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Optical sensor data fusion technology is a research hotspot in the field of information science in recent years, which is widely used
in military and civilian fields because of its advantages of high accuracy and low cost, and target recognition is one of the
important research directions. Based on the characteristics of small target optical imaging, this paper fully utilizes the frontier
theoretical methods in the field of image processing and proposes a small target recognition algorithm process framework
based on visible and infrared image data fusion and improves the accuracy as well as stability of target recognition by
improving the multisensor information fusion algorithm in the photoelectric meridian tracking system. A practical guide is
provided for the solution of the small target recognition problem. To facilitate and quickly verify the multisensor fusion
algorithm, a simulation platform for the intelligent vehicle and the experimental environment is built based on Gazebo
software, which can realize the sensor data acquisition and the control decision function of the intelligent vehicle. The
kinematic model of the intelligent vehicle is firstly described according to the design requirements, and the camera coordinate
system, LiDAR coordinate system, and vehicle body coordinate system of the sensors are established. Then, the imaging
models of the depth camera and LiDAR, the data acquisition principles of GPS and IMU, and the time synchronization
relationship of each sensor are analyzed, and the error calibration and data acquisition experiments of each sensor are completed.

1. Introduction

With the rapid development of modern optoelectronic
reconnaissance technology, the image acquisition, transmis-
sion efficiency, and imaging accuracy of visible and infrared
reconnaissance systems have been greatly improved, and the
simultaneous carrying of these two optical reconnaissance
systems on a single platform (on water or in the air) has also
become a mainstream practice to further improve the effec-
tiveness of reconnaissance platforms in single sortie condi-
tions [1–3]. These optical sensing platforms obtain a large
number of digital images and transform them into useful
intelligence for the target situation on the battlefield but also
need to rely on subsequent image processing methods to
detect, segmentation, and tracking of the target [4, 5]. There-
fore, the out-of-situ rate of the optical reconnaissance system
directly depends on the effectiveness of the image processing
methods. In recent years, image processing, as a popular

technology for both military and civilian use, has been devel-
oped significantly, and a large number of mature methods for
various types of image enhancement, target detection, target
segmentation, and other application problems have emerged,
greatly promoting the intelligent development process of
computer vision. These advanced image processing methods,
applied to the field of photoelectric reconnaissance, are suffi-
cient to maximize the efficiency of a single sensor out of the
situation [6]. However, in the field of intelligence reconnais-
sance, including optoelectronic reconnaissance, the problem
of multisensor data fusion has always been a major bottle-
neck, which restricts the further improvement of intelligence
reconnaissance effectiveness. Recently, some scholars have
made some breakthroughs in the research of data fusion of
similar sensors, but the heterogeneous data generated by dif-
ferent types of sensors still cannot be effectively fused. Specif-
ically, in the field of optoelectronic reconnaissance, data
fusion of visible reconnaissance images with infrared images
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has not yet emerged as a mainstream breakthrough solution.
Modern imaging systems mainly include radar (synthetic
aperture, phased array, and millimeter wave), visible TV,
infrared, and laser imaging means, of which optical sensors,
as an important part, rely on the target’s thermal radiation
work, which is a passive means of detection [7, 8]. Compared
with radar systems, optical imaging systems have the advan-
tages of strong anti-interference capability, simple structure,
small size, lightweight, and good concealment, but there are
also shortcomings such as close detection distance and
inability to the range. Initially, the optical imaging system
in the field of military reconnaissance is a complementary
means of radar systems used to overcome the blind spot
of the radar system and platform load capacity and other
limitations, in close range target detection, tracking, iden-
tification, and other aspects to play a role. With the devel-
opment of new technologies, new weapons and equipment
increasingly focus on the development of radar stealth per-
formance, radar as the main means of early warning detec-
tion of reconnaissance intelligence system gradually cannot
meet the requirements of combat use, and the photoelectric
system gradually becomes an indispensable and important
means of reconnaissance, which began in all-weather, high-
precision, long-range direction. The expansion of the role
of optical reconnaissance equipment distance naturally gives
rise to this paper to focus on the problem of small target iden-
tification. Small target refers to the imaging system detection
moderate distance (about a few hundred to a few thousand
meter range) through the sensor acquisition of the image
element area of the small target imaging. Small targets are
usually only a few tens to hundreds of pixels in visible images
and a bright spot or a bright spot in infrared images. If the
detection distance is close (e.g., within 100 meters), the target
pixel size is large, the outline is clear, and the common means
of image processing is easy to achieve detection and identifi-
cation; if the detection distance is too far (e.g., greater than
10 km), the target pixel size is too small, the outline is not
clear, and it is easy to drown in the background clutter and
difficult to find. Therefore, the detection and identification
of small targets directly affect the scope of the role of opto-
electronic reconnaissance equipment; the effectiveness of
the intelligence reconnaissance surveillance system is of great
significance. In the problem of small target identification,
optical sensors have a strong climate adaptation and smoke
and dust permeability, can work around the clock, and have
other unique advantages; visible TV has a high resolution
and access to color information [9, 10].

This paper focuses on the target recognition algorithm of
optical sensor data fusion, given full consideration to the
advantages and features of the two imaging means and, after
an in-depth study, designs a target recognition method
framework based on optical sensor data fusion; focuses on
the characteristics of the images obtained by the two imaging
means; analyzes their advantages in solving the problem of
small target recognition; clarifies the general idea of data
fusion; and introduces the target detection method using
infrared images. The method means of target detection using
infrared images, the proposed cyclic clustering method
based on visible image target segmentation, and the method

framework of fusion processing based on optical sensor data
fusion and visible image target segmentation results to
achieve comprehensive target recognition are given, which
can provide a clear idea for the solution of this bottleneck
problem.

2. Related Work

Sensor information fusion technology, also known as sensor
data fusion, first appeared at the end of World War II when
both optical sensors and radar in an antiaircraft artillery fire
control system are utilized. In this system, optical sensors
were fully utilized to detect the presence of targets, and radar
was used to measure the distance to the targets, which over-
came the effects of the harsh battlefield environment and
improved the hit rate of the artillery system. However, infor-
mation fusion at that time was done by manual calculation
by technicians, and the processing speed of information
was low and the quality of processing was poor, so the infor-
mation fusion technology was not accepted by people at that
time. To end this issue, it was first formally introduced in
research institutions and was reflected in sonar processing
systems. After extensive experiments, the researchers fused
the optical signals that did not interfere with each other to
calculate and pinpoint the location. In this incidental use,
information fusion technology showed its excellent compre-
hensive performance, which made information fusion tech-
nology gain widespread attention in military applications
and rapidly develop into the field of people’s livelihood. An
example of this application is the Command, Control, Com-
munication, and Intelligence (C3I) system, which pioneered
the use of multiple sensors to collect battlefield information
and demonstrated the power of information fusion technol-
ogy. The C3I system is the first to use multiple sensors to
collect information on the battlefield, demonstrating the
power of information fusion technology, and has received
wide attention from countries around the world. The C3I
Technical Committee established the Data Fusion Subpanel
(DFS) to improve the performance of information fusion
and other metrics to overcome the technical challenges in
the field of data fusion. Since then, multisensor information
fusion technology has been introduced.

In recent years, researches in the field of related technol-
ogies have also been ongoing [11, 12]. Muzammal et al. [13]
proposed a mathematical model based on a multisensor data
fusion algorithm. Bakalos et al. [14] used multimodal data
fusion and adaptive deep learning to monitor critical sys-
tems. Zhang et al. [15] proposed a method based on multi-
sensor data fusion for UAV safety distance diagnosis. In
order to achieve more accurate bearing fault diagnosis,
Wang et al. [16] propose a new method to fuse multimode
sensor signals collected by an accelerometer and a micro-
phone. Researches on information fusion technology still
have some problems, and the development speed is relatively
slow. In order to improve the efficiency of target search in
large-scale high-resolution remote sensing images, Yin
et al. [17] propose an optimized multiscale fusion method
for airport detection of large-scale optical remote sensing
images.
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3. Target Recognition Algorithm Based on
Optical Sensor Data Fusion

3.1. Structure of Optical Sensor Data Fusion. Depending on
the environment in which the fusion system works, Hei-
stand proposes that there are three fusion processing archi-
tectures, namely, centralized fusion, distributed fusion, and
hybrid fusion. The centralized fusion structure sends the
target information acquired by each sensor directly to the
fusion center for processing, and its structure is shown in
Figure 1. Although this structure has the advantages of high
real-time performance and low loss, it is not easy to imple-
ment in practical engineering because of the high commu-
nication requirements and large computational effort of
the system.

In the distributed fusion structure, the most important
feature is that the corresponding local trajectory is firstly
obtained based on the separate processing and estimation
of each sensor’s tracking target state and enters the fusion
center, where the data are correlated and filtered according
to the local trajectory of each sensor, and finally the fusion
estimation of the whole trajectory is completed, also known
as sequential fusion, whose structure is shown in Figure 2.
Compared with the centralized one, this structure reduces
the communication requirements and computational com-
plexity of the system [18]. In addition, it improves the reli-
ability of the multisensor data fusion target recognition
system. However, the recognition accuracy is reduced due
to the large loss of information.

The hybrid fusion architecture mainly consists of dis-
tributed and centralized fusion architecture, whose struc-
ture is shown in Figure 3. It inherits the advantages of
these two architectures but also retains their shortcomings.
In addition, compared with the first two, the hybrid fusion
architecture is relatively complex and has increased commu-
nication burden and computational complexity, which is not
easy to implement in engineering. In practical engineering,
the distributed fusion architecture is the highly popular mul-
tisensor fusion architecture [18]. Meanwhile, continuous
improvement of multisensor fusion methods and algorithms
can improve the fusion tracking performance under the dis-
tributed fusion architecture.

At present, the data fusion algorithm techniques com-
monly used for target tracking are mainly divided into four
categories based on the model, statistical theory, information
theory, and artificial intelligence, while this paper focuses on
the study of model-based data fusion algorithms, which
mainly establish a motion model for a moving target and
use estimation algorithms to fuse the target states obtained
from multiple sensors through certain criteria. The com-
monly used methods are Kalman filter, weighted average
method, particle filter, etc. The research method explored
in this paper is the particle filter fusion tracking algorithm.

The nonlinear, non-Gaussian state and measurement
model of the system can be expressed as

Rk = 〠
k

i=1
f k wkð Þ, ð1Þ

Lk = 〠
k

i=1
hk vkð Þ, ð2Þ

wherewk ∈ Rnvandvk ∈ Rnnare the state noise and the mea-
surement noise, respectively, and both are non-Gaussian
noise. Bayes’ theorem assumes that the estimated state is a
random variable and establishes its prior distribution. Let
z1, z2, z3, … be a set of random variables that are uncorre-
lated with each other but have the same distribution and
can be measured. Each variable in this set of random vari-
ables maps an unknown parameter x, whose conditional
probability density is px; then, the posterior probability den-
sity of the unknown parameter x is expressed as

Pxz =
Pzx xð Þ ⋅ Px zð Þ

Ð
Pzx xð Þ ⋅ Px zð Þdx , ð3Þ

where px denotes the likelihood function of the parameter x
data uncorrelated with each other. px denotes the probability
density of x, also known as the prior probability or prior
distribution, which is usually determined based on prior
experience before the measurement value is obtained. Pzx
denotes the density of the posterior distribution of x, also
known as the posterior probability or posterior distribution,
which is determined after the measurement value is
obtained. From equation (2), the Bayesian estimation theory
is to pass an unknown parameter x as a random variable
and, at the same time, introduce a prior probability px. Sim-
ply put, Bayes’ theorem is to obtain the posterior distribu-
tion by updating the prior distribution of the parameter x.
Then, Bayesian filtering is divided into two main parts: pre-
diction and update [19–22].

For prediction, the state model of the system for predict-
ing the posterior distribution function from the current
moment of measurement to the next moment of measure-
ment is used, i.e.,

P x ∣ zð Þ =
ð
Pzx xð Þ ⋅ Pxz zð Þdx + z

ð
Pxk

xð Þ ⋅ Px zð Þdx: ð4Þ

For update, the posterior distribution function is cor-
rected using the most recent quantiles at the current
moment, i.e.,

P xk ∣ zkð Þ = Pzx xð Þ ⋅ Pxz zð Þ + Pkx xð Þ ⋅ Pzx xð Þ + Pkx xð Þ ⋅ Pxz zð Þ
Ð
Pkx xð Þ ⋅ Px zð Þdx :

ð5Þ

It can be seen that Bayesian filtering saves storage space
by not having to save and reprocess past measurement data.
However, the method of calculating the posterior probability
from equation (3) and equation (4) is only theoretical
because the actual equation (5) is difficult to calculate to
get the exact value. In a linear system, the optimal solution
can be obtained by Kalman filtering. In the case of nonlinear
models, the EKF, UKF, and CKF can be used to solve the
posterior probabilities.
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The proposal of Deep Convolution Generative Adversar-
ial Networks (DCGAN) has given a great impetus to the
development of GAN by combining the convolutional neu-

ral network model (CNN) and GAN, which enables the
quality and diversity of the generated images. Compared
with the traditional GAN, DCGAN has been improved in
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several aspects. Mainly, the pooling layer is eliminated, the
fully connected layer is removed, and a series of training
techniques are used, such as using batch normalization
(BN) to stabilize the training and using the REL activation
function to reduce the risk of gradient disappearance [23].
First of all, the DCGAN model replaces all pooling layers
with convolutional layers. The discriminator uses stepwise
convolution instead of pooling layers, and the generator uses
fractional stepwise convolution instead of pooling. The
second point is to remove the fully connected layer from
the model and use the global pooling layer instead of the
fully connected layer, which effectively reduces the parame-
ters of the model on one hand and improves the operation
speed of the network on the other hand. The third point is
that the use of batch normalization can alleviate the problem
of “gradient dispersion” in deep neural networks and accel-
erate the convergence of the model. The discriminator uses
the LeakyReLU activation function for all layers, and the
generator uses the ReLU activation function except for the
output layer, which uses the hyperbolic tangent function
Tanh.

The input size of the discriminator model based on the
SAR dataset expansion of the generative adversarial network
is 8888, and the model mainly consists of 4 convolutional
layers with a convolutional kernel size of 33 and convolu-
tional depths of 32, 64, 128, and 256 and finally a flattening
layer to obtain the prediction results. In addition, a set of
ReLU activation function layers and deactivation layers are
connected after each convolutional layer. The ReLU activa-
tion function layer is mainly to increase the representation
capability of the discriminative model, and the deactivation
layer is mainly to reduce the overfitting problem of the
model during training and to improve the generalization
capability of the discriminative model. The batch normaliza-

tion layer is added after the latter convolutional layers of the
discriminant model. Since the batch normalization process
will normalize the features, it is beneficial to speed up the
convergence of the discriminant model. The discriminator
outputs the class token of its input SAR image according
to the source of the input SAR image and outputs 1 if the
input is from a real sample or 0 if the input is from a sample
generated by the generator. The specific discriminator model
is shown in Figure 4.

3.2. Improved Data Fusion Structure. In this paper, to
achieve real-time detection of infrared targets in complex
environments, the YOLOv3 algorithm with speed advantage
is selected as the base network for infrared target detection
and improved on it. The improved network structure is
shown in Figure 5. Since YOLOv3 uses three sizes of feature
maps for target detection and fuses shallow features with
deep features to improve the detection capability of small
targets, but the feature maps for detecting large targets do
not have a large enough sensory field, so the SPP module
is added after the feature extraction network to fuse local
features with global features and enhance the feature expres-
sion capability, to solve the detection problem caused by the
change of target scale. The SPP module is added after the
feature extraction network to fuse the local features with
the global features and enhance the feature representation,
to solve the problem of the decrease of detection accuracy
caused by the change of target scale [24]. The regression loss
function in the original YOLOv3 network is replaced by the
GIoU loss function for the regression of the prediction
frame, and the prediction frame is considered as a whole
to calculate the loss with the true value frame to improve
the accuracy of the whole network localization.
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Figure 3: Hybrid fusion structure diagram.
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In YOLOv3, the possible reason for the degradation of
large-scale target detection accuracy is that the deepest fea-
ture map perceptual field is not large enough. Therefore,
an SPP module is added after the feature extraction network.
The design of the whole SPP module is based on the idea of a
spatial pyramid, which uses multiple channels to process the
input feature map in parallel, and the four branches use
different sizes of pooling kernels. Firstly, the input feature
map is downscaled by a 1 ∗ 1 convolution kernel to fuse
the features of different channels. Then, it passes through a
1 ∗ 1 size pooling layer, i.e., to obtain global features, and
then passes through 5 ∗ 5, 9 ∗ 9, and 13 ∗ 13 to obtain
feature maps of different sizes, to obtain different feature
information from the input feature maps through different
channels and finally fusing the obtained features.

In general, to address the problem of the perceptual field
in the deep detection layer, a multichannel pooling kernel is
used to fuse local and global features of different sizes to
enrich the feature expression capability of the network and
expand the perceptual field of the feature map, while avoid-
ing the reduction of network training speed due to the use of
convolution, which is helpful to improve the situation of
accuracy loss due to the relatively large span of target scales
in the image to be detected.

The MSRCR algorithm, multiscale retinal enhancement
with color recovery, was developed based on the single-
scale Retinex algorithm and the multiscale weighted average
MSR algorithm. Retinex is an image enhancement algorithm
as a word consisting of the words retina (retina) and cortex
(cortex) [25]. Retinex theory is based on the idea that the
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Figure 4: Discriminative network for generative adversarial network model.
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color of an object is consistent regardless of lighting nonuni-
formity, and unlike traditional linear and nonlinear image
enhancement methods, it can achieve a balance in edge
enhancement, color constancy, and dynamic range compres-
sion, so that adaptive enhancement can be performed for
many types of images. The MSRCR algorithm is developed
on this basis, which can maintain the high fidelity of the
image and compress the dynamic range of the image, as well

as perform the color enhancement of the image and perform
the local and global dynamic range compression. However,
the abovementioned image enhancement process may dis-
tort the color of local details and deteriorate the overall
visual effect due to the increase of noise. Therefore, the
MSRCR algorithm is proposed, and a color recovery factor
C is added to the MSR algorithm to solve the problem of
color distortion due to the contrast enhancement of local
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areas of the image [26–28]. The flow of the MSRCR image
enhancement algorithm designed in this paper is shown in
Figure 6.

4. Experiment and Analysis

4.1. Experimental Design. The optical sensor target recogni-
tion experiment is based on the distance between the target
identifier and the unmanned cart measured by the sensor,
and the sensor performance directly affects the accuracy of
the measured distance [29–33]. To test the performance of
the sensor, experimental verification of the performance of
individual sensors is required. The STM32F407, the PC host
computer, and the optical sensor are used for the distance
measurement experiments. The program flow chart is shown
in Figure 7.

The HC-SR04 optical ranging module has four pins: Vcc,
Trig, Echo, and GND. In this design, the STM32F407 devel-
opment board (hereinafter referred to as STM32) is directly
connected to the optical ranging module, Vcc is connected
to the 5V voltage output port on STM32, Gnd is connected
to the ground, Trig is connected to PF6, and Echo is con-
nected to PF5. The HC-SR04 optical range module is a
trigger-type range measurement; in each measurement,
PF6 transmits a high level of 10μs-20μs to Trig to make

the transmitter emit the optical; Echo detects the level of
the receiver; and the timer on STM32 calculates the duration
of Echo’s high level, and stores it in the register to calculate
the distance. In the experiment, the experimental distance is
varied in the range of 20 cm-280 cm, and the measured
distance information is displayed on the PC host computer
utilizing serial printing. To reduce the influence of sensor
jitter on the data during the measurement, the same distance
was measured five times and the average value was taken as
the output. The test results are shown in Table 1(a). From
Table 1(a), it can be seen that the partial measurement error
of the sensor is greater than ±2 cm, and there is a large
distortion in the measured value, which obviously cannot
be used directly. In this regard, MATLAB can be used to cor-
rect the experimental data by performing a linear fit to the
experimental data. Table 1(b) shows the data obtained after
correction. From the data in the table, the error of the sensor
measurement data after correction is reduced to within
±1 cm, which satisfies the experimental requirements of the
target recognition experiment.

Through an in-depth study of the fuzzy control target
recognition algorithm, the fuzzy controller collects not only
the distance between the unmanned cart and the target iden-
tifier measured by the light sensor but also the direction of
the unmanned cart relative to the target point. In the exper-
imental design of the target recognition algorithm of the
unmanned vehicle, the idea of this paper is to set the initial
direction of motion of the unmanned vehicle to a constant
90, that is, to the front, and the steering angle obtained by
the unmanned vehicle in the subsequent target recognition
calculation should be added or subtracted from the constant
to obtain the new angle value and stored in the register of the
control core. After the first turn of the unmanned vehicle,
the angle value is used as an input to the fuzzy controller
for each target recognition calculation as the relative direc-
tion to the target point. The purpose of this design is to min-
imize the influence of the target identification process of the
unmanned trolley on the original driving direction as much
as possible and to maintain the original direction of driving.
Target recognition experiments are conducted according to
the analyzed target identifier situations, with a total of six
cases and 32 possible target identifier arrangements. The
experiment verifies that the unmanned trolley can detect
the target identifier well in all possible environments and
can make the corresponding form of movement away from
the target identifier; because of the distribution of the target
identifier and the possible causes of the shape of the target
identifier, this paper does not enumerate them one by one.

In the design of this paper, the deflection angle of the
next move of the unmanned trolley output by the target
recognition algorithm is converted into the rotational speed
of the left and right wheels of the unmanned trolley by the
angle-velocity relationship equation, and the PWM signal
with corresponding duty cycle is generated by the internal
timer and register of the STM32 main control chip to con-
trol the rotational speed of the DC motor. To achieve the
smooth motion of the unmanned trolley, the speed of the
two motors in the trolley should be consistent, so the output
PWM signal needs to be regulated by the PID algorithm. In

Table 1

(a) Optical sensor distance measurement experimental data

Serial number Actual value Measurements Error

1 40 40.866 0.866

2 80 81.256 1.256

3 120 119.342 -0.658

4 160 161.864 1.864

5 200 199.066 -0.934

6 240 239.874 -0.126

7 280 281.798 1.798

8 320 320.826 0.826

9 360 361.356 1.356

10 400 399.574 -0.426

(b) Optical sensor test data after calibration

Serial number Actual value Measurements Error

1 40 39.866 0.866

2 80 79.887 -0.133

3 120 120.502 0.502

4 160 160.302 0.302

5 200 200.904 0.904

6 240 240.291 0.291

7 280 280.757 0.757

8 320 319.125 -0.875

9 360 359.725 -0.276

10 400 400.333 0.333
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this design, the left motor speed is used as the reference,
and the PID algorithm controls the right motor speed to
be the same as the left motor speed. The speed and steer-
ing of the unmanned vehicle are controlled by the STM32
and the L298N, which receive the PWM signal from the
STM32 and control the motor speed and direction of for-
ward and reverse rotation. The PWM signal is generated
using the TIM3 timer channel 1 of STM32 to control
the motor speed, and the PWM signal is output to ENA
and ENB of L298N through GPIO port PA7; the STM32
connects to IN1 and IN2 of L298N through PA4 and
PA5, respectively, to control the forward and reverse rota-
tion of the left motor through PA13 and PA14. The
STM32 controls the forward and reverse rotation of the
right motor by connecting the IN3 and IN4 interfaces of
the L298N through PA13 and PA14, respectively. In other
words, IN1, IN2, IN3, and IN4 form an H-bridge circuit
to control the motor steering, respectively.

4.2. Experimental Results. To improve the localization accu-
racy and robustness of the pure vision SLAM system, a
tightly coupled vision, IMU sensor algorithm is used in this
thesis. The localization system consists of sensor data pre-
processing, system initialization, sliding window pose solver
module, loopback detection, and global pose graph optimi-
zation module. The initialization correction and minimum
error objective function are constructed by the preintegra-
tion model of the IMU sensor and visual image frames. Con-

sidering the real-time of the system, the sliding window
algorithm and keyframe extraction model are used to save
computation, and finally, the accurate positional trajectory
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and sparse point cloud information are obtained by combin-
ing the graph optimization library and loopback detection
correction. The experimental validation of the localization
algorithm is carried out according to the above fusion theo-
retical methods and steps, using the mechanical experimen-
tal building of MH-02 in the EuRoc dataset, which contains
ground-truth values based on motion capture device acquisi-
tion. Then, the error comparison analysis of pure visual
localization and visual-inertial fusion localization algorithms
was performed, as shown in Figure 8 below. Because the
adopted dataset is light stable and rich in feature points,
the position errors in both pure visual and visual-inertial
fusion localization systems in space are not very large and
are very close to the ground-truth values, and relatively,
the visual-inertial fusion localization system is more accurate
in the z-axis.

However, the attitude error comparison shown in
Figure 9 shows that the pure vision positioning system has
a large error, with a maximum angular error of 60 degrees,
but the vision-inertial guidance fusion positioning system
incorporates the IMU sensor, and the attitude information
is almost close to the ground-truth value.

The error and bias of the accelerometer and gyroscope in
the IMU were also corrected and calibrated and analyzed as
shown in Figure 10 below, which can be used as an a priori
error to influence the weight determination problem of mul-
tisensor data fusion, and the determined error and bias can
be used to compensate the IMU sensors for more accurate
measurements.

5. Conclusion

With the development of optical sensors, target recognition
algorithms based on optical sensor data fusion are widely
valued and have a better prospect in the field of robotics in

the future. At present, multisensor fusion localization and
navigation technology is the foundation and key function
in aerospace, military defense, logistics and transportation,
smart factory, and biomedical fields. In this paper, target rec-
ognition with multisensor data fusion is investigated mainly
for the combination of multiple optical sensors equipped
with a depth camera, LIDAR, and IMU sensors in outdoor
working scenarios as well as the indoor environment with
light influence, and the following results are achieved:

(1) In this thesis, we designed an algorithm based on
adaptive extended Kalman filtering to fuse GPS and
IMU sensor acquisition data for the problem of
signal occlusion in an outdoor environment. At the
same time, a predictive tracking model based on
multisensor target recognition is designed, and an
environment sensing algorithm program is designed
based on the point cloud imaging model of LiDAR.
The fusion improves the robustness of navigation
trajectory tracking and positioning accuracy, reduces
the maximum error by 1.5m, and achieves
centimeter-level positioning accuracy by combining
RTK technology

(2) In this thesis, a visual-inertial guidance tight cou-
pling algorithm based on nonlinear optimization is
designed for the indoor interferer dense problem.
Firstly, an image feature point extraction and IMU
preintegration model based on the improved feature
point method is designed to solve the positional pose
in combination with PNP positional estimation algo-
rithm and back-end map optimization algorithm.
The least-squares error objective optimization func-
tion and sliding window model are also constructed
to realize the real-time positional problem solution.
The analysis results show that the average error is
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Figure 10: Accelerometer error analysis diagram.
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improved by nearly 50% after the algorithm fusion,
and the minimum error is only 0.02m, and the atti-
tude trajectory information is closer to the real value
on the ground

(3) To address the visual-inertial guidance fusion algo-
rithm’s degradation in localization accuracy and
robustness under low-light conditions, which affects
the target recognition task of optical sensors. In this
thesis, a procedure is designed to switch to LIDAR
localization mode when the number of feature
extraction matches is lower than a set threshold,
and the laser localization and map building algo-
rithms are verified by building a Gazebo smart car
simulation experimental platform. Finally, a laser
vision inertial guidance fusion localization system
based on ROS architecture is designed for low-light
conditions, and the constructed raster maps are used
for navigation tasks. The trajectory of the fused
LIDAR sensor in the low-light environment is com-
pared to be smoother and with reduced error, with
a maximum drop of about 0.53m

Although this paper verifies the correctness of adaptive
extended Kalman filtering and nonlinear optimal fusion in
multioptical sensor target recognition tasks, improvements
are still needed in practical engineering, mainly from the
following two aspects: first, to improve the autonomy and
environmental adaptivity of optical sensors and to complete
the autonomous switching of different target recognition
modes indoors and outdoors by judging the number of
received light source signals. Second is to improve the percep-
tion ability of optical sensors, combined with deep learning
technology and laser vision fusion to build three-
dimensional semantic information to better adapt to dynamic
and unstructured scenes.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

We declare that there is no conflict of interest.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant 62001447.

References

[1] D. Gozdowski, M. Stępień, E. Panek et al., “Comparison of
winter wheat NDVI data derived from Landsat 8 and active
optical sensor at field scale,” Remote Sensing Applications: Soci-
ety and Environment, vol. 20, article 100409, 2020.

[2] A. N. Bishop, B. Fidan, B. Anderson, K. Doğançay, and P. N.
Pathirana, “Optimality analysis of sensor-target localization
geometries,” Automatica, vol. 46, no. 3, pp. 479–492, 2010.

[3] M. Hu and Q. Hu, “Design of basketball game image acquisi-
tion and processing system based on machine vision and
image processor,” Microprocessors and Microsystems, vol. 82,
no. 1, article 103904, 2021.

[4] T. Meng, X. Jing, Z. Yan, and W. Pedrycz, “A survey on
machine learning for data fusion,” Information Fusion,
vol. 57, pp. 115–129, 2020.

[5] X. Wang, S. Wang, and J. J. Ma, “An improved particle filter
for target tracking in sensor systems,” Sensors, vol. 7, no. 1,
pp. 144–156, 2007.

[6] P. Ghamisi, R. Gloaguen, P. M. Atkinson et al., “Multisource
and multitemporal data fusion in remote sensing: a compre-
hensive review of the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 7, no. 1, pp. 6–39, 2019.

[7] R. T. Wu and M. R. Jahanshahi, “Data fusion approaches for
structural health monitoring and system identification: past,
present, and future,” Structural Health Monitoring, vol. 19,
no. 2, pp. 552–586, 2020.

[8] K. Zhang, J. Wei, T. Wang, S. Li, and X. Yang, “Air target
recognition algorithm based on mixed depth features in the
interference environment,” Optik, vol. 245, article 167535,
2021.

[9] L. Kong, X. Peng, Y. Chen, P. Wang, and M. Xu, “Multi-sensor
measurement and data fusion technology for manufacturing
process monitoring: a literature review,” International Journal
of Extreme Manufacturing, vol. 2, no. 2, article 022001, 2020.

[10] Y. Xu, B. du, L. Zhang et al., “Advanced multi-sensor optical
remote sensing for urban land use and land cover classifica-
tion: outcome of the 2018 IEEE GRSS data fusion contest,”
IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 12, no. 6, pp. 1709–1724, 2019.

[11] W. Ding, X. Jing, Z. Yan, and L. T. Yang, “A survey on data
fusion in internet of things: towards secure and privacy- pre-
serving fusion,” Information Fusion, vol. 51, pp. 129–144,
2019.

[12] D. Nikolic, N. Stojkovic, Z. Popovic et al., “Maritime over the
horizon sensor integration: HFSWR data fusion algorithm,”
Remote Sensing, vol. 11, no. 7, p. 852, 2019.

[13] M. Muzammal, R. Talat, A. H. Sodhro, and S. Pirbhulal, “A
multi-sensor data fusion enabled ensemble approach for med-
ical data from body sensor networks,” Information Fusion,
vol. 53, pp. 155–164, 2020.

[14] N. Bakalos, A. Voulodimos, N. Doulamis et al., “Protecting
water infrastructure from cyber and physical threats: using
multimodal data fusion and adaptive deep learning to monitor
critical systems,” IEEE Signal Processing Magazine, vol. 36,
no. 2, pp. 36–48, 2019.

[15] W. Zhang, Y. Ning, and C. Suo, “A method based on multi-
sensor data fusion for UAV safety distance diagnosis,” Elec-
tronics, vol. 8, no. 12, p. 1467, 2019.

[16] X. Wang, D. Mao, and X. Li, “Bearing fault diagnosis based on
vibro-acoustic data fusion and 1D-CNN network,” Measure-
ment, vol. 173, article 108518, 2021.

[17] S. Yin, H. Li, L. Teng, M. Jiang, and S. Karim, “An optimised
multi-scale fusion method for airport detection in large-scale
optical remote sensing images,” International Journal of Image
and Data Fusion, vol. 11, no. 2, pp. 201–214, 2020.

[18] K. Heckel, M. Urban, P. Schratz, M. D. Mahecha, and
C. Schmullius, “Predicting forest cover in distinct ecosystems:
the potential of multi-source Sentinel-1 and -2 data fusion,”
Remote Sensing, vol. 12, no. 2, p. 302, 2020.

11Journal of Sensors



[19] A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion
and machine learning for industrial prognosis: trends and
perspectives towards Industry 4.0,” Information Fusion,
vol. 50, pp. 92–111, 2019.

[20] N. Long, K. Wang, R. Cheng, W. Hu, and K. Yang, “Unifying
obstacle detection, recognition, and fusion based onmillimeter
wave radar and RGB-depth sensors for the visually impaired,”
Review of Scientific Instruments, vol. 90, no. 4, article 044102,
2019.

[21] M. Belgiu and A. Stein, “Spatiotemporal image fusion in
remote sensing,” Remote Sensing, vol. 11, no. 7, p. 818, 2019.

[22] J. Gao, P. Gu, Q. Ren, J. Zhang, and X. Song, “Abnormal gait
recognition algorithm based on LSTM-CNN fusion network,”
IEEE Access, vol. 7, pp. 163180–163190, 2019.

[23] P. Wang, L. Wang, H. Leung, and G. Zhang, “Super-resolution
mapping based on spatial–spectral correlation for spectral
imagery,” IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 59, no. 3, pp. 2256–2268, 2021.

[24] C. Gong, Y. Hu, J. Gao, Y. Wang, and L. Yan, “An improved
delay-suppressed sliding-mode observer for sensorless
vector-controlled PMSM,” IEEE Transactions on Industrial
Electronics, vol. 67, no. 7, pp. 5913–5923, 2020.

[25] X. Song, J. Huang, J. Cao, and D. Song, “Multi-scale joint
network based on Retinex theory for low-light enhancement,”
Signal, Image and Video Processing, vol. 15, no. 6, pp. 1257–
1264, 2021.

[26] M. Jahanbakht, W. Xiang, L. Hanzo, and M. Rahimi Azghadi,
“Internet of Underwater Things and big marine data analy-
tics—a comprehensive survey,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 2, pp. 904–956, 2021.

[27] S. Yang, X. Wei, B. Deng, C. Liu, H. Li, and J. Wang, “Efficient
digital implementation of a conductance-based globus pallidus
neuron and the dynamics analysis,” Physica A: Statistical
Mechanics and its Applications, vol. 494, pp. 484–502, 2018.

[28] F. Orujov, R. Maskeliūnas, R. Damaševičius, and W. Wei,
“Fuzzy based image edge detection algorithm for blood vessel
detection in retinal images,” Applied Soft Computing, vol. 94,
article 106452, 2020.

[29] Y. Gong, Z. Ma, M. Wang, X. Deng, and W. Jiang, “A new
multi-sensor fusion target recognition method based on com-
plementarity analysis and neutrosophic set,” Symmetry,
vol. 12, no. 9, p. 1435, 2020.

[30] J. Yang, M. Xi, B. Jiang, J. Man, Q. Meng, and B. Li, “FADN:
fully connected attitude detection network based on industrial
video,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 3, pp. 2011–2020, 2021.

[31] X. X. du, Y. Mu, Z. W. Ye, and Y. J. Zhu, “A passive target rec-
ognition method based on LED lighting for industrial internet
of things,” IEEE Photonics Journal, vol. 13, no. 4, pp. 1–8, 2021.

[32] L. Tao, X. Jiang, X. Liu, Z. Li, and Z. Zhou, “Multiscale super-
vised kernel dictionary learning for SAR target recognition,”
IEEE Transactions on Geoscience and Remote Sensing,
vol. 58, no. 9, pp. 6281–6297, 2020.

[33] D. Neupane and J. Seok, “A review on deep learning-based
approaches for automatic sonar target recognition,” Electron-
ics, vol. 9, no. 11, p. 1972, 2020.

12 Journal of Sensors


	Target Recognition Algorithm Based on Optical Sensor Data Fusion
	1. Introduction
	2. Related Work
	3. Target Recognition Algorithm Based on Optical Sensor Data Fusion
	3.1. Structure of Optical Sensor Data Fusion
	3.2. Improved Data Fusion Structure

	4. Experiment and Analysis
	4.1. Experimental Design
	4.2. Experimental Results

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

