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Abstract: This paper concentrates on a robust resonant control strategy of a permanent magnet
synchronous motor (PMSM) for electric drivers with model uncertainties and external disturbances
to improve the control performance of the current loop. Firstly, to reduce the torque ripple of PMSM,
the resonant controller with fractional order (FO) calculus is introduced. Then, a robust two degrees-
of-freedom (Robust-TDOF) control strategy was designed based on the modified resonant controller.
Finally, by combining the two control methods, this study proposes an enhanced Robust-TDOF
regulation method, named as the robust two degrees-of-freedom resonant controller (Robust-TDOFR),
to guarantee the robustness of model uncertainty and to further improve the performance with
minimized periodic torque ripples. Meanwhile, a tuning method was constructed followed by
stability and robust stability analysis. Furthermore, the proposed Robust-TDOFR control method
was applied in the current loop of a PMSM to suppress the periodic current harmonics caused by
non-ideal factors of inverter and current measurement errors. Finally, simulations and experiments
were performed to validate our control strategy. The simulation and experimental results showed
that the THDs (total harmonic distortion) of phase current decreased to a level of 0.69% and 5.79% in
the two testing environments.

Keywords: robustness; two degrees-of-freedom (TDOF) control; permanent magnet synchronous
motor (PMSM); resonant control; fractional order (FO) calculus

1. Introduction

Permanent magnet synchronous motors (PMSMs) have been widely employed in
servo control systems, such as in electrical vehicles, numerical control machines, and
robotic fields, owing to its advantages of high power density, low electric power loss,
and small structural size [1–4]. However, parameter mismatching, nonlinearity of the
controlled model, and uncertain disturbances inevitably exist in the PMSM servo system,
which decreases the tracking performance and stability [5].

To overcome the drawbacks of PMSMs, several useful control theories such as sliding
mode control (SMC), model predictive control (MPC), and active disturbance rejection
control (ADRC) have been developed, which are represented in references [6–8]. Compared
with traditional PID controller, these control methods can improve the robustness and
tracking performance in different aspects. However, some of these control methods rely on
ideal assumptions and large computational amounts, which limits these advanced control
methods in industry application to some degree [9,10].

A robust two degrees-of-freedom control (Robust-TDOF) strategy has been proposed
by Umeno [11,12]. This control method was established by using a free parameter within
the set of strictly proper and stable rational functions, which has the advantages of sim-
plicity, providing desired dynamic responses and strong robustness to model uncertainty
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and unknown disturbances. Therefore, it has been implemented in other servo control
systems [12,13].

On the other hand, it is pointed out that this control method is considered as obsolete,
but it provides a practical solution of the robust control in the electric drive field [13]. The
robustness of Robust-TDOF, with respect to model mismatch and external disturbance,
has been verified by means of experimental verification in references [14,15]. Despite
its advantages, this control method is only designed for the speed loop control of a DC
motor. With the development of power electronic technology especially the field-oriented
methodology decoupling control of torque and flux, the servo system of PMSM can be
constructed by the control of two first linear order plants with a PI (proportional–integral)
controller. Just like the above-mentioned advanced control methods, the Robust-TDOF
control method for PMSM has been extended in the current or speed loops to replace
a PI controller [16].

Considering the non-liner electrical dynamics, the stability of the Robust-TDOF con-
trol method applied in PMSMs with round and salient rotors has been discussed in refer-
ence [17]. The resulting stability condition provides an idea of tuning the parameters of the
Robust-TDOF controller. It should be note that though the design guideline of tradition
frequency domain Robust-TDOF controller have been thoroughly investigated [11,12]. It
was demonstrated that the Robust-TDOF filters (especially the Q filter) serve as the key
component in the controller design, which directly affects the robust performance. The
Robust-TDOF controller can effectively suppress these slow-time varying disturbances by
setting an appropriate bandwidth of the filter. However, due to the non-linear factors of
inverter, current measurement errors and periodic disturbances, i.e., harmonic components,
will occur in PMSM operation [4]. These periodic disturbances (conventionally occurring
several times more often as the fundamental frequency) may be near or outside of the
corner frequency of the Q filter (corresponding to the bandwidth), which decreases the
control performance and results in torque ripple when classical a Robust-TDOF controller
applied to PMSM. The magnitude of these high frequency components with periodic
characteristics is pretty small, which would be insignificant. Nevertheless, it should be
taken into consideration especially in a high-performance drive system.

To suppress the periodic disturbance, some control methods have been proposed. An
iterative learning control (ILC) method by combining with sliding mode control (SMC)
or model predictive control (MPC) has been proposed to minimize the repetitive distur-
bance [18,19]. However, this control method may result in large overshoots during the
transient process before the iteration error converges [20]. A repetitive control (RC) method
has been designed in a current loop to compensate the low- and high-frequency harmon-
ics, but it needed a certain storage space and increased the computational burden [21].
Additionally, a control method using two decoupled PI controllers has been employed to
minimize the periodic torque ripples [22]. This strategy constitutes a simple and practical
option to suppress the torque ripples. However, as the study describes its disadvantage,
the parameter variation is not considered.

Resonant controller is a popular control method used to deal with AC signals, which
has the advantages of small computation and easy digital implementation. Therefore, it
is widely used in grid-connected inverters [23] and doubly fed induction generators [24].
It is a common understanding that the resonant controller can suppress the harmonics
and reduce torque ripple. However, the structure of parallel connection of multi-resonant
terms has been adopted in more novel works [25,26]. Different from the previous study, a
series connect structure has been designed in this paper, which is more straightforward
and simpler. Meanwhile, the fractional-order calculus is introduced to the resonant term,
which can further improve harmonic suppression performance (see references [27–31] for
detailed information about the fractional order system).

Consequently, an enhanced Robust-TDOF control strategy named as Robust-TDOFR
controller is proposed by embedding the series resonant terms. Furthermore, based on the
derived stability and robust stability condition, a simple tuning method is provided, and
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possible trade-offs are explored. Finally, the proposed control method is applied to current
loop to eliminate the slow-varying and unmodeled periodic disturbances.

The outline of paper is organized as follows. Section 2 gives a dynamic model of the
PMSM, and Section 3 demonstrates the performance analysis and design process of the
developed control method. Section 4 presents the simulation and experimental results of
the proposed algorithm. Finally, our findings and conclusions are summarized in Section 5.

2. Dynamic Model of a PMSM

The mathematical model of the PMSM in the rotating reference frame can be expressed
as follows [8]: 

diq
dt = 1

Lq
(uq − Rqiq − npωLdid − npωψ f )

did
dt = 1

Ld
(ud − Rdid + npωLqiq)

dω
dt = 1

J (Te − Tf − TL)
dθe
dt = npω

(1)

in which {
Te = 1.5np[ψ f iq + (Ld − Lq)idiq]
Tf = Bωω

(2)

where iq and id denote the state currents in d- and q-axes; ud and uq are the stator voltages;
and Ld, Lq, Rd and Rq represent the stator inductance and resistance along the d–q-axis. Te,
Tf , TL, ψ f , np, Bω , ω and θe are the electromagnetic torque, friction torque and load torque,
flux linkage, number of pole pairs, frictional coefficient, mechanical speed and electrical
angle, respectively.

If the surface-mounted PMSM is selected, it indicates:{
Ld = Lq
Te = 1.5npψ f iq

(3)

3. Design of Robust-TDOFR Controller

We start with a brief description of the traditional Robust-TDOF controller to ana-
lyze its main advantages and disadvantages; this drawbacks motivated us to design the
proposed Robust-TDOFR controller, which will be detailed in this section.

3.1. Preliminaries of Robust-TDOF Controller

Figure 1 demonstrates the control diagram of Robust-TDOF controller which utilizes
the controlled plant model as an explicit part of controller parameters. The Robust-TDOF
can provide strong robustness with respect to model uncertainty and external disturbance
and guarantee desired dynamic response by using the serial compensator CA(s) and
detector CB(s) [11,32]. Gp(s) is the model of control plant.
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Figure 1. Diagram of the robust two degrees-of-freedom (Robust−TDOF) controller.

Based on two degrees-of-freedom control methodology, CA(s) and CB(s) have the
following expressions:  CA(s) =

Gry(s)
(1−Gry(s))Gpn(s)(1−Q(s))

CB(s) =
Q(s)

(1−Q(s))Gpn(s)

(4)
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where Gry(s)= 1/(τs + 1) is the preset dynamic behavior, and τ is the time constant
associated with the dynamic response. Gpn(s)= 1/(L0s + R0) is the nominal model of
control plant; L0 and R0 are the parameters of the nominal model, which can be determined
by a crude estimation; Q(s) is the internal model filter, given by:

Q(s) =
2λs + 1

(λs)2 + 2λs + 1
(5)

where λ is a parameter determining the robustness of Robust-TDOF.
Based on Equations (4) and (5), the CA(s) and CB(s) are derived as follows:{

CA(s) =
((τs)2+2λs+1)(L0s+R0)

τs3

CB(s) =
2λL0

s2 (s + 1
2λ )(s +

R0
L0
)

(6)

According to Equation (5), and using the inverse Laplace transform, the control law
uIMC(t) of Robust-TDOF can be expressed as:

uIMC(t) = kpee(t) + kie1
∫ t

0 e(t)dt + kie2
∫ t

0 [
∫ θ

0 e(θ)dθ]dt + kie3
∫ t

0 [
∫ θ

0 [
∫ f

0 e( f )d f ]dθ]dt
−kpyi(t)− kiy1

∫ t
0 i(t)dt− kiy2

∫ t
0 [
∫ θ

0 i(θ)dθ]dt
(7)

where e(t) = ire f − i(t), kpe =
L0
λ , kie1 = L0

τ ( 1
λ + R0

L0
), kie2 = L0

τ ( 1
λ2 +

2R0
L0λ ), kie3 = R0

τλ2 ,

kpy = 2L0
λ , kiy1 = L0(

1
λ2 +

2R0
L0λ ), kiy2 = R0

λ2 .
The integral links in Equation (7) may result in iterated integral overflow. To avoid

this problem, the following state variables are defined:

z1 = e(t), z2 =
∫ t

0 e(t)dt− ire f α1kpe

(kie1+kiy1)
, z3 =

∫ t
0 [
∫ r

0 e(δ)dδ− ire f γ1kiy1
kie2+kiy2

]dr− ire f α2kpy

(kie2+kiy2)
,

z4 =
∫ t

0

{∫ r
0 [
∫ d

0 e(θ)dθ − ire f
kiy2
kie3

]dδ− γ2kiy1
kie3

ire f

}
dr− Rire f

kie3
− α3ire f kpy

kie3

where α1, γ1 ∈ R+ and α2, α3, γ2 ∈ R. If α1, α2, α3, γ1 and γ2 satisfy the following condition:
α1 + α2 + α3 = 1
γ1 + γ2 = 1

α1kpe
kie1+kiy1

=
kiy2
kie3

=
γ1kiy1

kie2+kiy2
α2kpy

(kie2+kiy2)
=

γ2kiy1
kie3

(8)

We can write:
.
z4 = z3,

.
z3 = z2,

.
z2 = z1 (9)

Then, the control law in Equation (7) can be expressed as:

uIMC(t) = (kpe + kpy)z1 + (kie1 + kiy1)z2 + (kie2 + kiy2)z3 + kie3z4 (10)

3.2. Robust Performance Analysis of Robust-TDOF

If the error between the actual model and nominal model occurs, i.e.,
Gp(s) = Gpn(s)(1 + ∆Gpn(s)), the closed transfer function with Robust-TDOF can be
obtained as:

i(s) ≈ [1 + (1−Q(s))DGpn(s)]Gry(s)ire f (s) + (1−Q(s))(1− Gry(s))d(s) (11)

where ire f (s) and i(s) represent the input and output signals of ire f and i(t), respectively.
The lumped disturbance and uncertainty Ld(s) can be denoted as:

Ld(s) ≈ (1−Q(s))[∆Gpn(s) + (1− Gry(s))d(s)] (12)
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Here, (1−Q(s) and (1− Gry(s)) are the high pass filters, and their cut off frequencies
satisfied 1/λ � 1/τ. The preset dynamic response can be regarded as a given tracking
trajectory to be designed; hence, τ is a known parameter rather than tuning gain. The
robustness of Robust-TDOF is only affected by the λ tuning.

To ensure satisfactory robustness of Robust-TDOF, the high pass filter 1 − Q(s)
should be maintained enough transients decay rate in the bandwidth of (0, 1/τ), i.e.,
|(1−Q(jω))| = 0 for ω = 0 and |(1−Q(jω))| > 0 for ω > 0. Therefore, the external
disturbance can be attenuated. Meanwhile, it is apparently observed that the attenua-
tion ability decreases with the increase in ω, because the magnitude difference between
|(1−Q(jω))| and 0 dB line decreases depending on the bandwidth of the Q(s). The fre-
quency domain analysis indicates λ should be selected as small as possible to achieve
a good robust performance. However, this will introduce large high frequency noise to
control system [11,17]. In practice, choosing λ is balanced between robustness and noise
suppression, which limits the anti-disturbance ability.

3.3. Disturbance Suppression with Resonant Controller

When the external disturbance is a constant, the Robust-TDOF can ensure satisfactory
anti-disturbance ability. However, the traditional Robust-TDOF controller has difficult to
attenuate to the high frequency periodic disturbances, owing to the fact that these high
frequency periodic signals may be outside the bandwidth of 1−Q(s). To further improve
the anti-disturbance ability of Robust-TDOF, the resonant controller with series connection
structure is embedded in the forward path, which has the following expression:[

CA(s)′

CB(s)′

]
=

[
HA(s) 0

0 HB(s)

][
CA(s)
CB(s)

]
(13)

HA(s) and HB(s) are the periodic disturbance suppression controllers to be designed.
CA(s)′ and CB(s)′ represent the modified controllers.

According to Equation (4) and Equation (13), the closed transfer function of current
loop can be obtained as:

i(s) =
Gry(s)HA(s)ire f (s)

T(s)
+

(1−Q(s))(1− Gry(s))Gp(s)d(s)
T(s)

(14)

where:

T(s) = (1−Q(s))(1− Gry(s)) + Gry(s)HA(s) + (1− Gry(s))Q(s)HB(s) (15)

If HA(s) = HB(s) = H(s), Equation (15) can be derived as:

T(s) = (1−Q(s))(1− Gry(s))(1− H(s)) + H(s) (16)

According to the analysis in Section 3.2, (1−Q(s)) is a high pass filter; hence, when
ω ≤ 1/τ, it is not difficult to verify that:

[(1−Q(s))(1− Gry(s))(1− H(s))]� H(s) (17)

Then, Equation (14) can be further simplified as:

i(s) = Gry(s)ire f (s) +
(1−Q(s))(1− Gry(s))Gp(s)d(s)

H(s)
(18)

According to Equation (18), it can be observed that the preset dynamic response
remains unaffected by the designed controller owing to the filter (1−Q(s)). This provides
an approach that can independently design the high frequency periodic disturbance sup-
pression controller. Moreover, it can be also observed that the d(s) can be attenuated if d(s)
is in the bandwidth of (0,1/λ). However, the current loop contains some high frequency
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harmonics components, i.e., the sixth and the twelfth, which may be outside the bandwidth
of attenuation frequencies or closed to the cutoff frequency. In such cases, these harmonic
components cannot be effectively suppressed.

Conventionally, the high frequency periodic disturbance in current loops can be
expressed as Fourier series as follows:

d(t) =
∞

∑
n=1

ρncos(nωh) +
∞

∑
n=1

δnsin(nωh) (19)

where ρn and δn are the amplitudes of disturbance, and ωh is the electrical angular frequency.
Based on Laplace transform, Equation (19) can be derived as:

d(s) =
∞

∑
n=1

ρns + δnnωh

s2 + (nωh)
2 (20)

To attenuate the periodic disturbances of d(s) and avoid unstable poles at s = ±jnωh,
the H(s) should be chosen as follows:

H(s) = F(s)
∞

∑
n=1

Rn(s) =
ksα

(ϑsα + 1)

∞

∑
n=1

2s

s2 + 2ξs + (nωh)
2 (21)

where F(s) is the fractional order operator introduced to improve the ability of periodic
disturbance suppression, and α ∈ (0, 1); ϑ = 1/(2π f ) is the time constant; f is the sampling
frequency of current loop. Rn(s) represents the controller used to suppress nth harmonics;
k is the tuning gain, and ξ is the damping cutoff frequency satisfied ξ � nωh.

By combining Equation (7) and Equation (21), the Robust-TDOF with a series resonant
controller can be expressed as:

U(s) = (1 + H(s))(CA(s)− CB(s)) (22)

The corresponding control structure is shown in Figure 2, and the added new controller
is enclosed by the blue dashed rectangle.
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Figure 2. Control diagram of Robust−TDOF cascaded resonant controller.

3.4. Parameters Analysis of the Resonant Controller

According to the analysis in reference 25, the sixth and twelfth harmonics are the
dominant components of periodic disturbances. Thus, the center frequencies can be first
determined by 6ωh = 900 rad/s and 12ωh = 1800 rad/s. The sampling frequency f of
the current loop is 10 kHz, and the constant value ϑ can be calculated by ϑ = 1/(2π f )
= 1.59 × 10−5. k, ξ and α are essential parameters which determine the periodic disturbance
suppress ability. To analyze the effect of the three parameters on the periodic disturbance
suppression, characteristics of 1 + H(s) with different values of k, ξ and α are investigated.

Figure 3a demonstrates the amplitude-phase characteristics of 1 + H(s) with increas-
ing k, with α and ξ remaining at 0.1 and 10 rad/s, respectively. It can be observed that the
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larger k can ensure larger gain at resonant frequencies. However, the bandwidth is not
changed. Figure 3b shows the characteristics of resonant gain and bandwidth with the vari-
ation of ξ when k= 10 and α= 0.1. The bandwidth increases as ξ increases; however, this
will reduce the gain. In practical resonant controller design, ξ values of 5~15 rad/s have
been found to provide a good tradeoff [33]. Figure 3c exhibits the Bode diagram of 1+ H(s)
with α sweeping, and k and ξ maintaining the constant values of 5 and 10 rad/s, respec-
tively. It can be seen that the bandwidth and resonant gain are improved as α increases.
Furthermore, it is interesting to note that the amplitude of resonant gain at 1800 rad/s is
higher than that at 900 rad/s, which is quite different from the k and ξ tuning. The effect of
α on the resonant gain can be described as k(nωh − ξ)(nωh)

α. The resonant gain increases
exponentially with the resonant frequency, and the increase rate is the fraction order term α.
α cannot be set as very large, because the characteristics of other frequencies may change.
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3.5. Robust-TDOF with Resonant Controller (Robust-TDOFR) Analysis

The resonant controllers were used in the control system, which will result in oscillation
and decrease the dynamic response. A similar conclusion has been presented in [34,35]. The
traditional solution is to add a low-pass filter to the reference input and improve the phase
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margin [35]. However, this will increase the delay of control system. To analyze the impact
of resonant controller on the Robust-TDOF, the following transfer function is defined:

Φ(s) = (1−Q(s))(1− Gry(s))(1− H(s)) (23)

Figure 4 demonstrates the bode diagram of Φ(s) and H(s) with different resonant gain.
It can be seen that two resonant peaks appear in the original Robust-TDOF (k = 0). The value
of magnitude difference between Φ(s) and H(s) increases as resonant gain and frequency
increase when ω ≤ 1/τ. The value of the magnitude difference at 1/τ (corresponding to
the bandwidth of Gry(s)) is 60 dB, which suggests the condition represented in Equation
(17) can be maintained. Thus, the poles of the resonant controller which lead to oscillation
and overshoot on the dynamic response can be cancelled. The simulation result indicates
that the Robust-TDOFR controller can not only ensure satisfactory robustness and suppress
the high frequency harmonics, but also attenuate the negative impact of resonant controller
on the dynamic response.
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3.6. Design of Robust-TDOFR Controller

The stability and robust stability are first analyzed, and the derived conditions will be
regarded as the constraint to design the parameters of the Robust-TDOFR controller.

According to Figure 2 and Equation (22), the closed transfer function of the closed
loop can be expressed as:

i(s) = CA(s)(1+H(s))Gp(s)
1+(CA(s)+CB(s))(1+H(s))Gp(s)

ire f (s)

+
Gp(s)

1+(CA(s)+CB(s))(1+H(s))Gp(s)
d(s)

(24)

Theorem 1 (Stability). The Robust-TDOFR controller is stable if the following condition is satisfied:

‖H(s)‖∞ < ‖ 1 + (CA(s) + CB(s))
Gp(s)(CA(s) + CB(s))

‖
∞

(25)

Proof. The traditional Robust-TDOF and control plant can be written as:{
Gp(s) = N(s)D−1(s)
UIMC(s) = [CB(s), CA(s) + CB(s)] = D−1

c (s)[K(s), Nc(s)]
(26)
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where UIMC(s) is a coprime fraction description of Robust-TDOF, and N(s), D−1(s),
D−1

c (s), K(s) and Nc(s) are proper and stable rational functions. �

The system with Robust-TDOF is only internally stable if Dc(s) and Nc(s) satisfy the
following condition [12]:

Dc(s)D(s) + Nc(s)N(s)= 1 (27)

When the series resonant controller H(s) is considered, the characteristic polynomial
of the closed loop is modified as follows:

L(s) =
[
1 + Gp(s)(CA(s) + CB(s))

]
×
[

1 +
(CA(s) + CB(s))H(s)

1 + Gp(s)(CA(s) + CB(s))

]
(28)

Assuming that Equation (27) is satisfied, the stability of the Robust-TDOFR controller
only determined by:

Ω(s) =
(CA(s) + CB(s))H(s)

1 + Gp(s)(CA(s) + CB(s))
(29)

According to small gain theorem [36], the necessary and sufficient condition for closed
loop system stability can be represented as:

‖Ω(s)‖∞ ≤ ‖
(CA(s) + CB(s))

1 + Gp(s)(CA(s) + CB(s))
‖

∞
‖H(s)‖∞ < 1 (30)

According to Equation (30), the stability condition in Equation (31) can be obtained.
Equation (25) indicates that the gains at resonant frequencies cannot be set too large. There-
fore, it is clear that a tradeoff between stability performance and harmonic suppression
ability is imposed.

Theorem 2 (Robust Stability). The closed loop system is robust stability if the following condition
is satisfied:

‖∆Gp(s)‖∞ < ‖ 1
L(s)− 1

‖
∞

(31)

Proof. When the model uncertainty is considered, the characteristic polynomial of closed
loop can be expressed as:

L̃(s) = 1 + Gp(s)(1 + ∆Gp(s))× (CA(s) + CB(s))(1 + H(s)))
= [1 + Gp(s)(CA(s) + CB(s))(1 + H(s)]

×
[
1 + Gp(s)(CA(s)+CB(s))(1+H(s))

1+Gp(s)(CA(s)+CB(s))(1+H(s)∆Gp(s)
]

= L(s)(1 + Ξ(s)∆Gp(s))

(32)

where Ξ(s) = Gp(s)(CA(s)+CB(s))(1+H(s))
1+Gp(s)(CA(s)+CB(s))(1+H(s) .

L(s) can be maintained stable by satisfying the assumption of Equation (25). Thus, to
guarantee the robust stability of current loop, (1 + Ξ(s)∆Gp(s)) should be stable. Based on
the small gain theorem represented in ref 36, a sufficient condition for the robust stability
can be deduced as follows:

‖Ξ(s)∆Gp(s)‖∞ ≤ ‖Ξ(s)‖∞‖∆Gp(s)‖∞ < 1 (33)

This indicates that:

‖∆Gp(s)‖∞ ≤ ‖ 1+Gp(s)(CA(s)+CB(s))(1+H(s))
Gp(s)(CA(s)+CB(s))(1+H(s)) ‖∞

< ‖ 1
Gp(s)(CA(s)+CB(s))(1+H(s)‖∞

(34)
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According to Equation (34), Equation (31) can be derived. �

Based on the stability and robust ability analysis, a tuning method guideline is con-
structed by trading off the constraints of the two conditions and harmonics suppression
performance (corresponding to resonant gain values).

In order to design the parameters of the proposed Robust-TDOFR controller, the inner
loop and sensitive function are introduced. For the classical Robust-TDOF, the sensitive
function S(s) and inner loop gain of Lgain(s) can be represented as:

S(s) = 1−Q(s), Lgain(s) =
1− S(s)

S(s)
=

Q(s)
1−Q(s)

(35)

Combining Equation (5) and Equation (13), their explicit expressions can be written as:

Lgain(s) =
2λs + 1

(λs)2 , S(s) =
(λs)2

(λs)2 + 2λs + 1
(36)

When the H(s) is considered, then the modified functions are given as follows:

LgainH(s) = (
2λs + 1

(λs)2 )(1 + H(s)), SH(s) =
1

1 + LgainH(s)
(37)

It is not difficult to verify
∣∣LgainH(s)

∣∣� 1; hence, |SH(jnω0)| ∼=
∣∣LgainH(jnω0)

∣∣−1 can
be maintained.

Assume that time delay is the only unmodeled part, which is given by:

∆Gp(s) = e−
1

10,000 s (38)

Firstly, we select Q(s) so that Lgain(s)∆Gp(s) has the preferred phase margin of
ϕM = 80◦; then, the upper bound of the bandwidth of the Q(s) can be determined, which
is denoted as [1/λ]Bmax

∼= π/2−ϕM
0.75 f = 40, 000π/27 rad/s [37]. Assuming the constant

parameter of Gry(s) is given as 0.028, this imposes:

Gry(s) =
1

0.028s + 1
(39)

Secondly, the target across target crossover frequency is selected as [1/λ]C = 1000 rad/s,
satisfying [1/ λ]C < [1/ λ]Bmax. Combining the stability condition in Equation (25), the max-
imum magnitude gain (Hmax(s)) at resonant frequencies can be achieved, which can be
considered as a constraint of the system. Therefore, the desired magnitude values of sensitive
function at resonant frequencies are chosen as:

|SH(jnω0)| =
∣∣LgainH(jnω0)

∣∣−1
= A−1

nh =

{
200−1(−25.3 dB) n = 6
160−1(−20 dB) n = 12

(40)

where Anh represents the nth resonant gain.
Finally, the preset bandwidth at resonant frequencies can be determined by:∣∣∣LgainH(jεnω0)

1+α)
∣∣∣ = Anh√

2
(41)

where ε > 1 (see reference [38] for the detailed derivation).
The non-linear equations with four unknown parameters, i.e., λ, k, α and ξ are estab-

lished to describe the frequency domain characteristic of the proposed controller, and they
can be obtained by releasing one (or more) requirement(s) and repeat until determined
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(MATLAB SIMULINK software is recommended to specify these parameters). The Bode
diagrams of Hmax(s), loop gain, and sensitive functions are shown in Figures 5 and 6.

Energies 2021, 14, 1015 12 of 23 
 

 

The non-linear equations with four unknown parameters, i.e., λ , k , α  and ξ  

are established to describe the frequency domain characteristic of the proposed controller, 

and they can be obtained by releasing one (or more) requirement(s) and repeat until deter-

mined (MATLAB SIMULINK software is recommended to specify these parameters). The 

Bode diagrams of smaxH ( ) , loop gain, and sensitive functions are shown in Figures 5 and 6. 

 

Figure 5. Bode diagram of maxH s( ) . 

  
(a) Loop gain function (b) Sensitive Function 

Figure 6. Bode diagram performance comparison of the traditional Robust-TDOF and Robust-TDOFR controller: (a) loop 

gain function and (b) sensitive function. 

4. Simulation and Experimental Verification 

Simulations and experiments were carried out to verify the performance of the pro-

posed controller. Table 1 presents the parameters of the PMSM. To validate the proposed 

effectiveness of the proposed control method, the PI and PIR (proportional–integral–res-

onant) [25] controllers were conducted in the simulation and experimental evaluation pro-

cess, as observed in Figure 7. 

  

Figure 5. Bode diagram of Hmax(s).

Energies 2021, 14, 1015 12 of 23 
 

 

The non-linear equations with four unknown parameters, i.e., λ , k , α  and ξ  

are established to describe the frequency domain characteristic of the proposed controller, 

and they can be obtained by releasing one (or more) requirement(s) and repeat until deter-

mined (MATLAB SIMULINK software is recommended to specify these parameters). The 

Bode diagrams of smaxH ( ) , loop gain, and sensitive functions are shown in Figures 5 and 6. 

 

Figure 5. Bode diagram of maxH s( ) . 

  
(a) Loop gain function (b) Sensitive Function 

Figure 6. Bode diagram performance comparison of the traditional Robust-TDOF and Robust-TDOFR controller: (a) loop 

gain function and (b) sensitive function. 

4. Simulation and Experimental Verification 

Simulations and experiments were carried out to verify the performance of the pro-

posed controller. Table 1 presents the parameters of the PMSM. To validate the proposed 

effectiveness of the proposed control method, the PI and PIR (proportional–integral–res-

onant) [25] controllers were conducted in the simulation and experimental evaluation pro-

cess, as observed in Figure 7. 

  

Figure 6. Bode diagram performance comparison of the traditional Robust-TDOF and Robust-TDOFR controller: (a) loop
gain function and (b) sensitive function.

4. Simulation and Experimental Verification

Simulations and experiments were carried out to verify the performance of the pro-
posed controller Table 1 presents the parameters of the PMSM. To validate the proposed effec-
tiveness of the proposed control method, the PI and PIR (proportional–integral–resonant) [25]
controllers were conducted in the simulation and experimental evaluation process, as ob-
served in Figure 7.

Table 1. Parameters of the permanent magnet synchronous motor (PMSM).

Symbol Quantity Value

L d–q frame inductance 0.0085 H
R Armature resistance 0.569 Ω
P Number of pole pairs 3
F Flux linkage 0.00175 Wb
J Inertia 0.0012 kg·m2
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4.1. Simulation Results

The control diagram of PMSM shown in Figure 7 was conducted in MATLAB-SIMULINK
to verify the proposed Robust-TDOFR controller. The field orientated control method (FOC)
was used to obtain maximum output torque and maintain id = 0. The switching frequency and
bus voltage of inverter were set as 10 kHz and 380 V, respectively. Note that the control diagram
of PMSM constructed in MATLAB was an ideal model, and the dead time effect of inverter and
current measure errors were not considered in the modeling. Hence, the current harmonics
will not appear in a current loop. To simulate the actual motor drive system, the sixth and
twelfth harmonic components are injected in the inverter. The simulation mainly focuses on
the dynamic response, current loop robustness and harmonics suppression performances.

(1) Dynamic response evaluation: to highlight the effectiveness of the proposed controller
on minimizing the oscillation caused by resonant controller, the PI controller and Robust-
TDOFR controller were tuned to make the dynamic response reach the 96% iqre f within the
same time. Then, the dynamic response with PI-R and Robust-TDOFR are compared.

The parameters of PI-R and Robust-TDOFR are presented in Table 2.

Table 2. Parameters of the FOVR-Robust-IMC.

Robust-TDOFR
λ τ L0 R0 k ξ α

0.0006 0.028 0.0085 0.569 20 15 0.3

PI-R
kp ki k6 k12 ωc

0.3 20 20 20 15

Figure 8 shows the dynamics response of PIR and Robust-TDOFR. It can be seen that
the oscillation occurs in the transition process when the PIR controller is employed in
current loop. The oscillation seriously weakens the dynamic response of control system.
Thus, it can be concluded that the PI controller has limited ability to suppress the oscillation
caused by resonant controllers. When the proposed Robust-TDOFR is used, the oscillation
is effectively eliminated. The negative impact of resonant controllers has been reduced to
an extremely low level, which indicates better dynamic response can be obtained.
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Figure 9 exhibits the dynamic response of the PI and Robust-TDOFR when parameters
of PMSM variation. As can be seen from Figure 9a, a large overshoot occurs in the current
loop when the PI controller is used after inductance changes to L = 3L0. The overshoot
extends the settling time to reach the steady state. As opposed to the PI controller, the
tracking trajectory with Robust-TDOFR showed little changed. The trace trajectory still
reached the steady state according to the preset dynamic behavior. Figure 9b demonstrates
the dynamic response under the parameter variation of R = 6R0. The trajectory with the
PI controller reached the command current without overshoot; nevertheless, a long settling
time was required. By contrast, the dynamic response with Robust-TDOFR controller was
not affected by the reluctance variation. The simulation results proved that the Robust-
TDOFR has strong robustness with respect to parameter mismatch.
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comparison results of Robust-TDOFR and PI when L = L0, R = 6R0.

(2) Current loop harmonic suppression performance evaluation: To verify the pro-
posed control method, the PI and PIR controllers were selected for comparison. The
parameters of PI and PIR are listed in Table 2. The motor ran in the operation of load and
no-load under a speed of 1500 /π r/ min. The electrical angular frequency can be calculated
by ωh = 150 rad/s. Figure 10a shows the phase current and FFT (fast Fourier transform)
analysis with the PI controller. It can be observed that the phase current was distorted
by the fifth, seventh, eleventh, and thirteenth harmonic components. The amplitude of
fundamental frequency (23.87 Hz) was 3.97 A, and the amplitude of the fifth, seventh,
eleventh, and thirteenth harmonics were 0.22 A, 0.16A, 0.049 A and 0.042 A, respectively.
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The total harmonic distortion (THD) is used to evaluate the quality of the phase current,
and is calculated by:

THD =

√
n

∑
i=2

(
In

I1
)

2
(42)

where In and I1 represent the amplitude of nth harmonics and fundamental
frequency, respectively.
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According to Equation (42), the THD value with a PI controller is 6.89%, which is
relatively large. These harmonic components will weaken the steady state performance,
which should be suppressed in high performance drive system.

Figure 10b shows the phase current with a PIR controller; it can be seen that the phase
current quality is better, and the magnitudes of the fifth, seventh, eleventh, and thirteenth
harmonic components are reduced by 80% (from 0.22 to 0.044 A), 73.75% (from 0.16 to
0.042 A), 50.20% (from 0.049 to 0.0244 A) and 43.33% (from 0.042 to 0.0238 A), respectively.
The THD is decreased by 71.84% (from 6.89% to 1.94%). The FFT analysis suggests that
the PIR controller can obtain satisfactory harmonics suppression performance to the fifth
and seventh harmonics. However, the eleventh and thirteenth harmonic components
equivalent to the twelfth in the d–q-axis cannot be suppressed effectively.

Figure 10c exhibits the simulation result with the proposed Robust-TDOFR controller.
It can be seen that the phase current is further improved, and the fifth, seventh, eleventh,
and thirteenth amplitudes are decreased by 98.95% (from to 0.22 to 0.0023 A), 99% (from 0.16
to 0.0016 A), 95.5% (from 0.049 to 0.0022 A) and 95% (from 0.042 to 0.0021 A), respectively,
compared with the PI controller. The THD has dropped to a value of 0.69%. The simulation
results prove that the proposed controller can effectively suppress the sixth and twelfth
harmonics in the d–q-axis. The magnitudes of the fifth, seventh, eleventh, and thirteenth
harmonics with three control methods under the operation of no load are listed in Table 3.
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Table 3. Simulation results under the operation of no-load.

Harmonic Order Fifth Seventh Eleventh Thirteenth THD (%)

PI
Amplitude

(A)

0.22 0.002 0.049 0.042 6.89

PIR 0.044 0.042 0.0244 0.0238 1.94

Robust-TDOFR 0.0023 0.0016 0.0022 0.0021 0.69

Figure 11 exhibits the steady-state performance of the q-axis current with three control
methods. The ratio of peak-to-peak current to average current is used as an index of the
torque ripple evaluation, which can be expressed as:

SRF = Spc/Sac (43)
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As can be seen from Figure 11a, the q-axis current fluctuates with sixth and twelfth
harmonic components when the PI controller is utilized for current regulation. The SRF of
the PI controller reaches a value of 9.12%. By comparing with a PI controller, the SRF with
PIR controllers (corresponding to Figure 11b) have decreased to 3.43%. In contrast to PI
and PIR controllers, the q-axis SRF value has reduced to a level of 1.56%. Therefore, the
effectiveness of the proposed controller is verified.

(3) Harmonics suppression evaluation with a sudden load: Figure 12 shows the current
waveform with three control methods under the operation of sudden load, at a load time
of 2 s. The signal from 2.5 s to 2.6 is used to analyze the harmonic components. When the
PI controller was used, the THD reaches a value of 8.35%, and the amplitude of the fifth,
seventh, eleventh, and thirteenth harmonic components were 0.33 A, 0.25 A, 0.092 A and
0.079 A, respectively. Compared with the PI controller, the THD with the PIR controller
decreased by 42.5%. Meanwhile, the fifth, seventh, eleventh, and thirteenth harmonic
components were reduced by 65.15%, 60.8%, 44.56% and 45.57%, respectively. Figure 12c
shows the current and FFT analysis when the Robust-TDOFR controller was utilized in
current loop. By comparing with PI controller, the harmonic components are decreased by
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83.94% (fifth), 85.6% (seventh), 76.08% (eleventh) and 77.21% (twelfth). Furthermore, the
THD has a drop of 50.41%. The simulation results with a sudden load are shown in Table 4.
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Table 4. Simulation results under the operation of load.

Harmonic Order Fifth Seventh Eleventh Thirteenth THD (%)

PI
Amplitude

(A)

0.33 0.25 0.092 0.079 8.35

PIR 0.115 0.098 0.051 0.0238 4.80

Robust-TDOFR 0.053 0.037 0.022 0.017 4.14

Figure 13 demonstrates the q-axis current curve with a loading case. It can be observed
that the transition process from a no-load to load state with the proposed Robust-TDOFR
controller is smoother than with the PI and PIR controllers. Furthermore, the SRF value with
the Robust-TDOFR control method (from 3.6 s to 4.0 s) has dropped to 1.58%, while that
with PI and PIR controllers are 8.91% and 3.16%, respectively. Hence, it can be concluded
that the proposed Robust-TDOFR controller can achieve better dynamic response and
smaller torque ripple in the case of load conditions.

4.2. Experimental Results

In order to verify the effectiveness of our proposed Robust-TDOFR control strategy, the
experiment was performed in the test setup shown in Figure 14. The hardware architecture
of DSP TMS320F28335 with FPGA-EP3C40F324 was adopted in the servo control system.
A diagram of the overall structure of the PMSM is shown in Figure 15. The FPGA (field
programmable gate array device) was used for encoder reading and generating IGBT
(insulated gate bipolar transistor) control signals, and the DSP was employed to control
the motor. The sampling frequencies of the speed and current loops were set as 1 kHz and
10 kHz, respectively.
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(1) Current dynamic response: As can be seen from Figure 16a, the dynamic response
with a traditional PI controller occurred with a certain overshoot, which resulted in a
long settling time. Meanwhile, the oscillation further deteriorated the transition response
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when a resonant controller was used in the current loop (corresponding to Figure 16b).
It is demonstrated from Figure 16c that the proposed controller shows better tracking
performance in terms of settling time and overshoot. Figure 16d demonstrates the dynamic
response of the proposed controller when parameter mismatch L = 3L0 and R = 6R0. It
can be seen that the tracking trajectory in such a case shows little change compared with
the original dynamic response (corresponding to Figure 16c). The experimental results
show that the proposed controller has a strong robust ability to parameter mismatches.
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(2) Current loop harmonic suppression performance evaluation without load: Figure 17
shows the phase current and q-axis current when PI, PIR and our method used in current loop.
The magnitudes of the fifth, seventh, eleventh, and thirteenth harmonic components with
the PI controller were 0.037 A, 0.033 A, 0.023 A and 0.028 A, respectively, and the THD was
14.51%. It can be observed that the current waveform was improved when a PIR controller is
used in the current loop. The magnitudes of the harmonic components decreased to 0.018 A,
0.0148 A, 0.012 A and 0.014 A, respectively. Meanwhile, the THD was reduced to 9.47%.
As can be observed from Figure 17c, the current quality was further improved when the
proposed Robust-TDOFR controller was employed in the current loop. The magnitudes of the
harmonic components and THD dropped to 0.0075 A, 0.0072 A, 0.006 A, 0.0052 A and 5.03%,
respectively (the experimental results are summarized in Table 5). The experimental results
show that the proposed controller can obtain better harmonic suppression performance than
PI and PIR controllers.
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Figure 17. Phase current and FFT analysis results: (a) with a PI controller, (b) with a PIR controller and (c) with a
Robust-TDOFR controller.

Table 5. Experimental results under the operation of load.

Harmonic Order Fifth Seventh Eleventh Thirteenth THD (%)

PI
Amplitude

(A)

0.037 0.033 0.023 0.028 14. 51

PIR 0.018 0.0148 0.012 0.014 9.47

Robust-TDOFR 0.0075 0.0072 0.006 0.0052 5.03

(3) Harmonic suppression evaluation with sudden load: Figure 18a shows the phase
current of Ia with the PI controller; it can be observed that the current was distorted by the
current harmonics, and the THD reached a value of 18.67%. By comparing Figure 18b with
Figure 18a, the quality of phase current was improved, and the THD was reduced to 10.16%.
It can be concluded that the PIR controller can suppress the harmonic components to some
degree. Figure 18c demonstrates the phase current with the proposed Robust-TDOFR con-
troller, and the THD further decreased to a value of 5.79%. The corresponding q-axis current
is shown in Figure 19. These experimental results exhibit that the proposed controller can
ensure a better harmonic suppression performance than PI and PIR controllers under the
condition of sudden load. Table 6 summarizes the results of the three control methods.
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Table 6. Experimental results under the operation of sudden load.

Harmonic Order Fifth Seventh Eleventh Thirteenth THD (%)

PI
Amplitude

(A)

0.048 0.042 0.033 0.031 18. 67

PIR 0.020 0.0152 0.0125 0.0155 10.16

Robust-TDOFR 0.0086 0.00817 0.0069 0.00618 5.79

5. Conclusions

This study proposed an improved Robust-TDOF controller with multiple series reso-
nant controllers to suppress the current harmonics and reduce torque ripple. The Robust-
TDOF controller was designed to guarantee robust performance to model uncertainty
and achieve a satisfactory dynamic response, and the resonant controller with a series
connection structure was used to reject the high-frequency unmodeled disturbances. The
stability and robust stability conditions derived in this paper were set as two constraints
to determine the controller parameters. We also found that the Robust-TDOF controller
can eliminate the oscillation caused by the resonant controller. Therefore, a hybrid control
method combining Robust-TDOF and series resonant controllers was explored, which
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can not only realize satisfactory dynamic response, but also ensure strong robustness to
parameter mismatch and periodic disturbance. The simulations and experiments were
carried out to verify the effectiveness of our method.
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