and the formulation is shown
as follows:

minimize ∑
|V|
i=1 ∑

|Ui |
k=1 Tk

i , (15)

subject to Dk
i ≤ τk

i , ∀uk
i ∈ Ui, (16)

(ak
i (l − 1), ak

i (l)) ∈ Ak
i , (17)

ζk
i (l) = {0, 1}. (18)

Equation (15) represents the objective function, and Equations (16)–(18) are the con-
strains. Equation (16) represents the total delay of an application requires that should
not exceed the maximum required delay. Equation (17) represents the dependency of the
sub-tasks in the application, and Equation (18) represents the constraints on the locations
of the offloading, where 1 denotes that representing to offload on the edge node, otherwise
to the local devices.

4. An Application-Driven Task Offloading Strategy Based on DRL

In this section, we propose an Application-driven Task Offloading Strategy (ATOS)
based on DRL. The main idea of ATOS is to add a preliminary sorting mechanism and
realize the jointly optimization of the delay and energy consumption by proposing a task
offloading strategy based on the deep Q-learning. The detailed description of ATOS is
shown as follows.

4.1. Preliminary Sorting Mechanism (PSM)

In this paper, we assume that the applications are generated by the users which
are composed of several fine-grained sub-tasks. Although these sub-tasks have strong
dependencies, there are still existing some parallel sub-tasks whose execution order will
affect the result of subsequent task offloading. An illustration of PSM for the application
Ak

i is shown in Figure 3. In this subsection, we introduce a Preliminary Sorting Mechanism
(PSM) to determine the sequences of sub-tasks. We first initialize the preliminary sorting
set ωk

i =: Φ in line 1. For each sub-task ak
i in application Ak

i , we check the in-degree I(ak
i).

If the value of in-degree is 0, we add this sub-task into queue Sk
i . Otherwise, we check the

out-degree O(ak
i). If the value of out-degree is 0, it represents that this is the last sub-task

in the application. Then, we return the sequence queue Sk
i . If neither of the above cases is

true, we add the subsequent and sibling sub-tasks of sub(ak
i) to the preliminary sorting set

ωk
i . According to the structure and characteristics of the application, we define a priority

factor f k
i .

Ai
k

ai
k(1)

ai
k
(2) ai

k
(3) ai

k
(4) ai

k
(5)

ai
k
(6) ai

k
(7) ai

k
(8) ai

k
(9)

ai
k(10) ai

k(11) ai
k(12) ai

k(13)

ai
k
(14)

ai
k(1)

ai
k
(2) ai

k
(3) ai

k
(4) ai

k
(5)

ai
k
(6) ai

k
(7) ai

k
(8) ai

k
(9)

ai
k(10) ai

k(11) ai
k(12) ai

k(13)

ai
k
(14)

PSM

ai
k(1)

ai
k(2) ai

k(3) ai
k(4) ai

k(5)

ai
k(6) ai

k(7) ai
k(8) ai

k(9)

ai
k(10) ai

k(11) ai
k(12) ai

k(13)

ai
k
(14)

p2 p1 p4 p3

p3 p1 p4 p2

p1 p2 p4 p3

Figure 3. An illustration of PSM for the application.

Micromachines 2021, 12, 1011 9 of 15

Definition 1 (Priority Factors). The priority factors f k
i is to decide the execution order for the

parallel sub-tasks in application Ak
i , where f k

i (l) =
I(ak

i (l))
O(ak

i (l))·w
k
i (l)

.

Based on that, we calculate the priority factors f k
i for subsequent sub-tasks in set ωk

i .
In line 9, we update ωk

i with descending order of f k
i , where ωk

i := descending(sub(ak
i)).

Then, we update Sk
i by adding the preliminary sorting set ωk

i into queue. In line 11, we
return sequence queue Sk

i .

4.2. Task Offloading Based on Deep Q-Learning

In this subsection, we introduce our task offloading strategy based on DQN. To
describe the environment of the DCN correctly and concisely for the agent, the state space
should include the knowledge of applications and the status of the total cost. So, the state
is designed as follows.

Definition 2 (State). The state st is a vector consisting of st = [Tk
i , Ui/Ûi]t, where Ui/ ˆ|Ui|

are the sub-tasks waiting to be scheduled, and Tk
i = ∑

ˆ|Ui |
k=1 Tk

i is the total cost of the scheduled
sub-tasks Ûi.

We consider realizing the offloading by training the agent which needs to choose a
destination (edge nodes or local devices) for the sub-tasks of each application. The action
At is designed as follows.

Definition 3 (Action). The action space at = [ζk
i (l), 1− ζk

i (l)]t is the adjusting action, where
ζk

i (l) = 0 or ζk
i (l) = 1 means that the target location of adjustment is on edge node or local device.

At each time slot t, the agent will receive a reward R(st, at) in a certain state st after
executing action at. Since the objective is to minimize the total cost of delay and energy
consumption which contract with the goal of RL that maximizing the long-term reward,
the reward function should be negatively related to the weighted sum of delay and energy
consumption. The reward function R(st, at) is designed as follows.

Definition 4 (Reward). The immediate reward is R(st, at) =
Tbase−Tk

i
Tbase

, where Tk
i is the total cost

of the scheduled sub-tasks, and Tbase is a baseline cost that offloading with greedy strategy.

Algorithm 1 summarizes the ATOS, and the main idea is to use a deep reinforcement
learning agent to perform the dynamic offloading of sub-tasks in applications to minimize
the total cost of delay and energy consumption. We first initialize some preliminary
parameters which include setting the replay memory D to capacity N. Meanwhile, we
initialize the action-value function Q with random weight θ and the target action-value
function Q̂ with weights θ− = θ. In lines 2 to 15, we start to train the agent by running
a number of κ episodes with our environment. During each episode, Initialize sequence
Sk

i based on Algorithm 2 in line 3. The training process starts from lines 4 to 14. In
line 4, the agent selects a random action at with probability ε; otherwise, it will select
at = argmaxaQ(φ(st), a; θ) with the maximum Q value in line 5. In line 6, we set st+1 = st,
at, xt+1, and preprocess φt+1 = φ(St+1), and we store the transition (φt, at, rt, φt+1) in the
replay memory D. After that, we sample a random minibatch of transitions (φj, aj, rj, φj+1)
from D in lines 7 to 8. The objective of our problem is to minimize the total cost of the
users which is contrary to the cumulative reward received by the agent. In line 12 to 14, the
agent performs a gradient descent step on (y−Q(φj, aj; θ))2 with respect to the network
parameters θ, and resets Q̂ = Q every C steps. The offloading results are returned in
line 15.

Micromachines 2021, 12, 1011 10 of 15

Algorithm 1 Application-driven Task Offloading Strategy based on DQN (ATOS).

Input: The applications Ak
i generated by user Ui with sequences Sk

i ;
Output: Offloading strategy Xk

i ;
1: Initialize D to N, Q with random weights θ, and Q̂ with weights θ− := θ;
2: for episode from 1 to κ do
3: Initialize sequence Sk

i based on Algorithm 2;
4: With probability ε select a random action at;
5: Otherwise select at = argmaxaQ(φ(St), a; θ);
6: Set St+1 = St, at, xt+1 and preprocess φt+1 = φ(St+1).
7: Store transition (φt, at, rt, φt+1) in D;
8: Sample random minibatch of transitions (φj, aj, rj, φj+1) from D.
9: if episode terminates at step j + 1 then

10: Set yj = rj;
11: else
12: Set yj = rj + γmaxa′ Q̂(φj+1, a′; θ−);
13: Perform a gradient descent step on (y−Q(φj, aj; θ))2 with respect to the network

parameters θ.
14: Every C steps reset Q̂ = Q;
15: return Offloading strategy Xk

i ;

Algorithm 2 Preliminary Sorting Mechanism (PSM).

Input: The application Ak
i generated by user Ui;

Output: The sequence queue Sk
i of the sub-tasks in Ak

i ;

1: Initialize the preliminary sorting set ωk
i =: Φ;

2: for each sub-task ak
i in Ak

i do
3: if I(ak

i) = 0 then
4: Adding sub-task ak

i into queue Sk
i ;

5: else if O(ak
i) = 0 then

6: Go to line 11;
7: Adding subsequent and sibling sub-tasks of sub(ak

i) to preliminary sorting set ωk
i ;

8: Calculate the priority factors f k
i for subsequent sub-tasks in set ωk

i ;
9: Update ωk

i with descending order of f k
i , where ωk

i := descending(sub(ak
i));

10: Update Sk
i by adding set ωk

i into queue;
11: return Sequence queue Sk

i ;

5. Experiment Evaluation

In this section, we will conduct experiments on the designing simulator to evalu-
ate our strategy ATOS. We analyzed and shown the experimental results from different
perspectives to provide insightful conclusions.

5.1. Basic Setting of the Synthetic Dataset

In this subsection, we develop a simulator using python and evaluate the performance
of our algorithms by building a synthetic dataset. In our simulator, the number of edge
nodes ranges from 5 to 10. For each edge node, we consider an area with 500 square meters,
and there are existing 1 to 5 users. The setting of parameters in our paper are listed in
Table 2, which refer to References [24,26]. Each user deploys one application, and each
application consists of 12 to 21 sub-tasks. In our experiments, we test several groups of
hyperparameters that the learning rates range from 0.0005 to 0.001, and the e-greedy factors
range from 0.7 to 0.95. In addition, we test the reward decay between 0.6 and 0.9 at 0.05
intervals, and we test the replacing target iterations between 20 and 500 at 10 intervals.
According to the test results, we choose the group of hyperparameters listed in Table 3 as
the experimental setting. We consider the four baseline algorithms to be the comparisons

Micromachines 2021, 12, 1011 11 of 15

as follows: (i) Offloading all sub-tasks on the edge nodes (Offloading_edge): for each
application, we offload the sub-task on the edge nodes iteratively. (ii) Offloading all sub-
tasks on the local devices (Offloading_local): for each application, we offload the sub-task
on the local devices iteratively. (iii) Offloading all sub-tasks on the edge nodes or the local
devices randomly (Offloading_random): for each application, we offload the sub-task to the
edge node or the local device randomly in each iteration. (iv) Offloading all sub-tasks on
the edge nodes or the local devices through greedy strategy (Offloading_greedy): for each
application, we greedy choose the offloading destination by considering the queueing time
and the capacities in each iteration. We compare ATOS with these four baseline algorithms,
and the effectiveness of ATOS is verified.

Table 2. Setting of parameters.

Parameters Values

Transmission bandwidth Bi,j 180 kHz
Path loss exponent ωi 3

Gaussian noise Ni 10−13

Data size of sub-tasks 0.3 Mb∼1 Mb.
Transmission power of local device pi,j 3 W

Computing capacity of local devices 0.5–1 GHz
Computing capacity of edge nodes 5 GHz

The coefficient of channel fading 10−6

The coefficient factor of chip architecture 10−20

Table 3. Hyperparameter settings.

Hyperparameter Settings

learning rate α 0.0005
e-greedy ε 0.9

reward decay γ 0.7
replacing target iterations 30

replay memory D 500

5.2. Evaluations on the Performance

In this subsection, we discuss the total cost of multiple users with the application-
driven task offloading requests in edge computing, the results are shown in Figure 4. Four
baseline algorithms (Offloading_edge, Offloading_local, Offloading_random,
Offloading_greedy) are used to compare with our algorithm. We choose 6 groups of
topologies that the edge nodes in the edge layers are ranging from 5 to 10. In order to
facilitate the analysis of the results, each group ran 10 times and calculated the average
value. According to the results, we obtain the following observations: (i) For each group,
the total cost is the largest when all tasks are executed locally (Offloading_local) or the
edge nodes (Offloading_edge). As shown in Figure 4a–f, the total cost of each group for
the users in both cases will reach the highest value of the ordinate. Here, in order to show
the difference between the results of these two strategies and those of other ones, we set
the highest limitation of the ordinate. The total costs under these six groups are listed in
Table 4. We can see that, since the limited capacities of edge nodes and local devices, the
total costs of these two strategies are much higher than that of other ones. In addition, the
total cost of Offloading_edge is lower than Offloading_local. The reason is that, although
they will produce transmission energy consumption for the sub-tasks that are offloading to
the edge nodes, the high computation delay caused by limited computing capacities of local
devices is the key factor of the high total cost for the users. (ii) The impact of algorithms
on the total costs is related to the number of edge nodes. We compared the last three
columns of the six experiments in Figure 4a–f, the trend of the total costs decreases. For the
topology with a small number of edge nodes (5 and 6 edge nodes in Figure 4a,b), the gap
in the total cost between Offloading_random and Offloading_greedy is not large. However,

Micromachines 2021, 12, 1011 12 of 15

with the scaling of the topology, the total cost of Offloading_greedy is significantly lower
than Offloading_random. We can see that ATOS can better reduce the total cost in the
six groups. Compared with Offloading_random and Offloading_greedy, the optimization
rates of ATOS are improving 78.3% and 50.6% on average, respectively.

Table 4. Total costs of Offloading_edge and Offloading_local.

of Edge Nodes Offloading_Edge Offloading_Local

5 1,094,706 5,472,686
6 1,095,779 5,478,050
7 1,451,771.14 7,257,740.15
8 1,766,995.48 8,833,583.48
9 2,322,826.54 11,612,323.16
10 2,638,105.86 13,188,441.59

全在MEC 全在本地 随机 贪婪
312283.3575 1561141.072 654.2803607 561.5522263
240606.7301 1202896.359 1449.470823 470.1103385
320901.6749 1604210.054 78.77071073 615.7936758
219046.3441 1095100.763 205.9495933 323.3105436
620.0687704 3099.724053 39.89897813 23.77691871
578.0047903 2889.547204 39.03615879 26.02641584
669.8751545 3348.873859 36.22091889 25.28403527

总计
1094706 5472686 2503 2045.8

Offloading_edge Offloading_local Offloading_random Offloading_greedy
4000 4000 2503 2045.8

0

1000

2000

3000

4000

Offlo
adi

ng
_ed

ge

Offlo
adi

ng
_lo

cal

Offlo
adi

ng
_ra

nd
om

Offlo
adi

ng
_g

ree
dy

ATOS

To
ta

l C
os

t

(a) 5 edge nodes

全在MEC 全在本地 随机 贪婪
312283.3575 1561141.072 654.2803607 561.5522263
240606.7301 1202896.359 1449.470823 470.1103385
320901.6749 1604210.054 78.77071073 615.7936758
219046.3441 1095100.763 205.9495933 323.3105436
620.0687704 3099.724053 39.89897813 23.77691871
578.0047903 2889.547204 39.03615879 26.02641584
669.8751545 3348.873859 36.22091889 25.28403527
513.177729 2565.315043 65.43126932 21.94716027
559.8535892 2798.794137 126.0318444 24.85146044

总计
105779 5478050 2695 2092.6

Offloading_edge Offloading_localOffloading_random Offloading_greedy
4000 4000 2695 2092.6

0

1000

2000

3000

4000

Offlo
adi

ng
_ed

ge

Offlo
adi

ng
_lo

cal

Offlo
adi

ng
_ra

nd
om

Offlo
adi

ng
_g

ree
dy

ATOS

To
ta

l C
os

t

(b) 6 edge nodes

全在MEC 全在本地 随机
312283.3575 1561141.072 3254.280361
240606.7301 1202896.359 1449.470823
320901.6749 1604210.054 78.77071073
352996.0922 1764712.297 319.6712754
219046.3441 1095100.763 205.9495933
620.0687704 3099.724053 39.89897813
578.0047903 2889.547204 39.03615879
669.8751545 3348.873859 36.22091889
513.177729 2565.315043 65.43126932
559.8535892 2798.794137 126.0318444
685.5164561 3427.007332 85.79921977
514.9090355 2574.114338 58.57420108
567.6603999 2837.904619 112.6977746
547.7127696 2738.146653 36.54333337
680.1606569 3400.177879 26.65910139
1451771.138 7257740.151 5935.035563

Offloading_edge Offloading_local Offloading_random
8000 8000 6767.877956

0

2000

4000

6000

8000

Offlo
adi

ng
_ed

ge

Offlo
adi

ng
_lo

cal

Offlo
adi

ng
_ra

nd
om

Offlo
adi

ng
_g

ree
dy

ATOS

To
ta

l C
os

t

(c) 7 edge nodes

全在MEC 全在本地 随机
312283.3575 1561141.072 3254.280361
312283.3575 1561141.072 3254.280361
240606.7301 1202896.359 1449.470823
320901.6749 1604210.054 78.77071073
352996.0922 1764712.297 319.6712754
219046.3441 1095100.763 205.9495933
620.0687704 3099.724053 39.89897813
578.0047903 2889.547204 39.03615879
669.8751545 3348.873859 36.22091889
513.177729 2565.315043 65.43126932
559.8535892 2798.794137 126.0318444
620.0687704 3099.724053 39.89897813
578.0047903 2889.547204 39.03615879
669.8751545 3348.873859 36.22091889
513.177729 2565.315043 65.43126932
559.8535892 2798.794137 126.0318444
685.5164561 3427.007332 85.79921977
514.9090355 2574.114338 58.57420108
567.6603999 2837.904619 112.6977746
547.7127696 2738.146653 36.54333337
680.1606569 3400.177879 26.65910139
1766995.476 8833583.478 9495.935094

Offloading_edge Offloading_local Offloading_random
14000 14000 10955.06793

0
2000
4000
6000
8000

10,000
12,000
14,000

Offlo
adi

ng
_ed

ge

Offlo
adi

ng
_lo

cal

Offlo
adi

ng
_ra

nd
om

Offlo
adi

ng
_g

ree
dy

ATOS

To
ta

l C
os

t

(d) 8 edge nodes

全在MEC 全在本地 随机
312283.3575 1561141.072 3254.280361
240606.7301 1202896.359 1449.470823
312283.3575 1561141.072 3254.280361
312283.3575 1561141.072 3254.280361
240606.7301 1202896.359 1449.470823
320901.6749 1604210.054 78.77071073
352996.0922 1764712.297 319.6712754
219046.3441 1095100.763 205.9495933
620.0687704 3099.724053 39.89897813
578.0047903 2889.547204 39.03615879
669.8751545 3348.873859 36.22091889
513.177729 2565.315043 65.43126932
559.8535892 2798.794137 126.0318444
620.0687704 3099.724053 39.89897813
578.0047903 2889.547204 39.03615879
669.8751545 3348.873859 36.22091889
513.177729 2565.315043 65.43126932
559.8535892 2798.794137 126.0318444
685.5164561 3427.007332 85.79921977
514.9090355 2574.114338 58.57420108
567.6603999 2837.904619 112.6977746
547.7127696 2738.146653 36.54333337
680.1606569 3400.177879 26.65910139
620.0687704 3099.724053 39.89897813
578.0047903 2889.547204 39.03615879
669.8751545 3348.873859 36.22091889
513.177729 2565.315043 65.43126932
559.8535892 2798.794137 126.0318444
2322826.543 11612323.16 14506.30545

Offloading_edge Offloading_local Offloading_random
20000 20000 17800.29899

0

4000

8000

12,000

16,000

20,000

Of
flo
adi
ng
_ed
ge

Of
flo
adi
ng
_lo
cal

Of
flo
adi
ng
_ra
nd
om

Of
flo
adi
ng
_g
ree
dy

AT
OS

(e) 9 edge nodes

Offloading_edge Offloading_local Offloading_random
30000 30000 24949.40697

0
5000
10,000
15,000
20,000
25,000
30,000

Of
flo
adi
ng
_ed
ge

Of
flo
adi
ng
_lo
cal

Of
flo
adi
ng
_ra
nd
om

Of
flo
adi
ng
_g
ree
dy

AT
OS

(f) 10 edge nodes

Figure 4. The total cost under different offloading strategies with edge nodes ranging from 5 to 10.

5.3. Evaluations on the Convergence

In this subsection, we analyze the convergence of ATOS. We choose 6 groups of
topologies with different edge nodes (5, 6, 7, and 8), and the number of sub-tasks in
each application ranges from 12 to 21. In order to facilitate the analysis of the results,
the number of iterations of each group is 500. According to the results, we obtain the
following observations: (i) The total cost under each group will close to convergence after
500 iterations. As shown in Figure 5, the total cost within 0 to 100 iterations is decreasing
sharply. In groups 5, 6, 7, 9, and 10, the total cost fluctuates strongly at about 30 iterations.
In group 8, although the fluctuation is not violent, the abnormal values appears frequently,
at about 100 to 380 iterations. For different topologies, the ranges of convergence values are
different due to the various sizes of sub-tasks in the applications. (ii) The learning ranges
of ATOS increase with the expansion of different topologies. With the increasing number
of edge nodes, more actions can be selected in the process of learning and training, so the
range of total cost becomes larger. When the number of nodes in the edge layer reaches 10,
the total cost will be close to 5× 106. Due to the differences in the applications deployed
by users, some groups will fluctuate during the convergence process. For example, in

Micromachines 2021, 12, 1011 13 of 15

Figure 5c, the value is fluctuating from 100 to 200 iterations. In summary, we can see that
ATOS basically reaches convergence and maintains stability quickly.

0 100 200 300 400 500
of iterations

0

0.5

1

1.5

2

T
ot

al
 C

os
t o

f A
T

O
S

106

(a) 5 edge nodes

0 100 200 300 400 500
of iterations

0

0.5

1

1.5

2

T
ot

al
 C

os
t o

f A
T

O
S

106

(b) 6 edge nodes

0 100 200 300 400 500
of iterations

0

0.5

1

1.5

2

2.5

T
ot

al
 C

os
t o

f A
T

O
S

106

(c) 7 edge nodes

0 100 200 300 400 500
of iterations

0

0.5

1

1.5

2

2.5

3

3.5

T
ot

al
 C

os
t o

f A
T

O
S

106

(d) 8 edge nodes

0 100 200 300 400 500
of iterations

0

1

2

3

4

5

T
ot

al
 C

os
t o

f A
T

O
S

106

(e) 9 edge nodes

0 100 200 300 400 500
of iterations

0

1

2

3

4

5

T
ot

al
 C

os
t o

f A
T

O
S

106

(f) 10 edge nodes

Figure 5. The convergence of total cost under ATOS with the number of edge nodes ranging from 5 to 10.

6. Conclusions

In this paper, we study the application-driven task offloading in edge computing by
considering the strong dependencies of sub-tasks. We first formulate the task offloading as
a joint optimization problem that considers the total delay and energy consumption. Based
on that, we propose a novel task offloading strategy ATOS based on DRL by adding a
preliminary sorting mechanism. We analyze the characteristics of application-driven tasks
and propose a heuristic algorithm PSM to determine the processing order of the parallelism
sub-tasks. Finally, we study the convergence and performance of ATOS through extensive
experiments. The results show that ATOS can obtain a reasonable offloading strategy and
reduce the total cost of users.

In future work, we will consider the mobility of users under the cooperation of edge
nodes. In addition, we will further consider the application-driven tasks with strong
dependencies that combine with actual scenarios.

Author Contributions: Conceptualization, M.S. and T.B.; methodology, M.S.; software, M.S.; valida-
tion, M.S., T.B., and D.X.; formal analysis, M.S.; investigation, M.S.; resources, H.L.; data curation,
H.L. and G.S.; writing—original draft preparation, M.S.; writing—review and editing, D.X. and H.L.;
visualization, M.S.; supervision, T.B. and G.S.; project administration, T.B.; funding acquisition, T.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Micromachines 2021, 12, 1011 14 of 15

Acknowledgments: The authors would like to thank the reviewers for their efforts and for providing
helpful suggestions that have led to several important improvements in our work. We would also
like to thank all teachers and students in our laboratory for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cisco, U. Cisco Annual Internet Report (2018–2023) White Paper. Available online: https://www.cisco.com/c/en/us/solutions/

collateral/executive-perspectives/annual-internet-report/whitepaper-c11-741490.html (accessed on 26 March 2021).
2. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices.

IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]
3. Ulukus, S.; Yener, A.; Erkip, E.; Simeone, O.; Zorzi, M.; Grover, P.; Huang, K. Energy Harvesting Wireless Communications: A

Review of Recent Advances. IEEE J. Sel. Areas Commun. 2015, 33, 360–381. [CrossRef]
4. Chen, M.; Hao, Y. Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun.

2018, 36, 587–597. [CrossRef]
5. Yu, R.; Xue, G.; Zhang, X. Application Provisioning in Fog Computing-enabled Internet-of-Things: A Network Perspective. In

Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018;
pp. 783–791

6. Spatharakis, D.; Dimolitsas, I.; Dechouniotis, D.; Papathanail, G.; Fotoglou, I.; Papadimitriou, P.; Papavassiliou, S. A scalable
edge computing architecture enabling smart offloading for location based services. Pervasive Mob. Comput. 2020, 67, 101–217.
[CrossRef]

7. Xu, C.; Lei, J.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw.
2016, 24, 2795–2808.

8. Meng, H.; Chao, D.; Guo, Q.; Li, X. Delay-sensitive task scheduling with deep reinforcement learning in mobile-edge computing
systems. J. Physics Conf. Ser. 2019, 1229, 22–30. [CrossRef]

9. Li, Z.; Zhu, Q. Algorithm-Based Optimization of Offloading and Resource Allocation in Mobile-Edge Computing. Information
2020, 11, 83. [CrossRef]

10. Zhang, H.; Guo, J.; Yang, L.; Li, X.; Ji, H. Computation offloading considering fronthaul and backhaul in small-cell networks
integrated with MEC. In Proceedings of the IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS),
Atlanta, GA, USA, 1–4 May 2017; pp. 115–120.

11. Xu, J.; Li, X.; Ding, R.; Liu, X. Energy efficient multi-resource computation offloading strategy in mobile edge computing. Comput.
Integr. Manuf. Syst. 2019, 25, 954–961.

12. Wei, F.; Chen, S.; Zou, W. A greedy algorithm for task offloading in mobile edge computing system. China Commun. 2018, 15,
149–157. [CrossRef]

13. Lu, S.; Wu, J.; Duan, Y.; Wang, N.; Fang, J. Towards cost-efficient resource provisioning with multiple mobile users in fog
computing. J. Parallel Distrib. Comput. 2020, 146, 96–106. [CrossRef]

14. Yu, B.; Pu, L.; Xie, Y.; Jian, Z. Joint task offloading and base station association in mobile edge computing. J. Comput. Res. Dev.
2018, 55, 537–550.

15. Zhao, X.; Peng, J.; You, W. A privacy-aware computation offloading method mased on lyapunov optimization. J. Electron. Inf.
Technol. 2020, 42, 704–711.

16. Liu, L.; Liu, X.; Zeng, S.; Wang, T.; Pang, R. Research on virtual machines migration strategy based on mobile user mobility in
mobile edge computing. J. Chongqing Univ. Posts Telecommun. Ence Ed. 2019, 31, 158–165.

17. Zhang, H.; Jing, K.; Liu, K. An offloading mechanism based on software defined network and mobile edge computing in vehicular
networks. J. Electron. Inf. Technol. 2020, 42, 645–652.

18. Zhang, H.; Wu, W.; Wang, C.; Li, M.; Yang, R. Deep Reinforcement Learning-Based Offloading Decision Optimization in Mobile
Edge Computing. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakech,
Morocco, 15–18 April 2019; pp. 1–7

19. Song, S.; Fang, Z.; Zhang, Z.; Chen, C.L.; Sun, H. Semi-Online Computational Offloading by Dueling Deep-Q Network for User
Behavior Prediction. IEEE Access 2020, 8, 118192–118204. [CrossRef]

20. Liu, Y.; Cui, Q.; Zhang, J.; Chen, Y.; Hou, Y. An Actor-Critic Deep Reinforcement Learning Based Computation Offloading for
Three-Tier Mobile Computing Networks. In Proceedings of the 2019 11th International Conference on Wireless Communications
and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6

21. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the 33rd International Conference on International Conference on Machine Learning,
New York, NY, USA, 20–22 June 2016; pp. 1928–1937

22. Zhang, W.; Luo, C.; Wang, J.; Wang, C.; Zhu, Q. Deep Reinforcement Learning-Based Offloading Scheduling for Vehicular Edge
Computing. IEEE Internet Things J. 2020, 7, 5449–5465. [CrossRef]

23. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

https://www. cisco. com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/whitepaper-c11-741490. html
https://www. cisco. com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/whitepaper-c11-741490. html
http://doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/JSAC.2015.2391531
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1016/j.pmcj.2020.101217
http://dx.doi.org/10.1088/1742-6596/1229/1/012059
http://dx.doi.org/10.3390/info11020083
http://dx.doi.org/10.1109/CC.2018.8543056
http://dx.doi.org/10.1016/j.jpdc.2020.08.002
http://dx.doi.org/10.1109/ACCESS.2020.3004861
http://dx.doi.org/10.1109/JIOT.2020.2978830

Micromachines 2021, 12, 1011 15 of 15

24. Li, Q.; Zhao, J.; Gong, Y. Computation offloading and resource management scheme in mobile edge computing. Telecommun. Sci.
2019, 35, 1–11.

25. Zhang, W.; Wen, Y.; Guan, K.; Kilper, D.; Luo, H.; Wu, D.O. Energy-Optimal Mobile Cloud Computing under Stochastic Wireless
Channel. IEEE Trans. Wirel. Commun. 2013, 12, 4569–4581. [CrossRef]

26. Guo, F.; Zhang, H.; Hong, J.; Xi, L.; Leung, V. An Efficient Computation Offloading Management Scheme in the Densely Deployed
Small Cell Networks With Mobile Edge Computing. IEEE/ACM Trans. Netw. 2018, 26, 2651–2664. [CrossRef]

http://dx.doi.org/10.1109/TWC.2013.072513.121842
http://dx.doi.org/10.1109/TNET.2018.2873002

	Introduction
	Related Work
	Model and Problem Formulation
	System Model
	Application Model
	Transmission Model
	Execution on Local Devices
	Execution on Edge Nodes

	An Application-Driven Task Offloading Strategy Based on DRL
	Preliminary Sorting Mechanism (PSM)
	Task Offloading Based on Deep Q-Learning

	Experiment Evaluation
	Basic Setting of the Synthetic Dataset
	Evaluations on the Performance
	Evaluations on the Convergence

	Conclusions
	References

