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Abstract: The burgeoning field of astrophotonics, the interface between astronomy and photon-
ics, is redefining astronomical instrumentation to replace traditional bulk optical systems with
integrated optics. This drives the development of a new promising photonics-integrated inter-
ferometric imaging technique, called the segmented planar imaging detector for electro-optical
reconnaissance (SPIDER). Compared to conventional imaging systems, SPIDER can reduce the
size, weight, and power (SWaP) by one to two orders of magnitude for an equivalent imaging
resolution in virtue of photonics-integrated technology. However, SPIDER has a dense lens
distribution and tens of separated narrow wavebands demultiplexed by array waveguide gratings.
In this paper, we developed a new simplified sparse-aperture photonics-integrated interferometer
(SPIN) imaging system. The SPIN imaging system was no more a Michelson configuration
interferometer as SPIDER and was designed as a Fizeau configuration interferometer imaging
system. This transfer of configuration type affords a more concise structure; the SPIN was
designed with much less apertures and fewer wavebands than those of SPIDER. Further, the
SPIN yields enhanced modulation transfer function and imaging quality with equivalent aperture
diameter, compared with SPIDER. The main barrier of this transfer is the elimination of coupling
restriction at the tip of a waveguide, namely the apodization effect. This effect, which is caused
by the coupling effect between Fourier lens and waveguide, hinders SPIN imaging systems from
getting finer resolution. However, a microscope could be used to eliminate this effect. Moreover,
a waveguide array is used to receive these finer details and enlarges the field of view in SPIN. The
coupling efficiency of the waveguides and crosstalk errors between waveguides of array were
analyzed, which are important for proper parameters setting in SPIN imaging system. Based
on these analyses, the imaging principle was derived and a hyper-Laplacian-based imaging
reconstruction algorithm was developed. A simulation of the SPIN imaging system with seven
apertures and one imaging waveband demonstrated the high imaging quality.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Astronomy is an ancient science that has far-reaching and wide-ranging effects on humans. The
shadow warriors in the inexorable march of astronomy are telescopes, which capture profound
mysteries of the deep universe. Finer observations require high-resolution telescopes. For
conventional diffraction-limited optical systems, the resolution is proportional to the primary
mirror aperture D. However, the cost increases with at least D2 or even faster [1–3].
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Michelson developed an alternative imaging technology to improve the resolution of the
telescope using an optical interferometer and successfully measured the stellar diameter of
Betelgeuse [4]. The resolution of the optical interferometer is proportional to the distance, also
called the baseline, of two or more light-collecting apertures spaced apart. It is obviously much
more economical and easier to increase the baseline than a conventional telescope aperture
to acquire a much higher resolution. However, it is challenging to form a fine interferogram
[5,6] because unavoidable environmental fluctuations and optical beam manipulations result in
high complexity in the optical configuration, which is composed of bulk optical elements with
different functions.

To reduce complexity, these bulk optical elements are fully substituted with integrated optics
(IO) technology in astrophotonics [7–10]. This technology also spawns a new segmented planar
imaging detector for electro-optical reconnaissance (SPIDER) imaging system, which can reduce
the size, weight, and power by 10 to 100 times compared with conventional telescopes [11–15].
SPIDER can be classified as a Michelson configuration interferometer [16,17]. The Michelson
configuration interferometer uses the pupil-plane beam combination technique to measure
complex visibilities in the pupil plane, namely the aperture plane. Measurement with one baseline
and one narrow-band wavelength obtains one complex visibility signal. Therefore, SPIDER uses a
large number of lenslets, which are used to form baselines, and multiple narrow-band wavelengths
[18–20] to measure complex visibilities in the spatial frequency domain [11]. However, owing
to the limitation with the distribution of baselines, measurements at high frequency are sparse,
which produces Gibbs-ringing artifacts in the reconstructed image [21]. Thus, it is difficult for
SPIDER to obtain high-quality imaging performance [13,20,22] at present.

In this study, a new sparse-aperture photonics-integrated interferometer (SPIN) imaging system
is proposed, which is designed as a Fizeau configuration interferometer imaging system [16,17].
By introducing IO technology, the SPIN system is compact in structure and stable in measurement.
Moreover, a seven-aperture with one narrow waveband SPIN system has been proven to have
high imaging quality. In this study, the imaging principle was meticulously derived, which
reveals that the SPIN is a Fizeau configuration interferometer imaging system [16,17]. Besides,
the apodization effect, which is caused by the coupling effects and hinders the extraction of
fine details, has been studied. Therefore, a microscope is added to eliminate this effect. In
addition, the relation between the field of view (FOV) and the waveguide array is analyzed after
the light is magnified by the microscope. Moreover, the crosstalk between waveguides has been
analyzed. The modulation transfer function (MTF) and point spread function (PSF) of SPIN
were analyzed. A hyper-Laplacian method has been proposed to reconstruct the ground truth
from images obtained in SPIN.

2. Concept of SPIN

The aperture configurations of the conventional monolithic-aperture system, SPIN, and SPIDER
are shown in Fig. 1. SPIN was designed as a Fizeau configuration interferometer imaging
system. Typically, one narrow waveband and seven apertures can achieve imaging performance
similar to the equivalent conventional monolithic-aperture system. This differs significantly from
SPIDER, which is a Michelson configuration interferometer and uses a large number of lenslets
and multiple narrow-band wavelengths in its system [18–20].

A conceptual diagram of SPIN with two apertures is depicted in Fig. 2. First, the light at the
aperture focus is magnified by the microscope and coupled into the waveguide array in the 3D
PIC [23]. The optical waveguide is designed as a single-mode waveguide and maintains the
same photonic path lengths for the same field of view (FOV) of different apertures. This can
reduce the phase shifter’s burden of phase adjustment (reducing the optical length difference
from the source to the detector to zero) and achieve stable performance in the 3D PIC. Second,
the light can be butt-coupled into the subsequent 2D PIC and decomposed into narrow-band
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Fig. 1. Aperture configurations of, (a) conventional monolithic aperture system, (b) SPIN,
and (c) SPIDER. De is the diameter of equivalent conventional monolithic aperture.

light via wavelength-division multiplexing (WDM). Microring resonator-based WDM filters
are adopted as demultiplexers, which are compact in size [24,25]. The phase shifter is used for
precise cophased adjustment (zero optical length difference from the source to the detector) so
that the detector can acquire coherent superposition signals with high contrast. The Y-coupler
is used to coherently couple the light from the same FOV of different apertures. The overall
conceptual diagram of the 2D PIC is shown in Fig. 2(b). Finally, the interference signals are
converted to digital signals by the detector and rearranged to form a degraded image. To analyze
the imaging quality, two issues, including the imaging principle and apodization arising from the
coupling effect, need to be explored in depth.

Fig. 2. (a) Conceptual diagram of optical waveguide path layout using 3D PIC and 2D PIC
with two apertures in SPIN and (b) functional structure schematic of 2D PIC.
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3. Principle of SPIN

3.1. Imaging principle

Fourier transform apertures are used as light-collecting apertures in SPIN and arranged within
a plane to observe the same field. Under these conditions, the overall imaging process was
carefully derived (described in the Supplement 1). The signals received by the optical detector
are convolution between the target and the PSF of the SPIN system:

I(α⃗1) = I0(α⃗1)∗PSF(α⃗1) + n, (1)

where n represents the noise introduced by SPIN.
From the aperture function A(R⃗) = cir(2R⃗/D)∗

∑︁n
i δ(Ri), the optical transfer function (OTF)

and PSF can be derived as

OTF(R⃗) = OTFcir(R⃗) ∗ [NTδ(R⃗) +
∑︂n

j>i
[δ(R⃗ − (R⃗j − R⃗i)) + δ(R⃗ + (R⃗j − R⃗i))] ], (2)

PSF(α⃗1) = PSFcir(α⃗1)[NT + 2
∑︂

i<j
cos(2π(R⃗j − R⃗i) · α⃗1)], (3)

where OTFcir(R⃗) and PSFcir(α⃗1) are the OTF and PSF of the non-obstructed circular aperture,
respectively [26], and NT is the number of apertures. In contrast to conventional monolithic-
aperture imaging systems, the PSF of interferometric imaging systems contains a coherence term
owing to the combination of light from different apertures. The coherence terms help to narrow
the main lobe of the PSF system and improve the resolution, which will be further discussed
in Section 4.2. However, the coupling effect between the single-mode waveguide and the Airy
disk couples the entire FOV of 2λ/D into one waveguide (D is the aperture diameter), which
uniformizes fine details within this FOV. The next sections are used to discuss and solve this
problem.

Fig. 3. (a) Distribution of Airy disk within field angle of 2.44λ/D. (b) Distribution of η(α)
within field angle of 2.44λ/D, namely the coupling efficiency of intensity. (c) Comparison
between Airy disk (AD), Gaussian mode (GD), and η(α) (CE).

3.2. Apodization due to coupling effect

The fraction of light launched into the waveguide/fiber assuming negligible reflections is given
by [27–29]

ρ =

|︁|︁∫ ElensE∗
0dS

|︁|︁2
∫ |Elens |

2dS × ∫ |E0 |
2dS

, (4)

where Elens is the electric field distribution in the focal plane of the apertures, E0 is the propagation
mode of the waveguide, and E∗

0 represents the complex conjugate of E0. The gradient of coupling
efficiency decreases rapidly with the FOV of the telescope depicted in Fig. 3. With a FOV of λ/D,

https://doi.org/10.6084/m9.figshare.16847344


Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 39260

the gradient of coupling efficiency is 10 times smaller than that on the axis using a single-mode
waveguide [27]. Therefore, the FOV of an interferometer that uses one single-mode waveguide
per aperture to transport the beam is limited to

S = 2λ/D. (5)

Fig. 4. Diagram of aperture system which magnifies the electric field distribution of the
aperture in the focal plane.

The limitation on the coupling efficiency leads to the apodization of the FOV. The apodization
effect causes the light within field angle S to be coupled into one waveguide and uniformizes
the details finer than the field angle S. To eliminate the apodization effect, a microscope was
directly utilized to magnify the spot in the focal plane of each aperture, as depicted in Fig. 4.
It is worth mentioning that an improper magnification of the microscope threatens the angular
resolution. The angular resolution of two interferometric apertures is λ/B[17], where B is the
baseline; therefore, the microscope magnifies the field angle at least by λ/B to 2λ/D. Hence, the
magnification of the microscope must be greater than twice the ratio of the maximum baseline
Bmax to D. So far, the apodization effect has been studied. However, the effects introduced by
the microscope have not been numerically analyzed, and the relation between the FOV and
waveguide array has not been established in SPIN. These are discussed in the following section.

3.3. Relation between FOV and waveguide array in SPIN

The microscope is introduced to acquire finer details than S, which are uniformized by the
apodization effect without the microscope. In Eq. (4), ρ is used to illustrate the total fraction
of light launched into the waveguide/fiber. However, ρ cannot present the changes of coupling
efficiency for arbitrary field angles, which is more appropriate to demonstrate the FOV in SPIN.
Thus, the gradient of coupling efficiency η for the arbitrary field angle is used to analyze the
ability of the microscope to eliminate the apodization effect. According to the coupling efficiency
Eq. (15) in [29], η is the derivative of ρ with respect to S and, with a circular aperture and a
fundamental mode approximated by a Gaussian, can be expressed as

η(r, D, f , λ, w) ∝ |ElensE∗
0 |

2 ∝

|︁|︁|︁|︁J1(πDr/λf )
Dr/λf

exp
{︃
−

(︂ r
w

)︂2
}︃|︁|︁|︁|︁2, (6)
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where r is radial coordinate with polar coordinate representation in the focal plane, and f is the
focal length of the aperture. w is the 1/e width of the Gaussian mode and can be expressed as

w = ar

(︃
0.65 +

1.619
V3/2 +

2.879
V6

)︃
, (7)

Herein, V is normalized frequency, and cutoff occurs as V ≤ 2.4 for single-mode waveg-
uide/fiber [29]. ar is the core radius/length of the waveguide/fiber. The arbitrary field angle,
observed by SPIN, is α = r/f , so the η(α) can be expressed as

η(α) = CN

|︁|︁|︁|︁ J1(πDα/λ)
Dα/λ

exp
{︃
−

(︂
α

w
f
)︂2

}︃|︁|︁|︁|︁2, (8)

where CN is the constant for normalization. To demonstrate the apodization effect, a simulation
with ar = 3µm and V = 2.4, is implemented in Fig. 3.

The coupling efficiency is related to ar, and
√︁
η(α = 0) ≅ 0.1

√︁
η(α = 0) with ar = 4µm, which

has been reported in [27,28]. This means that the field angle of 2λ/D only couples into one
waveguide. To eliminate this effect and detect finer interferometric details, the microscope and
the waveguide array are adopted. To better model the relation between the FOV and waveguide
array, η(α), with the microscope and waveguide array adopted in SPIN, is simulated as shown in
Fig. 5.

Fig. 5. (a) Gaussian mode distribution of 7 * 7 waveguide with magnification β = 10.
(b) Distribution of η(α/β). (c) Profile of the magnified Airy disk and η(α/β). Note: the
coordinate of the field angle is the observed field of view, not the coordinate of the magnified
field in the focal plane.

The coupling efficiency with the microscope and waveguide array within the FOV of S has
been demonstrated, and the apodization effect has been solved, as shown in Fig. 5. The finer
detail within S can be received. The duty cycle d, which is the ratio of the waveguide diameter to
distance between adjacent waveguides, is slightly larger than 0.5 in the simulation. The parameters
of the aperture configurations are depicted in Fig. 1(b). The field angle of adjacent waveguides is
2.44λ
7D , and the maximum angular resolution of SPIN is λ

Bmax
= λ

2D . Thus, the waveguide array
and magnification settings are sufficient for observations, and the FOV in horizontal/vertical
direction is 2.44λ

7D ∗Nw (where Nw is the waveguide number in the horizontal/vertical direction).
However, owing to the coupled-mode theory, crosstalks between waveguides could affect the
intensity received by individual detectors, which will be analyzed in the next section.

3.4. Crosstalk error in waveguide array

The coupled-mode theory reveals that the power of adjacent waveguides transfers between each
other. Fortunately, this transfer is spatially periodic. Thus, a certain length of the waveguide
can reduce or even avoid this transfer, which introduces errors to the interferometric pattern.
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According to [30], the complex amplitudes of adjacent waveguides are A(z) and B(z). If the
boundary conditions are such that a single mode, say B(z), is incident at z = 0 on the perturbed
region z>0, the boundary conditions can be expressed as

B (0) = B0, A (0) = 0 (9)

Then, the A(z) and B(z) can be expressed as [30]

A(z) = B0
2κ

(4κ2 + ∆2)
1/2 e−iz∆/2sin

[︃
1
2
(4κ2 + ∆2)

1/2z
]︃

, (10)

B(z) = B0e−iz∆/2

{︄
cos

[︃
1
2
(4κ2 + ∆2)

1/2z
]︃
− i

∆
(4κ2 + ∆2)

1/2 sin
[︃
1
2
(4κ2 + ∆2)

1/2z
]︃}︄

(11)

where ∆ is a phase-mismatch constant and depends on the propagation constants (βa and βb) of
two waveguides. In the SPIN system, the array of waveguides has the same design, so ∆ equals
zeros. Thus, under phase-matched condition ∆ = 0, a complete spatially periodic power transfer
between two waveguides occurs with a period π/2κ :

A(z) = B0sin(κz), (12)

B(z) = B0cos(κz) (13)

Hence, an appropriate length of the straight waveguide in 3D PIC can prevent crosstalks
between waveguides. The distance can be set as Mπ/κ, (M = 1, 2, 3, . . .), where κ is the coupling
coefficient [31] and can be expressed as

κ =
2p2

xk2
x

β(p2
x + k2

x )(1 + arpx)
exp(−pxd) (14)

Here,

kxar = mπ − 2arctan
(︃
kx

px

)︃
, (m = 0, 1, 2, . . .), (15)

kyar = nπ − 2arctan

(︄
n2

2ky

n2
1py

)︄
, (n = 0, 1, 2, . . .), (16)

β = (k2
0n2

1 − k2
x − k2

y )
1/2, (17)

px = (k2
0n2

1 − k2
0n2

2 − k2
x )

1/2, (18)

py = (k2
0n2

1 − k2
0n2

2 − k2
y )

1/2, (19)

where, n1 and n2 are the refractive index of core and cladding in the waveguide, respectively,
k0 =

2π
λ , d is the distance between adjacent waveguides.

4. Analysis of SPIN imaging system

4.1. MTF

In imaging systems, the MTF characterizes the contrast changes of different spatial frequencies
[32] and the finest resolution. Hence, MTF is used to analyze imaging performance and is
adopted to compare the contrast changes of the conventional monolithic aperture, SPIN, and
SPIDER systems, as shown in Fig. 1.
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SPIDER interferes with the light of the pupil plane and measures the complex visibility of the
targets [28]. The complex visibility is the Fourier transform of the targets with a fixed spatial
frequency f⃗ = B⃗/(λz0):

V(f⃗ ) =
∫

I0(x⃗)exp(−i2πf⃗ ·x⃗)dx⃗
|︁|︁|︁|︁
f⃗=B⃗/(λz0)

(20)

Hence, the MTF equals 1 when the corresponding spatial frequency is measured and 0
otherwise. The SPIDER measurements have a separate radial distribution. Therefore, the
visibility measurements in some radial directions are unavoidably missed, as depicted in Fig. 6
and the blue line in Figs. 6(d) and 6(e). Conversely, SPIN can maintain almost the same contrast
response in different directions and guarantee that all spatial frequency signals under De/λz are
measured with aperture configuration depicted in Fig. 1(b), as shown in Fig. 6(a) and the red
lines in Figs. 6(d) and 6(e).

Fig. 6. MTF of (a) conventional monolithic aperture, (b) SPIN, and (c) SPIDER systems
with aperture configurations depicted in Fig. 1, which have the same aperture diameter. (d)
Horizontal MTF distribution and (e) vertical MTF distribution.

The MTF of SPIN is more suitable for low-frequency intensive observations [21,33], which is
the characteristic of real-world images and shows a heavy-tailed distribution of gradients [34–36].
However, the MTF of SPIDER displays a lower performance for a heavy-tailed distribution of
gradients than when using the salient features with significant gradient changes [20]. Moreover,
a zero weight in MTF, namely spectrum leakage, results in Gibbs ringing artifacts in images
[21,37], which has been demonstrated in the Supplement 1. In addition, the measurements of
complex visibilities are sparse at present [15,19] in SPIDER. Hence, more complicated priors
and algorithms are required to reconstruct high-quality images in SPIDER [15,18].

4.2. Aperture configurations and PSFs

A seven-aperture configuration was chosen for SPIN. Fewer apertures can be arranged, as shown
in Figs. 7(b) and 7(c). Apart from the number of apertures, their arrangement must also be
carefully selected. The PSF is chosen to characterize these variables, which represent the system

https://doi.org/10.6084/m9.figshare.16847344
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response for the point source. The PSF of the system can be expressed by Eq. (3) as

PSF(α⃗1) = PSFcir(α⃗1)
[︂
NT + 2

∑︂
i<j

cos(2π(R⃗j − R⃗i) · α⃗1)
]︂

. (21)

Fig. 7. Configurations of (a) sub-aperture, (b) three apertures, (c) six apertures, and (d)
seven apertures in the first row. The PSFs of the configurations with Bmin = D are shown by
(e), (f), (g), and (h). The PSFs of the configurations with Bmin = 2D are shown by (i), (j),
(k), and (l).

The cosine terms can narrow PSFcir, which is the PSF of a sub-aperture, as shown in Fig. 7(e).
However, these terms cannot entirely narrow the overall PSF to a smaller value. In addition, the
sidelobes in PSF vary with the number and arrangement of apertures, and a simulation of three
different configurations was implemented to address the influence. The uniform arrangements
of the three -, six -, and seven-aperture configurations are shown in Figs. 7(b), 7(c), and 7(d),
respectively. The PSFs of these configurations with a minimum spacing Bmin = D and Bmin = 2D
are shown in the second and last rows of Fig. 7, respectively.

At the same equivalent aperture, more apertures result in fewer sidelobes in the PSF and a
similar width of the main lobe (configurations (b) and (c) in Fig. 7). A large spacing of adjacent
apertures can narrow the main lobe; however, it causes evident sidelobes. To acquire a high
resolution, a large spacing with Bmin = 2D is adopted in the SPIN imaging system. Moreover, a
deconvolution image reconstruction model is proposed to remove the degradation introduced by
the sidelobes.

5. SPIN performance in simulation

5.1. Image reconstruction model

According to the principle of SPIN, the imaging model can be expressed as

I = X ∗ K + n, (22)
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where I represents the degraded images received by the system, X is the ground truth of the
observations, and K is the PSF of the imaging system. In actual measurements, noise n is
introduced by a photoelectric detector, environmental fluctuations, and other errors.

SPIN concentrates on natural scenes, which are heavy-tailed distributions of gradients [34],
and hyper-Laplacian (HL i.e., p(x) ∝ e−k |x |α ) can measure these distributions well [35,36]. Hence,
the HL prior was added to the reconstruction. From a probabilistic perspective, the reconstruction
seeks a maximum a posteriori (MAP) estimation of x satisfying: p(x|I, K) ∝ p(I|x, K)p(x). The
first term is a Gaussian likelihood, and the second term is the HL prior:

p(I|x, K) ∝ exp
{︂
−

∑︂N

i

η

2
(x∗K − I)2i

}︂
,

p(x) ∝ exp
{︂
−

∑︂N

i

∑︂J

j
|(x∗fj)i |

α
}︂

,
(23)

where i is the pixel index, x is the estimation of the ground truth X, and f1, . . . fj represent a set of
filters applied to x. To obtain the MAP estimation, the probability distribution p(x|I, K) needs
to be maximized, which equivalently minimizes, − log[p(I|x, K)p(x)], yielding the following
reconstruction model:

min
x

∑︂N

i

(︂η
2
(x∗K − I)2i +

∑︂J

j
|(x∗fj)i |

α
)︂

. (24)

The HL prior can precisely model the distribution of image gradients; hence, this filter is
set to calculate the image gradients. The first-order derivative operators are f1 = [1,−1] and
f2 = [1,−1]T for the horizontal and vertical directions of the image gradients, respectively [38].
For simplicity, the HL prior is denoted Fj

ix ≡ (x∗fj)i as j = 1 . . . J.
To move the Fj

ix term out of |.|α expression, the half-quadratic penalty method [39,40] is used
in the reconstruction model and two auxiliary variables ui, vi are introduced at pixel i:

min
x,u,v

∑︂
i

(︃
η

2
(x∗K − I)2i +

β

2
(| |F1

i x − ui | |
2
2 + | |F2

i x − vi | |
2
2) + |ui |

α + |vi |
α

)︃
. (25)

It is difficult to solve the half-quadratic penalty problem directly. Alternatively, the original
problem can be divided into two sub-problems which can be solved separately:

xn+1 = arg min
x

∑︂
i

(︃
η

2
| |x∗K − I | |22 +

β

2
(| |F1x − u| |22 + | |F2x − v| |22)

)︃
, (26)

un+1 = arg min
u

∑︂
i

(︃
β

2
| |F1x − u| |22 + |u|α

)︃
, (27)

vn+1 = arg min
v

∑︂
i

(︃
β

2
| |F2x − v| |22 + |v|α

)︃
. (28)

(1) x sub-problem
Differentiating with respect to x, the resulting derivative is(︃

F1T
F1 + F2T

F2 +
η

β
kTk

)︃
x = F1T

u + F2T
v +
η

β
kT I, (29)

where kx = x∗K. The convolution matrices F1, F2 and k can be diagonalized using a 2D FFT
with circular boundary conditions. Hence, the optimal x is expressed as

xn+1 = F −1

(︄
F (F1T

). × F (u) + F (F2T
). × F (v) + (η/β)F (kT ). × F (I)

F (F1T
). × F (F1) + F (F2T

). × F (F2) + (η/β)F (kT ). × F (k)

)︄
, (30)

where .× denotes component-wise multiplication, namely, the Hadamard product. F and F −1

respectively represent Fourier transform and inverse Fourier transform. The division is also
component-wise.
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(2) u, v sub-problem

Given the solution of xn+1, u and v satisfy:

α |u|α−1sign(u) + β(u − F1xn+1) = 0, (31)

α |v|α−1sign(v) + β(v − F2xn+1) = 0, (32)

where u, v ≠ 0. For α = 1/2 and α = 2/3, sub-problem (2) has an analytic solution, and a lookup
table (LUT) is established, which can solve sub-problems quickly and accurately compared with
a numerical root-finder [35].

(3) Termination Conditions
β ≥ βmax (33)

Starting with a small value β0, βn+1 is scaled by a factor βamp until it exceeds the fixed value βmax.
When minimizing the reconstruction model in Eq. (25), the two sub-problems are alternately
solved for M(M ≥ 1) times, before increasing β. The initialization technology and the choice of
the coefficients have been discussed in [35].

5.2. Imaging simulation

The PSF of the interferometer with NT apertures can be expressed as:

PSF(α⃗) = PSFcir(α⃗)

[︄
NT +

∑︂NB

j=1
2cos

(︃
2π
λ

B⃗j · α⃗

)︃ ]︄
(34)

where PSF(α⃗) is the PSF of a sub-aperture, and NB is the number of baselines with NB =

NT (NT − 1)/2, provided the distribution of the telescopes is non-redundant.
The minimum baseline is twice that of a sub-aperture used to obtain a narrow mainlobe of the

PSF and a higher resolution. The microscope magnification is set similarly to the parameters
simulated in Section 3.3. We demonstrated the feasibility of SPIN with a seven-aperture
configuration. The structural parameters of the simulated system are listed in Table 1, and the
PSF is shown in Fig. 8.

Fig. 8. PSF of seven-apertures array configuration.

The similarity between the reconstructed object distribution and ground truth is further
evaluated using the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and
signal-to-noise ratio (SNR) [41]. The test dataset includes images that are widely used for image
restoration validation [42]. Some of these images are shown in Fig. 9.
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Table 1. Design structural parameters of the system.

Structure Parameters Value

Magnification of the microscope 15

Waveguide arrays behind the aperture system 512 × 512

Aperture diameter 30 mm

Aperture focal length 60 mm

Number of apertures 7

Minimum baseline 60 mm

Wavelength 1550 nm

Fig. 9. Some of the widely used testing images in image reconstruction.

Table 2. Peak signal-to-noise ratio and structural similarity index of the reconstruction.

Images

Methods
SNR(dB) Boats Butterfly Zebra Pyramid Cameraman

Degraded
30 27.40/0.67 29.04/0.58 27.40/0.67 27.71/0.65 28.63/0.62

20 19.80/0.28 20.17/0.22 19.73/0.30 19.83/0.25 20.19/0.23

HL method
30 29.07/0.78 34.84/0.92 31.23/0.86 28.74/0.79 33.56/0.90
20 27.89/0.72 31.74/0.87 29.02/0.81 28.58/0.75 30.93/0.81

In the Supplement 1, comparison between SPIN and Fizeau interferometer reveals that the
SNR of SPIN would be lower than that of the Fizeau interferometer. Therefore, two lower SNR
cases of 20dB and 30dB, which are typically set as 30dB and 40dB Gaussian noise for Fizeau
interferometer [43], are simulated with the block-matching and 3D filtering (BM3D) denoising
algorithm [44]. The received images are preprocessed by the BM3D denoising algorithm.
Subsequently, the preprocessed images are reconstructed by the HL method. Table 2 lists the
degraded and reconstructed assessments of the test images with Gaussian white noise with zero
mean and variance of 0.01 and 0.001 corresponding to SNR of 20dB and 30dB, and two visual
illustrations are provided in Fig. 10 and Fig. 11. These assessments and visual illustrations
showed excellent imaging quality using the SPIN and HL methods. For better comparison
of imaging quality, a simple simulation of the same target with SPIDER and SPIN system is
demonstrated in the Supplement 1. Moreover, our previous work showed the imaging quality
using resolution board (USAF1951) targets of SPIDER system [21]; similar results were reported
elsewhere [19,20]. These comparisons show that the SPIN has superior imaging quality for
natural scenes, which are heavy-tailed distributions of gradients.

To expand field of use with SPIN, especially for some astronomical applications, which do
not conform to the heavy-tailed distributions of gradients in large extent, a simple discussion is
presented in the Supplement 1. This discussion encourages that a more appropriate prior and
method are needed in the SPIN system for special applications. In addition, a fine optimization
for suppressing noise is needed in the SPIN system.

https://doi.org/10.6084/m9.figshare.16847344
https://doi.org/10.6084/m9.figshare.16847344
https://doi.org/10.6084/m9.figshare.16847344
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Fig. 10. Illustration of the results of the final reconstructed image when the SNR is 30dB.
(a) Original clear image. (b) Degraded image. (c) Result obtained by the HL method.

Fig. 11. Illustration of the results of the final reconstructed image when the SNR is 20dB.
(a) Original clear image. (b) Degraded image. (c) Result obtained by the HL method.
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6. Conclusion

In this paper, we propose SPIN, which is a compact interferometric imaging system based on
an advanced photonics technique. It was demonstrated that SPIN has high-quality imaging
performance with a seven-aperture configuration and one imaging waveband. Therefore, SPIN
can significantly reduce the number of apertures and the number of imaging wavebands. The
MTF analysis shows that SPIN can obtain a more uniform response in the spatial frequency
domain and receive most spatial frequency signals within the diffraction limit. Hence, SPIN
makes it easier to reconstruct high-quality images.
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