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Existing depth map-based super-resolution (SR) methods cannot achieve satisfactory
results in depth map detail restoration. For example, boundaries of the depth map are
always difficult to reconstruct effectively from the low-resolution (LR) guided depth
map particularly at big magnification factors. In this paper, we present a novel super-
resolution method for single depth map by introducing a deep feedback network (DFN),
which can effectively enhance the feature representations at depth boundaries that utilize
iterative up-sampling and down-sampling operations, building a deep feedback mecha-
nism by projecting high-resolution (HR) representations to low-resolution spatial domain
and then back-projecting to high-resolution spatial domain. The deep feedback (DF)
block imitates the process of image degradation and reconstruction iteratively. The rich
intermediate high-resolution features effectively tackle the problem of depth boundary
ambiguity in depth map super-resolution. Extensive experimental results on the bench-
mark datasets show that our proposed DFN outperforms the state-of-the-art methods.

Keywords: Depth map; super-resolution; feedback; depth reconstruction.

AMS Subject Classification 2020: 94A08

1. Introduction

Image SR for restoring HR image from LR image, is a long-standing problem
in the field of computer vision. Super-resolution techniques as a basic task have
been widely used in scene depth recovery? medical imaging ™ surveillance 4
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hyper-spectral imaging™ biomimetic imaging? and so on. With the significant
progress of deep learning in recent years, image SR techniques have been greatly
improved. Although many approaches are committed to image SR, it is still a dif-
ficult challenge as an inherently ill-posed inverse problem.

Depth maps are widely used in various fields, such as autonomous navigation,
3D reconstruction? monitoringIZI and so on. Nevertheless, the problem remains
unsolved to acquire high quality and HR depth maps in reality, which requires
specialized depth-sensing equipment at great cost in terms of effort and expense.
It is difficult or impossible to use depth sensors to obtain HR depth maps directly,
thus efficient depth SR techniques are desired to recover HR depth maps from the
corresponding data of degraded LR depth map. Recently, several SR methodg0#4
use convolutional neural networks (CNN) to reconstruct HR depth outputs from
LR depth inputs. These methods are devoted to resolve the reconstruction of depth
map details, e.g. boundaries of depth map, to give a high quality scene depth map.
Nevertheless, the recovered depth boundaries generally lose sharpness and are hard
to accurately reconstruct from LR depth maps particularly at big magnification fac-
tor. In general, these typical methods usually calculate a series of feature maps from
LR inputs and then reconstruct HR images through different designed up-sampling
modules, such as progressive deconvolutions®® or combining with texture images to
further enhance the feature representations®? The core of these methods can be
regarded as extracting features step by step with the feedforward information flows
from LR images to the final SR images.

In cognitive theory, the transmission channels of the response signal from the
higher-order region to the lower-order region are composed of the feedback con-
nection of the visual region of the cerebral cortext%25 which are indispensable in
expression and regulation of human. If we consider the LR-to-HR mapping as a
feedforward mechanism, then the opposite HR-to-LR mapping can be considered
as a feedback process where the rich intermediate HR features can be effectively
extracted to tackle the puzzle of limited spatial resolution and depth boundary
ambiguity in LR images. Different from the above simple feedforward methods,
some workd#26B5H5| 1) ave proved the effect of feedback mechanism in some deep
learning-based tasks. Therefore, inspired by the feedback mechanism, we present
a novel SR method for single depth map by introducing a deep feedback network,
which can effectively enhance the feature representations at depth boundaries that
utilize iterative up-sampling and down-sampling operations, building a deep feed-
back mechanism by projecting HR representations to LR spatial domain and then
back-projecting to HR spatial domain. The designed deep feedback blocks trans-
mit the extracted HR features back to the previous LR feature domain to refine
the LR feature map. The key point of feedback mechanism is that the coarse HR
information can provide crucial information to guide the reconstruction of high
quality depth maps. To maximize the use of hierarchical features, we utilize dense
connections to connect all the deep feedback blocks to form a dense DFN, which
can further improve the performance.
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Our main contributions are summarized in the following:

(1) An end-to-end learning framework for high-quality and HR depth map SR from
LR depth input, which takes full advantage of all hierarchical features of the
original LR depth map.

(2) A DF designed based on the feedback mechanism, which can not only efficiently
handle feedforward and backward information flows, but also enrich the feature
representations to promote the recovery of high quality depth map.

(3) Extensive experimental results on the benchmark datasets show that our pro-
posed DFN outperforms the state-of-the-art methods. Note that, different from
other methods that use texture image as auxiliary information to promote the
recovery of the sharp depth boundaries, we only focus on singe depth map SR,
but achieve superior performance surprisingly.

2. Related Work

The significant progress of deep learning has greatly facilitated the progress of
image SR. Dong et al® successfully solved image SR tasks by CNN, more and
more researches adopt deep learning to solve the problem of image SR. We present
a simple overview of image SR based on deep learning in Sec. Bl The feedback
mechanism has been proven to have excellent error feedback ability in existing deep
learning-based methods and has practically promoted the SR field. We present a
briefly overview in Sec.

2.1. Deep learning-based super-resolution

Dong et al first built a deep learning-based SR method, i.e. SRCNN, which is
only a three-layer CNN structure and outperforms traditional methods. SRCNN
uses interpolation to up-sample LR, then uses the middle result as the input of
CNN. Based on SRCNN, SFRCNNY and ESPCN28 yp-sampled LR at the end of
the networks after extracting a series of feature maps, which can effectively increase
the resolution and reduce middle operations. Obviously, deeper networks gener-
ally outperform shallower networks. VDSR2¥ and DRCNZU significant improved
the accuracy by increasing the depth of the network. EDSRZ? and SRResNet2?
took advantage of residual learning and used the efficient sub-pixel convolution
layer to further extract more global and local features. With the help of dense con-
nections ™ DSC3? and RDNZ build deeper networks which had more parameters
at the same time. Some works™2 have been carried out to consider the tradeoff
between performance and network parameters.

Encouraged by the advance of single image SR, some researches apply deep
learning to the special tasks of depth map-based SR. Riegler et al¥ presented
an end-to-end framework for reconstructing HR depth output from corresponding
LR depth input in two paths. Ferstl et al’® presented a variational up-sampling
network which used the representations of example-based edge. Gu et al™ presented
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an analysis representation model that can enhance the depth map and solve the
limitation of the complex interdependence between depth map and color image. Hui
et al™ presented a method which introduced gradual upsampling and multi-scale
color guidance. They further explored the relationship between depth structure and
color texture. Ye et al® presented a depth-based SR network by learning a binary
feature of depth boundaries from HR color image and LR depth map. Wen et al20
also used the color guidance and proposed a cascade network by color guidance to
eliminate artifacts from texture copying.

2.2. Feedback network

Recently, feedback mechanism has been applied to various computing tasks 22613538

The feedback mechanism makes the deep learning network to learn more hierar-
chical information. Carreira et al® presented an iterative error feedback model
by estimating and correcting the current results iteratively. PreNet3! proposed an
unsupervised recurrent network by predicting the future frames and importing the
estimation back to the network.

The feedback mechanism has demonstrated exciting capability in the area of
image SR. Han et al™ utilized the delayed feedback mechanism in a dual-state
recurrent neural network by transmitting the information flow between two recur-
rent states.

In general, the above-introduced SR methods utilized CNN to learn nonlinear
LR-to-HR mapping, but ignored the interrelation between HR image and LR image.
Compared to the above methods, our DFN models the process of image degra-
dation and reconstruction and utilizes iterative up-sampling and down-sampling,
introducing a deep feedback mechanism by projecting HR representations to LR
spatial domain.

3. Proposed Method
3.1. Network structure

In this section, the pipeline of our network architecture is illustrated as follows:
shallow feature extraction block, deep feedback block, and reconstruction block, as
shown in Fig.[Il To express the implementation details, we use colored rectangles
to represent the different execution processes in each block. We denote the LR
depth map input and the SR depth map output from our DFN as I1r and Isg,
respectively. We first send a LR input I1r to the shallow feature extraction block,
from which we can acquire the initial features Isg by two continuous convolutional
layers:

Isp = Fsra(ILR), (3.1)

where Fspp denotes the feature extraction operation in the shallow feature extrac-
tion block. Isg is then used for the following stacked deep feedback blocks. So we
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Fig. 1. Network architecture of the proposed DFN.

can further have
[lirs g - - - Iir) = Fors(Ise), (3.2)

where Fppp denotes our proposed deep feedback mechanism, which contains T
up-sampling stages and T—1 down-sampling stages. Each Iyp is produced in each
up-sampling stage, so we get T high resolution feature maps totally. Note that
we design a step-by-step up-sampling strategy in our up-sampling stage, which
contains multiple progressive up-sampling units in terms of large upscaling factors,
while only one step to downsample the feature map to the low resolution domain.
We will give more details about the up-sampling unit and down sampling unit
in our DF structure in the following section. Finally, the target SR image Isr is
reconstructed from the multiple HR feature maps [Iig, [Zg,- - - [ir):

Isr = FRB([I%{RVII%R?“'?IER])? (3'3)

where [] denotes concatenation operation. We concatenate each output of each up-
sampling stage and then get target channels by a convolutional layer. Frp denotes
the operations of reconstruction block.

3.2. Deep feedback block

More details about our proposed DF are provided in this section. As shown in Fig.[I]
DF block contains T up-sampling stage and T'—1 down-sampling stage, and each
sampling operation is implemented by a up-sampling unit or a down-sampling unit.
The DF is designed to exploit iterative up-sampling and down-sampling operations,
introducing a deep feedback mechanism by projecting HR representations to LR
spatial domain and then back-projecting to HR spatial domain. The rich interme-
diate HR features effectively solve the problem of depth boundary ambiguity in
depth map SR.
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Fig. 2. The up-sampling unit.

Up-sampling unit
We denote I}z and If as the feature output of up-sampling unit and down-
sampling unit, respectively. The up-sampling unit is designed in Fig. 2l We treat
the output Iﬁ_Rl of (t—1)th down-sampling unit as input at the ¢th iteration, then
project it to HR features Hf. H{ can be obtained by

HY = Uph(ILg)), (3.4)
where Upf, is the first deconvolution operation. Then we would like to map Hy back
to LR features L), which can be obtained by

L = Downf(H}), (3.5)
where Down} is a convolution operation. The residual Ik, is calculated between
IR and L:

Ihes = IR — L. (3.6)
The residual If,, is mapped to HR features H} by the second deconvolution
operation:

Hi = Up'| (Ifes)- (3.7)
The final output Iiy of up-sampling unit can be obtained by
Ihg = HE + HY. (3.8)

At the up-sampling step, our progressive up-sampling strategy uses a pyramidal
structure which gradually amplifies the resolution of feature maps to the desired
size. For example, when dealing with 8z up-sampling case, we need three up-
sampling units, each containing a up-sampling operation with a 2z upscale fac-
tor. This strategy can avoid using large-sized deconvolution filters and increase the
effectiveness of training.
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Fig. 3. The down-sampling unit.

Down-sampling unit

The down-sampling unit can be considered as an inverse process of up-sampling
unit, which is illustrated in Fig. Bl and we present the corresponding formulation
flows as follows:

Ll = Down(I{zh). (3.9)

Similarly, after the first convolution operation, we would like to map L} to SR
features H}, which can be obtained by

HY = Upb(L4). (3.10)
The residual I}, is calculated between Ifj; and H{:
Thes = Iy — HE. (3.11)
The residual If . is mapped to LR features L by the second convolution operation:
Lt = Down! (Ikes)- (3.12)
The final output I{; of down-sampling unit can be obtained by
Ilg =Ly + LY. (3.13)

In contrast to up-sampling unit, down-sampling unit aims to project the input HR
feature map Iygr to the LR I1r domain, as illustrated in Fig.

Dense Connections

According to the pioneering work, dense connection is widely introduced in various
area of computer vision tasks IHTI20HEGET o hich relieves the vanishing-gradient puz-
zle and takes advantage of all hierarchical features. Therefore, as shown in Fig. [I],
the concatenation of all previous output units can be used as the input of each
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up-sampling unit and down-sampling unit. I{ and I}y, respectively, denote the
input of up-sampling unit and down-sampling unit. I{ z and I}z can be obtained by

4. Results
4.1. Settings

Dataset and Metrics. We use the most popular Middlebury dataset® as our training
and test data according to the official splitting (38 images for training and 6 for
validation), and use MPI Sintel dataset® to test the generalization of our proposed
method. To generate LR depth inputs, HR depth maps are degraded on target
size using Bicubic. We augmented the train dataset by flipping horizontally and
randomly extracted more than 10,000 depth patches of a fixed size 15 x 15 from
down-sampled depth map. According to 2, 4, 8 and 16 up-sampling factors, the
squared sizes of corresponding HR depth patches are 30, 60, 120 and 240, respec-
tively. We also evaluate SR results under the mean absolute difference (MAD)
metric on six standard test depth maps as other methods, i.e. Art, Books, Moebius,
Dolls, Laundry, Reindeer.

Implementation Details. For each magnification factor, we used the kernel size
of 6 x 6 with a stride size of 2 at each up-sampling unit. At down-sampling stage,
we used the kernel size of 6 x 6, 8 x 8, 12 x 12, and 20 x 20 for 2x,4x,8x and
16x cases, respectively. Each up-sampling unit or down-sampling unit outputs 64
channels and each convolutional or deconvolutional layer is followed by PReLU. We
trained our network by ADAM optimizer with L1 loss and with a batch-size of 16.
The initial learning rate is 0.0001 and multiplied by 0.1 per 100 epochs. PyTorch
framework was implemented with a NVIDIA 1080Ti GPU.

4.2. Performance comparisons

With the aim of verifying the capability of our proposed DFN, we compared our
method with other 16 state-of-the-art depth SR methods on 2x,4x,8x and 16x up-
scaling factors, including CLMF122 JGF B0 Edge 33 IMLS B TGVZ AR pG1 28
EGH DJF 27 ATGVNet 34 DSP B2 MSG 2 DGDIE ™ ¢CFN AU DEIN % Quanti-
tative depth SR results are illustrated in Table[I], which test on Middlebury datasets
at four subsampling rate about six testing depth maps. Note that the methods from
CLMF1 to DJF are traditional filter-based or optimization-based techniques, which
obtain lower MAD values when compared to deep learning-based methods. Com-
pared with the methods based on CNN, the DFN proposed by us almost gets the

a2Middlebury datasets, http://vision.middlebury.edu/.
bPMPT Sintel datasets, http://sintel.is.tue.mpg.de/.
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Fig. 4. Qualitative comparision of our method with works on 8x. (a) LR; (b) Bicubic; (¢) FGI;
(d) DJF; (e) DGDIE; (f) DEIN; (g) DFN; (h) Ground truth.

best objective result. Figure @ ulteriorly illustrates the visual performance of our
method.

4.3. Ablation investigation
Ablation study on the key modules of our framework is validated in this section.

Analysis of feedback blocks (DFs). With the aim of verifying the capability
of DF, we explore the impact of the number of deep feedback blocks (a group of
up-sampling stage and down-sampling stage is treated as one DF block), which
is denoted as G. We construct multiple DF blocks under different numbers of G
(G =1,G =2,G =4, G = 6). We implemented these models under the up-
scaling factor of 8x. Quantitative compared results are shown in Table 2l The
performance improves as G gets larger. However, the performance of the model
approaches saturation when G approaches 6, i.e. G = 4 and G = 6 have little
difference in the results. Therefore, the case of G = 6 is our final choice in our
DFN.

Analysis of different input configurations. In order to further demonstrate the
effects of the proposed feedback mechanism, the first up-sampling unit is replaced
with bicubic interpolation. We regard the interpolation as the up-sampling opera-
tion for generating the middle results which are then fed to our DFN as input. The
quantitative results are compared in Table[Bl The case without the first up-sampling

2050072-11
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Table 2. Ablation investigation on different numbers of feedback blocks on 8x.

Art Book Dolls Laundry Moebius Reindeer
G=1 0.75 0.37 0.39 0.48 0.34 0.47
G=2 0.62 0.29 0.36 0.41 0.29 0.38
G=4 0.58 0.28 0.36 0.40 0.28 0.37
G=6 0.59 0.28 0.36 0.40 0.28 0.37

Table 3. Ablation investigation on different input configurations.

Art Book Dolls
2X 4x 8% 16x 2% 4x 8% 16X 2% 4x 8% 16x

DFN-I  0.15 033 072 195 008 0.16 031 0.77 0.11 021 039 0.81
DFN 0.096 0.24 0.59 1.55 0.08 0.14 0.28 0.57 0.09 0.18 0.36 0.74

Laundry Moebius Reindeer

2% 4x 8% 16x 2% 4x 8% 16x 2% 4x 8% 16x

DFN-I ~ 0.09 0.21 047 1.30 0.08 0.17 033 076 0.11 026 045 1.18
DFN 0.07 0.16 0.39 1.16 0.07 0.14 0.28 0.66 0.09 0.17 0.34 0.94

(2) (®) (© (d) (e) ®

Fig. 5. (a) The original book, laundry and moebius examples; (b) LR; (¢) FGI; (d) DFN-I;
(e) DFN; (f) Ground truth.

unit (DEN-I) achieves higher MAD values than the DFN. As shown in Fig. [ the
DFN also shows the better visual 8x depth SR results.

4.4. Generalization investigation

Considering the generalization of our DFN model, another four depth maps picked
from MPI depth dataset are tested. Insisting on a point that the MPI dataset

2050072-12
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Fig. 6. Qualitative comparison of our method with works on 8x. (a) The Ground truth of
Temple3-23 and Alleyl-48 examples; (b) DJF; (¢) DEIN; (d) ours.

is obviously different from our training dataset Middlebury. Table [ presents the
performance of generalization investigation compared with EGAL DJF2? DGDIE
and DEIN®? and demonstrates the generalization ability of our model. Figure
further confirms that the method is also excellent in visual performance on MPI
dataset, and we box out the salient areas.

5. Conclusions

In this paper, we present a novel SR method for single depth map by introduc-
ing a deep feedback network unlike the previous networks which reconstruct the
final SR image from the LR depth map in a feedforward manner. Our proposed
network aims to directly project HR representations to LR spatial utilizing itera-
tive up-sampling and down-sampling. The deep feedback block iteratively imitates
the process of image degradation and reconstruction where the rich hierarchical
HR features effectively solve the trouble of ambiguity in depth map SR. Extensive
experimental results have shown that our method almost gets the best objective
result under the MAD metric and shows excellent visual quality compared with the
state-of-the-art methods. Our framework also achieves good performance in terms
of ablation and generalization.
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