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Abstract It is significant to ensure the temperature stability of the test tank, which has a direct

impact on reducing production energy consumption, improving tank quality and ensuring experi-

mental results. However, the high nonlinearity and long delay of the temperature control process

in the test tank make it difficult to satisfactorily control the temperature by traditional control

methods. To solve the problem, this paper designs a temperature prediction model for the test tank

based on backpropagation neural network (BPNN), which has a good fitting ability for nonlinear

systems. The proposed model was coupled with improved generalized predictive control (GPC) into

a new test tank temperature control method, namely, BPNN-based stepped GPC. Simulation

results show that the new control method could reduce the prediction error of the BPNN and effec-

tively control the temperature of the test tank.
� 2020 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The mathematical modelling of the temperature control system

in the test tank is hampered by the long lag, high nonlinearity,
and large inertia of the temperature control process. If the tank
temperature is controlled stably, it is possible to carry out

high-quality and energy-efficient tests at a low cost, and extend
the service life of the test tank. Thus, the temperature control
of the test tank is conducive to sustainable green development.

The test tank mainly provides temperature control function for
high and low temperature environment test. Through the
description of the overall structure and process flow of the test
tank, the research object is determined as the temperature con-

trol of the heating process of the test tank. Through the anal-
ysis of the key factors affecting the temperature of the test
tank, the temperature can be effectively controlled (see
Table 1)

The heating system in the test tank is often controlled by
computer. There are three possible control modes: feedforward
control, feedback control, and feedforward-feedback control

[1,2]. In feedforward control, the computer collects the rele-
vant data in the early phase, and formulates the heating
instructions for different periods and temperatures. Then, the

test indices are adjusted in the light of humidity, temperature,
calorific value, and other parameters.

In feedback control, the temperature is determined empiri-

cally by experts based on relevant data. Then, the temperature
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Table 1 Results of correlation analysis.

Nitrogen

pressure

Gas collector

pressure

Tank

pressure

Air

flow

Pipe

temperature

Pipe

suction

Test

temperature

Pearson correlation

coefficient

�0.115** �0.621** 0.323** 0.266** 0.712** �0.010** 0.825**

Significance 0.007 0.000 0.000 0.000 0.000 0.0021 0.000

Number of samples 2,000 2,000 2,000 2,000 2,000 2,000 2,000

Note: ** stands for sig < 0.01, i.e. the correlation is highly significant; * stands for 0.01 < sig < 0.05, i.e. the correlation is significant.
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curve is drawn and transmitted to the computer. Meanwhile,
the thermocouple keeps measuring the actual temperature,

and transmitting the measured data to the computer. Based
on the difference between empirical and measured data, the
computer will adjust the test indices.

In feedforward-feedback control, the temperature control
object is optimized by feedforward control, and the auxiliary
control object is optimized by feedback control, which con-

verts the regulated temperature into optimal temperature sup-
ply. The feedforward-feedback control combines the merits of
feedforward and feedback controls, and achieves satisfactory

control effect.
To effectively control the test tank temperature, this paper

puts forward a novel control approach based on backpropaga-
tion neural network (BPNN) [3,4] and improved generalized

predictive control (GPC). The proposed approach, known as
BPNN-based stepped GPC, was proved effective through sim-
ulations on an actual high and low temperature test tank.

2. Literature review

In the test tank, the temperature control process is a highly

nonlinear phenomenon, which involves multiple distributed
parameters, and an intermingle of fast and slow subprocesses.
Therefore, the temperature in the test tank is too complicated

to be controlled well by traditional modes. Fortunately, the
recent boom of artificial intelligence (AI) technologies [5],
namely, neural network (NN) [6], fuzzy control [7], and predic-
tive control [8], sheds new light on the temperature control of

the test tank.
With the advent of new AI technologies, many intelligent

temperature control algorithms have emerged [9–11]. The

fuzzy control stands out for its excellent effect in temperature
control: this technology refines the knowledge and experience
of operators and experts, eliminating the need for mathemati-

cally modelling of the control object.
Based on expert control and fuzzy control, Hong [12] regu-

lated the gas flow in a furnace, and successfully stabilized the

furnace temperature. Wang and Pan [13] proposed an intelli-
gent furnace temperature control algorithm, drawing on the
proportional–integral–derivative (PID) controller. Nomura
et al. [14] summarized the features of coke oven, and designed

a hybrid controller for coke oven heating process, which cou-
ples dynamic matrix with PID cascade control. Based on
orthogonal NN, He et al. [15] realized the predictive control

of the flue temperature in the coke oven. Yabanova et al.
[16] regulated the intermittent heating and gas flow in the test
tank by modelling the heating system with NN and fuzzy

control.
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If accurate mathematical models are available, modern con-
trol technologies can achieve desirable effect. However, it is

difficult to obtain an accurate mathematical model, because
actual industrial production is a time-varying process with
multiple nonlinear and strongly coupled parameters. In the

industrial background, the control object has a high uncer-
tainty, and the control task becomes a multi-objective opti-
mization problem. To solve the problem, the intelligent

strategy of predictive control has been developed. The early
forms of predictive control include model predictive heuristic
control (MPHC) [17] and dynamic matrix control (DMC) [18].

Tian et al. [19] combined the GPC in nonlinear control sys-
tem and fuzzy NN to identify object, and implemented the pre-
dictive control using the local weighted model. Based on
multilayer feedforward network, Muir [20] designed a general-

ized predictive controller through dynamic modelling; the
designed controller operates as a linear system, and performs
online learning by least squares (LS) method. Karmakar

et al. [21] identified the control system and parameters by the
NN, determined the optimization direction through iterative
learning, and built a stable and fast control algorithm by

quasi-Newton method. Cao and Kuang [22] developed a pre-
dictive control algorithm by extending the orthogonal NN
and linearizing the nonlinear model, and successfully applied
the algorithm to control the vertical flue temperature of coke

oven. Plett [23] identified the control system by the NN and
inverse dynamic network, conducted weight training with the
optimization performance index of multi-step prediction, and

put forward a NN-inverse dynamic control method with that
index. Bououden et al. [24] introduced particle swarm opti-
mization (PSO) to the NN-based predictive control, and

proved the good performance of the optimization predictor
model and PSO-based nonlinear controller.

3. Temperature prediction model for test tank

3.1. Temperature control scheme

The tank structure and heating process of the test tank make
its temperature affected by many aspects, mainly including
heating mode, operation plan, energy and airflow, heating

time, gas pressure and other factors, which is very suitable to
be described by BP neural network model.

As shown in Fig. 1, the temperature control scheme for test

tank includes optimizing preset temperature, temperature pre-
diction and modelling, and GPC structuring. Based on the
scheme, the backpropagation neural network (BP) was intro-

duced to predict the temperature in the test tank. Then, a sim-
ulation model was established for the temperature control
trol of test tank temperature based on backpropagation neural network, Alex-
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Fig. 1 Temperature control scheme for test tank.
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process of the control object. Besides, the GPC was combined
with the improved stepped predictive control algorithm into a
stepped GPC algorithm. Specifically, the NN-based predictive

model was linearized into a difference equation, the predictive
control of temperature was discussed under the environment of
the test tank, and the effects of key parameters on the control

effect of the stepped GPC algorithm were investigated. Finally,
the proposed algorithm was simulated under various working
conditions.

3.2. Data collection and preprocessing

The research data were collected from a high and low temper-
ature test tank over half a year. During the test, the main

parameters of the high and low temperature test tank include
air flow, tank pressure, Pipe suction, pipe temperature, nitro-
gen pressure, gas collector pressure, and test temperature.

The sampling period of each parameter was determined, for
the sampling rate with working conditions.

The collected data contain some abnormal or missing items,

which arise from noises, device errors, and human factors.
These items should be filtered out before model construction.
To eliminate the abnormal items, each data sample
X ¼ x1; x2; � � � ; xnf g was processed by the 3r criterion, where

r is the standard deviation:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � x
�� �
= n� 1ð Þ

s
ð1Þ

where, xi is the measured value. If the residual error

vi ¼ xi � x
��� �� satisfies vij j > 3r, then xi is an abnormal item

to be eliminated.
The missing data could be supplemented by various meth-

ods, such as regression, mean value padding, continuous mean
value padding, to name but a few [25,26]. To obtain smooth

and diverse data, this paper completes the missing items with
continuous mean values, producing a time series of modelling
data.

Then, the dimensionality of data sampled in different peri-
ods was standardized. In this way, over 2,000 high-quality
datasets were obtained for modelling. 80% data is used as

training set, and 20% data is used as test set.
Please cite this article in press as: Q. Zhao et al., Stepped generalized predictive con
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After that, the data on all parameters were subject to corre-
lation analysis, aiming to provide a scientific reference for
parameter selection. The correlation coefficients reflect the

magnitude of the linear correlation between parameters. The
correlation is stronger if the coefficient is greater, and the
inverse is also true.

The analysis results show that the temperature at the next
moment is significantly affected by six parameters: air flow,
tank pressure, pipe temperature, nitrogen pressure, gas collec-
tor pressure, and test temperature.
3.3. BPNN-based temperature prediction

To accurately predict the temperature of test tank, air flow,

tank pressure, pipe temperature, nitrogen pressure, gas collec-
tor pressure, and test temperature were selected as the input
parameters of the BPNN, while the tank temperature was

taken as the output parameter.
The learning algorithm of the BPNN relies on gradient des-

cent method to optimize the training process. The network

function iteratively reduces the error based on the constantly
updated network weights. The specific process is as follows:

Step 1. After the model is constructed, initialize the relevant
parameters, namely, network weight, and the number of hid-

den layer nodes.
Step 2. Read the training set, and set the input and output

vectors as x ¼ x1; x2; � � � ; xnð Þ and by ¼ by1; by2; � � � ; byj

� �
,

respectively.
Step 3. Calculate the output by the weighted sum of each

node, and express the hidden layer and output layer functions
as f1 �ð Þ and f2 �ð Þ, respectively:

zi ¼ f1
Xn
k¼1

xkj � xk

 !
ð2Þ

yj ¼ f2
Xi

k¼1

xkj � zk
 !

ð3Þ

Step 4. Calculate the error between actual and expected

results, and define the objective function as:
trol of test tank temperature based on backpropagation neural network, Alex-
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fo ¼
1

2

X
y� byj j2 ð4Þ

Step 5. Obtain the derivation of the objective function:

@fo
@x

¼
Xn
t¼1

@ft
@x

ð5Þ

Step 6. Correct network weight:

x tþ 1ð Þ ¼ x tð Þ � s
@fo

@x tð Þ ð6Þ

Step 7. Return to Step 3 and repeat the following steps until
the maximum number of iterations is reached.

BPNN involves two simultaneous processes: forward prop-

agation and backpropagation. As the signal is transmitted
from the input layer to the output layer, the error propagates
backwards to optimize the output. In our BPNN, the input

layer, hidden layer, and output layer have six, eight, and one
node(s), respectively.

The preprocessed data were imported to the BPNN as

training samples. Once the parameters were configured, the
learning algorithm was simulated by simulation software.
The training was terminated under one of the following condi-
tions: the maximum number of iterations is reached, and the

loss function no longer changes despite the growing number
of iterations.

The prediction effect of the trained BPNN was verified on

the test set. As shown in Fig. 2, the tank temperature predicted
by the BPNN deviated slightly from the actual temperature,
which meets the requirements of the objective function.

4. BPNN-based temperature control

4.1. Gpc

Predictive control, also known as model predictive control,

aims to predict the operation at a future moment according
to the current control effect and data. In general, the predictive
control system contains a reference trajectory, a predictive
model, an object model, an online correction module, and an

optimization calculation model. The basic process of predictive
control is shown in Fig. 3, wherex is the preset value; yr kð Þ is
Fig. 2 Predicted temperature vs. actual temperature.
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the reference trajectory; y kð Þ is the control output; ym kð Þ is the
control input; e kð Þ is the prediction error; yp kð Þ is the predicted
output.

However, the input and output of the predictive control
process might not be stable, especially when the environment
changes greatly. In this case, the control parameters will vary

synchronously, reducing the system stability. To solve this
problem, the set value should be flexible so that the system
could gradually approximate the value. According to the pre-
set temperature y kð Þ of the test tank, the reference trajectory of
the input can be obtained as:

yr kð Þ ¼ by kþ j� 1ð Þ þ 1� bð Þc ð7Þ
where, j ¼ 1; 2; � � � ;N (N is the number of optimization param-
eters); b 2[0,1] is the flexibility parameters; c is a user-defined

constant. The trajectory of the control object must be consis-
tent with the reference trajectory, that is, y kð Þ ¼ yr kð Þ.

Rolling optimization is the defining feature of predictive

control. By rolling optimization, the future control strategy
can be obtained, and the future behavior can be controlled
through prediction with suitable parameters. The only defect

with rolling optimization is the inability to optimize the global
solution.

In actual temperature experiment, the working conditions
are extremely complex, involving numerous time-varying fac-

tors and diverse interferences. Under this background, it is
impossible to illustrate the control process with a simple linear
system. The interferences can be effectively solved by rolling

optimization. The optimal control parameters help to improve
the control effect of actual models.

The performance function of predictive control can be

defined as:

fo ¼ min
XN
s¼1

e2 kþ sð Þ þ
XL
t¼1

riDu
2 kþ t� 1ð Þ

( )
ð8Þ

where, ri is the control coefficient; N is the number of opti-
mization parameters; L is the control duration.

Then, the model deviation can be obtained as:

e kþ sð Þ ¼ yr kþ sð Þ � yp kþ sð Þ ð9Þ
The control quantity was introduced as a constraint of the

objective function, with the aim to control the drastic change
of control parameters, enhance the robustness of the control

object, and ensure the stability of control output. Despite
being similar to nonparametric model, the control effect can
be ensured by using the impulse response with unstable zero

point. Hence, the objective function can be defined as:

minfo kð Þ¼E
XN
s¼1

y kþ sð Þ�yr kþ sð Þ½ �2þ
XNu

s¼1

hs Du kþ s�1ð Þ½ �2
( )

ð10Þ
where, E �f g is mathematical expectation; N is the optimal pre-

diction length, whose order is greater than B z�1ð Þ; Nu is control
length; hs is the weight coefficient of control quantity; yr kþ sð Þ
is the input reference trajectory.

To realize flexible control, the reference trajectory needs to

be tracked gently, without any sudden change. It is usually
achieved by the first-order equation below:

yref kþ sð Þ ¼ byref kþ sþ 1ð Þ þ 1� bð Þyref ð11Þ
trol of test tank temperature based on backpropagation neural network, Alex-
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Fig. 3 Basic process of predictive control.
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where, yref is the preset value; yref kþ sð Þ is the reference trajec-
tory; b is the flexibility parameter.

The objective of the GPC can be summarized as acquiring

the Du kð Þ;Du kþ 1ð Þ; � � � ;Du kþm� 1ð Þ that minimizes the
value of the objective function.

Unlike the traditional optimal control, the GPC optimizes

the objective function in a rolling manner, along with the
elapse of sampling time. The optimization objective is not
invariable, but changes over time. At any moment, the objec-
tive function has a local optimal value.

Without reflecting the closed loop and feedback, the predic-
tive control algorithm guarantees the consistency between the
actual system and the base point of rolling optimization. In

each step of control, the measured value is compared with
the predicted value, and the incorrect predicted value is
corrected.

To eliminate the field interference, time variance and error,
the self-tuning was incorporated into the GPC algorithm.
After detecting the relevant field data, the prediction parame-

ters were updated online, such that the control law could be
updated in time.

The GPC model is a discrete difference equation with non-
stationary noise and random step disturbance:

A z�1
� �

Dy kð Þ ¼ B z�1
� �

Du k� 1ð Þ þ e kð Þ ð12Þ
Then, the following equation can be obtained:

Dy kð Þ ¼ �A
0
z�1
� �

Dy kð Þ þ B z�1
� �

Du k� 1ð Þ þ e kð Þ ð13Þ
where, A z�1ð Þ ¼ A

0
z�1ð Þ.

The data and model parameters can be written as vectors:

# ¼ u1; � � � ; un; v1; � � � ; vm½ �T ð14Þ

u kð Þ ¼ �Dy k� 1ð Þ � � ��Dy k� nð ÞDu k� 1ð Þ � � �Du k�mþ 1ð Þ½ �T
ð15Þ

Then, formula (13) can be redefined as:

Dy kð Þ ¼ uT kð Þ#þ e kð Þ ð16Þ
The recursive LS method with genetic factors was used to

estimate the parameters of the correlation model:

b# kð Þ ¼ b# k� 1ð Þ þM kð Þ Dy kð Þ � uT kð Þ b# k� 1ð Þ
h i

ð17Þ

M kð Þ ¼ Q k� 1ð Þu kð Þ uT kð ÞQ k� 1ð Þu kð Þ þ �
� ��1 ð18Þ
Please cite this article in press as: Q. Zhao et al., Stepped generalized predictive con
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Q kð Þ ¼ 1

�
1�M kð ÞuT kð Þ� �

Q k� 1ð Þ ð19Þ

where, 0 < � < 1 is forgetting factor; M kð Þ is weight factor;
Q kð Þ is covariance matrix.

Before executing the GPC algorithm, the covariance matrix

Q and parameter vector # must be configured. In general,b# 0ð Þ ¼ 0, and Q 0ð Þ ¼ a2I. After the data vectors were con-

structed, b# kð Þ and Q kð Þ were solved by formulas (17)–(19).

4.2. BPNN-based GPC

The effectiveness of predictive control on nonlinear systems
hinges on how well the nonlinear prediction model reflects
the dynamic features of the object. To demonstrate such fea-

tures, it is necessary to establish a prediction model for the
nonlinear system, and incorporate rolling optimization in the
prediction algorithm.

In this paper, the nonlinear prediction model is constructed

based on the BPNN, which is good at nonlinear fitting and
generalization. To realize rolling optimization, the nonlinear
model was transformed by linearization method into a linear

time-varying model. In this way, a BPNN-based GPC process
was established (Fig. 4).

The nonlinear model can be defined as follows:

y kð Þ ¼ f y k� 1ð Þ; � � � ; y k� nð Þ; u k� 1ð Þ; � � � ; u k�mð Þð Þ ð20Þ
where, y 2 Rn and u 2 Rn are the output and input of control
object, respectively; n and m are the orders of the output and
input, respectively; f �ð Þ is the nonlinear function of the model.

The above model is a time varying system equivalent to lin-

earization [27] under the following conditions: (1)
f 0; � � � ; 0ð Þ ¼ 0; (2) f �ð Þ is continuously differentiable with a
bounded derivative.

After linearizing formula (13) and adding disturbance term,
the following formula can be obtained:

A z�1
� �

y kð Þ ¼ B z�1
� �

u k� 1ð Þ þ Yc k� 1ð Þ
þ C z�1

� �
q kð Þ=D ð21Þ

Then, the model was solved by the GPC algorithm. To
improve the predictive control, the Diophantine equation
was introduced:

Ej z
�1

� �
A z�1
� �

Dþ z�jFj z�1
� �� � ¼ 1 ð22Þ

The predicted value of kþ s time can be optimized as:
trol of test tank temperature based on backpropagation neural network, Alex-
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Fig. 4 Basic structure of BPNN-based GPC process.
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y� kþ sð Þ ¼ GjDu kþ s� 1ð Þ þ Fj z
�1

� �
y kð Þ

þHjDu k� 1ð Þ ð23Þ

5. Simulation and results analysis

In the high and low temperature test tank, the temperature
control process is a complex system with heat absorption

and heat release. Besides, the system features strong nonlinear-
ity, long lag, and high time variation, making it difficult to
establish an accurate mathematical model. In general, the tem-

perature control of environmental experiment can be described
as a first-order delay system. Hence, the temperature control
process in the test tank can be simplified as a first-order inertial
link with time delay:

H sð Þ ¼ Ke�ss=Tsþ 1 ð24Þ
where, T and s are time constant and pure delay time, respec-
tively; K is the static gain.

Since computer simulation mainly processes discrete

signals, the continuous signal was discretized through
z-transform of impulse transfer function G zð Þ. Then, the differ-
ence equation of the discrete system was obtained for simula-

tion and control.
Before simulation, the prediction length N, control length

Nu and flexibility coefficient b of the GPC were set to 9, 3

and 0.6, respectively. BP neural network model adopts 6–8-1
structure, there are 6 nodes in input layer, 8 nodes in hidden
layer and 1 node in output layer. Moreover, the test tempera-
ture was set as 50 �C, for the actual temperature of the test

tank falls between 48 and 52 �C.
Firstly, the GPC was applied to control the normal heating

process. The GPC curve in Fig. 5 shows that, the control object

tracked the preset object excellently, indicating that the GPC
algorithm can control the heating process in the test tank well.

In addition, both the GPC and stepped GPC were simu-

lated. As shown in Fig. 5, the stepped GPC improved the con-
trol effect and dynamic response, and kept the change
directions of control parameters the same, such that the heat-

ing process would not fluctuate.
Next, the preset temperature was adjusted from 50 �C in the

first 300 s to 52 �C in the next 300 s and to 48 �C in the last
600 s. The control curves of GPC and stepped GPC are

displayed in Fig. 6 below.
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Next, the change of the given temperature value is simu-

lated. In the process of simulation, it is necessary to set the
temperature reasonably, in which the temperature is 50 �C in
the first 300 s, then 52 �C in 300 s and 48 �C in 600 s. The con-
trol strategy curve is shown in Fig. 6.

As shown in Fig. 6, despite the variation in the preset tem-
perature, the control object could timely track the changing
value. Judging by dynamic features, the stepped GPC

responded faster than the general GPC. Moreover, with the
change of the preset temperature, the control quantity of the
stepped GPC moved smoothly in the same direction. When

the sampling time is too large, it will lead to a very small
change of control variables, which makes the controlled pro-
cess can not be adjusted in time and will lead to poor dynamic

performance of the system.

6. Conclusions

In the test tank, the temperature control process is a very com-
plex system with heat absorption and heat release. It is difficult
to control the process satisfactorily with a simple control
method. To overcome the difficulty, this paper introduces

the BPNN to predict temperature. After analyzing predictive
control, a prediction model for the heating process in the test
tank was established based on the BPNN. Then, the stepped

GPC was integrated into the model, and the effects of impor-
tant parameters on the model algorithm were studied in
details. Simulation results show that our control method

improved the dynamic response of the control system, and
adjusted the parameters easily and intuitively. To sum up, this
paper provides an effective tool to control the complex temper-

ature control process in the test tank. In this paper, BP neural
network method is used in temperature modeling. In the pro-
cess of input variable increasing, the number of units will show
exponential growth law, which will significantly reduce the

training speed, or data over fitting problem, so we should con-
tinue to study in this field.
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Fig. 5 Control curves of normal heating process.

Fig. 6 Control curves of heating process with variable preset temperature.
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