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Abstract: A sun-tracking solar array is an effective solution to the increasing energy demand of
spacecrafts. However, the driving torque fluctuation of the solar array driving assembly (SADA)
and its oscillatory motion lead to the micro-vibration problem of the spacecraft. In this article, a
disturbance torque model of the sun-tracking solar array, which takes its friction and flexibility into
consideration, is established. Furthermore, a test platform was built to measure the disturbance
force/torque, and a solar array simulator (SAS) was designed to replace the solar array in the
ground experiments. Finally, the disturbance torque of the SADA-driven SAS is simulated, and
the model is validated by comparing the simulation results with the experimental results. These
results show that the frequency error of the model is less than 0.648%, and the amplitude error of the
corresponding frequency is less than 22.33%, which indicates that the proposed model can effectively
predict the disturbance torque generated by the sun-tracking solar array in orbit. The research
provides theoretical guidance for the system optimization design and micro-vibration suppression
of spacecrafts.

Keywords: sun-tracking solar array; micro-vibration; disturbance torque; solar array simulator

1. Introduction

As the functions of spacecrafts have become increasingly numerous and powerful,
their energy demand has increased sharply. Sun-tracking solar arrays are adopted by more
and more spacecrafts as energy sources to meet the high power demand. A sun-tracking
solar array is mainly composed of a solar array driving assembly (SADA) and a solar array.
The SADA acts as an actuator to drive the rotation of the solar array and to keep it oriented
toward the sun in order to efficiently generate electricity to meet the energy requirements of
the spacecraft. Although a sun-tracking solar array is an effective solution to the increasing
energy demand of spacecrafts, the fluctuations of speed and the driving torque of the SADA
will cause the oscillatory motion of the flexible solar array. The fluctuant driving torque of
the SADA and the oscillatory motion of the solar array will act on the main body of the
spacecraft and cause micro-vibrations. Spacecraft micro-vibration is low-amplitude and
wide-band, and it will significantly reduce the spacecraft pointing accuracy [1]. There are
many potential causes of disturbance on the spacecraft, among which the flywheel [2,3] and
the control moment gyros [4,5] with middle and high frequency disturbance frequencies
are considered to be the largest sources. Scholars have conducted a lot of relevant research
and had many achievements with regard to the flywheel and control moment gyros [6–8].
On the other hand, the sun-tracking solar array is also a source of disturbance, and the
disturbance it causes is mainly concentrated on the low-frequency band, which has the
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characteristics of a wide-frequency band and lasts for a long period of time [9]. This affects
the performance of the spacecraft payloads and even the attitude stability of the satellite in
some cases [10,11].

The disturbance torque model of the sun-tracking solar array is the key to predict-
ing the influence of the disturbance on the spacecraft and to developing the disturbance
suppression methods. The SADA is the disturbance source of the sun-tracking solar array,
which is generally composed of a stepping motor and a harmonic reducer [12]. Stepping
motors are the core component of the SADA. Many scholars have carried out theoretical
and simulation research on the vibration of stepping motors. Bodson proposed the electro-
magnetic vibration model of the stepping motor [13]. Yang revealed the electromagnetic
vibration mechanism of the stepping motor and proposed a method of reducing the am-
plitude of electromagnetic vibration [14]. Si defines the expression of the electromagnetic
vibration frequency of the stepping motor [15]. Wang inferred that the electromagnetic
field between the stator and rotor of the stepping motor could be equivalent to a viscous
damping system of an electromagnetic spring and named the stiffness of the electromag-
netic spring as electromagnetic stiffness [16]. Although many achievements have been
made in the study of the vibration of the stepping motor, there is little research on the
vibration characteristics of the SADA. Si proposed the dynamic model of SADA based
on the dynamic model of the stepping motor established by Bodson, and adopted the
adaptive current compensation method to improve the performance [17]. Sattar proposed
the disturbance torque model of a SADA-driven rigid load for the first time and measured
the disturbance torque emitted by the SADA driving four rigid loads to verify the model [9].
However, the model ignored the friction torque of the harmonic reducer and the conductive
slip ring and the rigid–flexible coupling between the SADA and the solar array. Gasbarri
pointed out that the effects of the rigid–flexible coupling could lead to the instability of the
controlled system [18]. Therefore, it is necessary to propose a comprehensive disturbance
torque model for SADA in driving the flexible solar array.

In recent years, scholars have proposed many measures for reducing the micro-
vibration caused by the flywheel and control moment gyros [19–21]. However, the structure
of the sun-tracking solar arrays makes it hard to test them by these methods. Therefore,
experimental research on the disturbance produced by the SADA is still in its infancy.
Two main constraints limit the experimental research on the disturbance of solar arrays:
(1) Solar arrays are characterized by low stiffness and low damping, which make it risky
to operate them in a ground test; (2) Gravity and air resistance have a great influence on
the ground disturbance test of the solar array, and the influence is hard to avoid. For the
reasons above, there is a lack of experimental studies on the micro-vibration, which also
leads to the difficulty in verifying the accuracy of the disturbance torque model of the
sun-tracking solar array.

In summary, the sun-tracking solar array is one of the sources of disturbance on
spacecrafts. However, there has not been a comprehensive disturbance torque model that
takes both the friction and flexibility of the solar array into consideration. Moreover, due
to the structural characteristics of the solar array, it is difficult to conduct ground tests
to verify the accuracy of a model. Therefore, this paper studies the disturbance torque
of the solar array from the modeling and experimental perspectives. Firstly, a model of
the disturbance torque was proposed, which took the structural friction and the flexibility
of the solar array into consideration. Then, to verify the model by ground experiment,
a solar array simulator (SAS) with an adjustable moment of inertia and torsional mode
frequency was designed to replace the solar array for the ground tests. At the same time, as
the moment of inertia and the modal frequency of the SAS were changed, their influences
on the disturbance moment were investigated. Finally, the effectiveness of the model was
verified by comparing the simulation results with the experimental results.
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2. Disturbance Torque Model of the Sun-Tracking Solar Array
2.1. Electromagnetic Torque Model of Stepping Motors

Stepper motors convert electrical pulse signals into rotor angular displacement. Due
to the advantages of having a simple structure, high positioning accuracy, no accumulating
error, and an easy-to-use open-loop control, it is widely used in SADA.

For a bi-phase hybrid step motor with a sine–cosine subdivision drive strategy, the
winding currents of the two phases are respectively characterized by sine and cosine
patterns. However, due to the limit of the current subdivision number, the reference
currents approximate to sine or cosine with the step function form. Reference currents for
the positive drive are [22]:{

iA = I cos[2π · round(zθm / ∆θ)/n)
]

iB = I sin[2π · round(zθm / ∆θ)/n)
] (1)

where iA and iB respectively signify the currents of phase-A and phase-B stator winding,
I is the motor winding rated current, z is the rotor teeth number, θm is the angular dis-
placement of the stepping motor rotor, ∆θ is the step angle of the stepping motor, n is the
subdivision number.

The driving voltages are obtained by a winding current loop PID controller, based on
errors between practical currents and reference currents. The current loop control equation
is as follows:  uA = KP

(
iA − iA

)
+ KI

∫ (
iA − iA

)
dt + KD

d(iA−iA)
dt

uB = KP
(
iB − iB

)
+ KI

(
iB − iB

)
dt + KD

d(iB−iB)
dt

(2)

where Kp, KI , and KD are the proportional coefficient, integral coefficient, and differential
coefficient, respectively.

The equilibrium equation of voltage describes the relationship between drive voltages
and winding currents. Taking winding resistance, self-inductance effect, and cogging
distribution into account, the voltage equilibrium equation for the hybrid stepper motor is
as follows:  iA = 1

R

[
L diA

dt − uA + Kmωm sin(zθm)
]

iB = 1
R

[
L diB

dt − uB + Kmωm cos(zθm)
] (3)

where R is the winding resistance, L is the winding self-inductance coefficient, ωm is the
motor output shaft speed, Km is the motor torque constant.

The motor torque of the hybrid step motor is [23]:

Te = Km[iB cos(zθm)− iA sin(zθm)]− Kd sin(4zθm) (4)

where Te is the motor electromagnetic torque, Kd is the detent torque constant.

2.2. Friction Torque Model

Upon analyzing the SADA structure, the internal friction torque of the SADA is found
to mainly consist of bearing friction, harmonic reducer friction, and conductive slip ring
friction. Bearing friction is relatively small, so its influence is ignored in this paper.

Due to its structural characteristics, the harmonic reducer has nonlinear friction in
the transmission process [24]. The static Stribeck model, which is suitable for simulating
the influence of low-speed mechanical friction, can be used to describe the relationship
between the nonlinear friction and angular velocity of the harmonic reducer, and the
friction torque can be expressed as [25]:

Tf ,h =
{

Tc + (Ts − Tc) exp
(
−|ωl/ωs|δ

)
+ σ · |ωl |

}
(5)
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where Tc is the Coulomb friction moment, Ts is the Stribeck friction moment, ωl is the
rotation angular velocity of the solar array along the drive axis direction, ωs is the Stribeck
velocity, δ is the Stribeck shape factor, and σ is the viscous friction factor. In this paper, the
Tustin empirical model is used to describe the Stribeck phenomenon, so δ = 1.

The friction moment of the conductive slip ring is mainly caused by the friction pair
between the ring and the brush, and its calculation formula is:

Tf ,c = Nc pµr (6)

where Nc is the number of contact pairs of the ring and brushes, p is the single point
pressure, µ is friction coefficient, r is the radius of the conducting ring.

In conclusion, the internal friction torque of the SADA can be obtained as follows:

Tf = Tf ,h + Tf ,c =
{

Tc + (Ts − Tc) exp
(
−|ωl/ωs|δ

)
+ σ · |ωl |

}
+ Npµr (7)

2.3. Dynamics Model of the Solar Array

As shown in Figure 1, the origin of the inertial frame is assigned to the center of the
spacecraft-rocket separation interface, and the origin of the body-fixed frame of the sun-
tracking solar array is assigned to the center of the installation interface. The fundamental
frequency of the spacecraft body is much greater than that of the sun-tracking solar array,
and the mass and moment of inertia of the spacecraft body are also generally one or more
orders of magnitude greater than that of the sun-tracking solar array. Therefore, when the
sun-tracking rotates at a low speed, the spacecraft body can be assumed as a rigid body
with constrained translational and rotational displacements.
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Figure 1. Schematic diagram of the solar array drive system.

The solar array is discretized by the finite element method, and the position vector
and the absolute velocity vector of the jth node can be expressed as follows:{

Rj = ρP + ρj + δj

vj = ωl × ρj + ωl × δj +
.
δj

(8)

where ρP is the vector from the origin of the body-fixed frame to the origin of the inertial
frame, ρj and δj are the vector of the jth node in the body-fixed frame relative to the origin
before deformation and the vector diameter generated by the flexible deformation of the
solar array, ωl is the rotating velocity matrix of the solar array.

In terms of the modal coordinates, δj can be written as follows:

δj = Φjη (9)
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where η =
[

η1 η1 · · · ηs
]T is the modal generalized coordinates matrix of the solar

array, Φj =
[

ϕ1 ϕ2 · · · ϕs
]

is the jth modal shape matrix of the solar array, s is the
modal truncation order.

It is known that
ωl × ρj = ω̃lρj = −ρ̃jωl (10)

where ω̃l and ρ̃j are the skew symmetric matrices of ωl and ρj, respectively.
Therefore, the absolute velocity vector of the jth node can also be expressed as:

vj = ω̃lρj + ω̃lδj +
.
δj (11)

The kinetic energy of the solar array can be expressed as:

T =
1
2

N

∑
j=1

vT
j vjmj (12)

where N is the number of the nodes in the solar array, mj is the mass of the jth node.
Substituting Equation (11) into Equation (12), the kinetic energy equation of the solar

array can be obtained as follows:

T =
1
2

(
ωT

l Jωl − ηT Fωωη +
.
η

T .
η
)
+

1
2

(
ηT HT

ωωl + ωT
l Hωη +

.
ηHTωl + ωT

l Hω
.
η +

.
η

T Fωη + ηT Fω
.
η
)

(13)

where J =
N
∑

j=1
ρ̃T

j ρ̃jmj is the moment of inertia of the solar array before the deformation,

H =
N
∑

j=1
ρ̃jΦjmj is the modal angular momentum of the solar array, Hω =

N
∑

j=1
ρ̃jω̃lΦjmj,

Fω =
N
∑

j=1
ΦT

j ω̃lΦjmj, and Fωω =
N
∑

j=1
ΦT

j ω̃lω̃lΦjmj.

The elastic potential energy and the energy loss of the solar array can be expressed
as follows: {

V = 1
2 ηTΛη

C = 1
2

.
η

T D
.
η

(14)

where Λ = diag
(
Ω2

1, · · · , Ω2
i , · · · , Ω2

s
)
, D = diag(2ξ1Ω1, · · · , 2ξiΩi, · · · , 2ξsΩs), Ωi, and

ξi are the ith natural frequency and modal damping of the solar array.
The Lagrange function was constructed from Equations (13) and (14), and the dynam-

ics equation of the solar array was obtained by substituting the Lagrange equation:[
J H

HT I

][ .
ωl..
η

]
+

[
0 0
0 D

][
ωl.
η

]
+

[
0 0
0 Λ

][
θl
η

]
=

[
TL
0

]
+

[ .
Hωη + 2Hωη + Jωω + Hωωη

.
Fωη + 2Fωη − HT

ωω + Fωωη

]
(15)

where TL =
[

0 Tl 0
]T , Tl is the driving torque of the solar array, θl is the angular

displacement of the solar array, Jω =
N
∑

j=1
ρ̃T

j ω̃l ρ̃jmj, Hωω =
N
∑

j=1
ρ̃jω̃lω̃lΦjmj.

The coefficients of the three items on the left of Equation (15) represent the generalized
mass matrix, generalized damping matrix, and generalized stiffness matrix, respectively.
The two items on the right are the generalized active torque vector and the structural
coupling term, respectively. Since the velocity and elastic deformation in the solar array are
first order small quantities, the structural coupling term in Equation (15) is a second-order
small quantity and can be ignored. Therefore, the dynamics equation of the solar array can
be simplified as follows: {

TL = J
.

ωl + H
..
ηi

HT .
ωl +

..
ηi + D

.
ηi + Ληi = 0

(16)
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2.4. Disturbance Torque Model

The SADA discussed in this study is composed of a two-phase hybrid stepper motor
in series with a harmonic reducer. A sketch of the SADA structure is shown in Figure 2.
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Figure 2. Structure sketch of the SADA.

It is assumed that (1) the transmission efficiency of the harmonic reducer is 100%;
(2) the stepper motor rotor, the wave generator, and the flexible spline of the harmonic
reducer only have the rotational degree of freedom around the rotation axis.

Based on the above assumptions, the dynamics model of SADA is [26]:[
J f lex − h2(Jr + Jwg)

] ..
θl = −hTe − Tl − Tf (17)

where J f lex, Jr, and Jwg are respectively the moment of inertia along the rotation axis of
the flex wheel, stepper motor rotor, and wave generator along the rotation axis; θl is the
rotational angular displacement of the solar array; and h is the reduction ratio of the
harmonic reducer.

The force analysis of each sub-structure in the SADA is carried out separately, as
shown in Figure 3. The dynamic equations of the three subsystems of the rotor and wave
generator assembly, the flexible wheel, and the SADA housing can be obtained according
to the force analysis as follows:

(
Jr + Jwg

) ..
θm = Te − T12

J f lex
..
θl = T23 − T12 − Tl − Tf

Jshell
..
θshell = Te − T23 + Tf − Tres

(18)

where Jshell is the moment of inertia of the SADA shell; θshell is the angular displacement
of the SADA shell along the rotation axis, and its value is 0 because the SADA shell is
fixed; T12 is the value of the equivalent action moment between the wave generator and
the flexible wheel; T23 is the value of the equivalent action moment between the flexible
wheel and the rigid wheel; Tres is the restrain moment given to the SADA by the spacecraft.

The relationships between θm and θl, θl, and ωl are given by

θm = −hθl , ωl =
.
θl . (19)

It is obvious that the disturbance torque generated by the SADA on the space-
craft body is the counter-torque of the SADA’s restrain torque. Therefore, according
to Equations (17) and (18), the disturbance torque can be obtained as follows:

Td = −Tres =
[

J f lex − h
(

Jr + Jwg
)] ..

θl + Tl = −hTe + h(h− 1)
(

Jr + Jwg
) ..
θl − Tf . (20)
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3. Solar Array Simulator

The solar array is characterized by low stiffness and damping, so it would have been
difficult to operate it during the ground test. Therefore, the typical multi-fold solar array
was analyzed in this paper, and a SAS was designed according to its dynamic characteristics.
The SAS can be used to replace the solar array for ground test research, and it can simulate
the moment of inertia and the first-order torsional frequency of the solar array. Thus, it
can mimic the influence of the solar array on the SADA to reflect the mutual coupling
relationship between the solar array and the SADA.

3.1. The Dynamic Characteristics of the Solar Array

The concept of modal effective mass was first proposed by Bamford, Wada, and
Garba [27]. It is a parameter describing the interaction between modes and an excitation.
The larger the value is, the greater the contribution of the mode to the dynamic response
is [28]. The modal superposition method is a common method of calculating the dynamic
response of a system. In engineering, the cumulative effective modal mass fraction—the
ratio of cumulative effective modal mass to structural physical mass—is often used to
judge whether the number of analyzed modes is sufficient. And it is generally considered
that a cumulative effective modal mass fraction greater than 90% meets the analysis
requirements [29].

The satellite solar array shown in Figure 4 is taken as an example to analyze the
dynamic characteristics of the multi-fold solar array with a SADA connecting rod. The
solar array panels are sandwich plates that are composed of aluminum honeycomb core and
a carbon fiber composite surface, and the SADA connecting rod is made of a high-strength
aerospace aluminum square tube.
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An accurate finite element model of the solar array was established; the model is
mainly composed of panels, hinges, and a SADA connecting rod, as shown in Figure 5a.
The panels were simulated by shell elements with the composite property. Spring elements
and bar elements were respectively used to simulate the hinges and the connecting rod.
And the constraint was applied to the end of the SADA connecting rod.
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Figure 5 also shows the first three modes of the solar array. The first mode of the solar
array is the out-of-plane bending mode, the second mode is the in-plane bending mode,
and the third mode is the torsional mode along the rotation axis.

Furthermore, the mass matrix, stiffness matrix, and mode information of the solar
array were obtained from the accurate finite element model to calculate the modal effective
mass fractions of the first ten modes. As shown in Table 1, the fractions were compared to
determine the contribution proportion of every mode in the dynamic response caused by
the SADA. According to the table, the sum of the effective mass of the first ten modes is
about 7.69 kg·m2, which is approximately equal to the moment of inertia of the solar array
along the X-axis, indirectly indicating the accuracy of the finite element model [30]. The
modal effective mass fraction of the third mode is 96.7%, and the third mode is the torsional
mode, as shown in Figure 5. The analysis above indicates that the dynamic response caused
by the SADA is mainly the torsional oscillation of the solar array.
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Table 1. Modal effective mass and proportion of the solar array.

Mode Frequency (Hz) Modal Effective Mass (kg·m2) Modal Effective Mass Fraction

1 0.22 3.82 × 10−16 4.97 × 10−16

2 0.55 2.80 × 10−4 3.64 × 10−5

3 1.18 7.44 0.967
4 1.28 3.46 × 10−4 4.50 × 10−5

5 2.46 3.40 × 10−5 4.42 × 10−6

6 4.17 1.31 × 10−3 1.70 × 10−4

7 4.45 2.07 × 10−1 2.69 × 10−2

8 8.98 2.19 × 10−2 2.85 × 10−3

9 9.09 4.86 × 10−3 6.32 × 10−4

10 11.6 1.48 × 10−2 1.92 × 10−3

Total - 7.69 0.999

3.2. Structure of the SAS

Based on the dynamic characteristics of the multi-fold solar array with a connecting
rod analyzed in Section 3.1, the SAS shown in Figure 6 is proposed. The SAS is composed
of a central plate, a series of springs, an inertia frame, and four counterweights. After
output by the SADA, the driving torque is transferred to the inertia frame through the
central plate and a series of springs. When the spring extends and compresses in reaction to
the SADA output torque, the inertia frame will rotate at the required frequency. Therefore,
the torsional oscillation characteristics of the solar array can be simulated.
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According to the dynamic characteristics analysis of the structure, the kinetic energy
of the system is as follows:

T =
1
2

JSAS
.
α

2 (21)

where T is the kinetic energy of the system, JSAS is the moment of inertia of the SAS along
the axis of the drive shaft, and α is the angle displacement of inertia frame.

The potential energy of the system is:

V = 4×
[

1
2

k(d + l × α)2 − 1
2

kd2 +
1
2

k(d− l × α)2 − 1
2

kd2
]
= 4kl2α2 (22)

where d is the initial deformation of the springs, k is the stiffness of the springs, and l is the
distance of the spring from the center axis.
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The Lagrange function was constructed from Equations (21) and (22), and substituted
into the Lagrange equation to obtain the dynamics equation of the SAS:

JSAS
..
α + 8kl2α = 0 (23)

Furthermore, the fundamental frequency of the system can be obtained, which is the
first torsional mode frequency:

f = 2l

√
2k

JSAS
(24)

Figure 7 shows the SAS designed in detail according to the structure sketch in Figure 6.
The system consists mainly of a central shaft, a central plate, an inertia frame, four counter-
weights, four counterweight seats, four spring adjusting sliders, four spring seats, and a
SADA connector. The SADA connector is fixedly connected at one end of the central axis,
and the central plate is fixed to the central axis by bolts. The inertia frame and the central
axle are connected through the bearing in the center of the inertia frame so that the inertia
frame can rotate freely along the central axle. The inertia frame is oscillated by the spring
connection between the central plate and the inertia frame. Therefore, the driving torque
output by the SADA is transmitted according to the path: the SADA interface–the central
shaft–the central plate–the springs–the inertia frame. Finally, the inertia frame is driven
to rotate.
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There are adjustment mechanisms in the SAS to simulate different types of solar arrays.
The counterweight seats and the spring-fixed seats can slide along the inner inertia frame,
and the spring-adjusting seats can slide along the sliding column on the central plate.
According to Equation (24), the torsional mode frequency of the SAS can be adjusted by
changing the distance l of the spring from the central axis, spring stiffness k, and moment of
inertia JSAS. The distance l can be adjusted by moving the spring-fixed seats and the spring-
adjusting seats, so the torsional mode frequency of the structure changes accordingly. The
spring stiffness k can be adjusted by replacing the springs with different levels of stiffness.
The moment of inertia JSAS of the system can be adjusted by replacing the counterweights
with different weights or by changing the distance of the counterweights from the center
axis by moving the counterweight seats.

4. Validation of the Proposed Disturbance Torque Model
4.1. Experimental Results

The Kistler 6-component piezoelectric sensors have been widely used in testing
aerospace micro-vibration [3,31,32]. In the research, the disturbance force/torque of the
sun-tracking solar array is measured by a micro-vibration test platform based on the Kistler
6-component piezoelectric sensors (HR-FP3406, Kistler, Winterthur, Zurich, Switzerland),
as shown in Figure 8.
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A micro-disturbance force/torque measurement platform was built, which was com-
posed of a Kistler 6-component piezoelectric sensor, a marble countertop, and an air
isolation system. During the tests, the SAS was suspended by a rope to simulate the
zero-gravity environment on orbit. The SADA was attached to the Kistler 6-component
piezoelectric sensor fixed on the marble countertop, and the air isolation system was
installed below the marble countertop to avoid external vibration during the test. The
sampling frequency of the system was 4096 Hz, and the sampling time was 16 s.

The internal driving source of the SADA studied in this work was a two-phase
stepping motor. The beat number of the motor b was 4, the tooth number z was 50, and a
16-subdivision drive was adopted. The speed was 6◦/s. Therefore:

∆θ =
360◦

bz
= 1.8◦ (25)

fd =
ωm

∆θ
n = 53.33 Hz (26)

where fd is the motor driving frequency.
To investigate the coupling relationship between the SADA and the different types of

solar arrays, the disturbance force/torque generated by the SADA-driven SAS in different
states were measured. Table 2 shows the five test states of the SAS. Among them, states 1–3
have the same moment of inertia and different modal frequencies. States 1, 4, and 5 have
the same modal frequency and different moments of inertia.

Table 2. List of modal frequencies and rotational inertias from the test in different states.

State No. Modal Frequency (Hz) Rotational Inertia (kg·m2)

1 1.19 8.18
2 1.39 8.18
3 1.59 8.18
4 1.19 15.69
5 1.19 22.99

Figure 9 shows the time-domain curve obtained by the state 1 test. As shown in
Figure 9a, the amplitudes of the disturbance forces of the X, Y, and Z directions are of small
magnitude, no greater than 0.725 N. According to engineering experience, the disturbance
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forces of this magnitude have little impact on spacecraft such as satellites [33]. As shown in
Figure 9b, the amplitude of the disturbance torque in the Z direction is much bigger than
that in the other two directions, and their peaks can reach 1.643 N·m, while the amplitudes
of the disturbance torque in the X and Y directions are one magnitude smaller than that in
the Z direction, and the peak value of both is not greater than 0.166 N·m. Therefore, it can
be considered that the main form of disturbance generated by the SADA-driven SAS is the
disturbance torque along the rotation axis.
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Figure 9. The time-domain curves of disturbed forces/torques.

The time-domain signal of the disturbance torque along the z-direction during the sta-
ble operation of the SADA was intercepted, which was processed by fast Fourier transform
and characterized in the frequency domain. Since the spacecraft is mainly susceptible to
the disturbance in the middle and low frequency bands [7], the frequency band 0–200 Hz
was analyzed, as shown in Figure 10.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 19 
 

 
Figure 10. The frequency-domain curve of the disturbed torque. 

As shown in Figure 10, within the frequency range of 0–200 Hz, there are four peaks 
of the disturbance torque: 1.1875 Hz, 53 Hz, 106 Hz, and 159.0625 Hz. By classifying the 
four peaks, the frequency components of the disturbance torque can then be divided into 
two categories: (1) The first-order torsional natural frequency of the solar array, which is 
1.1875 Hz; (2) The motor-driving frequency and its high-order harmonics (53 Hz, 106 Hz, 
and 159 Hz, etc.). There are errors between the peak frequencies and the theoretical fre-
quencies of 1.19 Hz and 53.33 Hz, which were caused by the frequency adjustment error 
of the SAS and the test system error. 

The focus here is on the frequency analysis of the disturbance torque to get the peaks 
and the amplitudes; therefore, the frequency domain curves of the test and simulation 
results are analyzed in the following study. Figure 11 shows a spectrum curve comparison 
of the disturbance torques corresponding to states 1–3. The figure shows that the increase 
of the fundamental frequency of the SAS does not change the frequency composition of 
the disturbance torque when the moment of inertia is constant. Meanwhile, the disturb-
ance torque amplitudes at the fundamental frequency increase with the increase of the 
fundamental frequency. The reason for this is that the fundamental frequency of the load 
is closer to the driving frequency of the motor, so it has a stronger coupling relationship 
with the SADA. 

 
Figure 11. The frequency-domain curve of the disturbance torque in tests 1–3. 

0 40 80 120 160 200
0.000

0.015

0.030

0.045

A
m

pl
itu

de
 (N

·m
)

Frequency (Hz)

x=53 
y=0.04344

x=106 
y=0.01021

x=159.0625 
y=0.00181

x=1.1875 
y=0.0038

0 40 80 120 160 200

0.000

0.016

0.032

0.048

A
m

pl
itu

de
 (N

·m
)

Frequency (Hz)

 State 1
 State 2
 State 3x=1.5625 

y=0.02823

x=1.375 
y=0.01011

x=53 
y=0.04344

x=106 
y=0.01021 x=159.0625 

y=0.00181

x=1.1875 
y=0.0038

x=106 
y=0.00999

x=53 
y=0.04271

x=159.0625 
y=0.00256

x=53 
y=0.04437

x=106 
y=0.00924 x=159.0625 

y=0.00225

Figure 10. The frequency-domain curve of the disturbed torque.

As shown in Figure 10, within the frequency range of 0–200 Hz, there are four peaks
of the disturbance torque: 1.1875 Hz, 53 Hz, 106 Hz, and 159.0625 Hz. By classifying the
four peaks, the frequency components of the disturbance torque can then be divided into
two categories: (1) The first-order torsional natural frequency of the solar array, which is
1.1875 Hz; (2) The motor-driving frequency and its high-order harmonics (53 Hz, 106 Hz,
and 159 Hz, etc.). There are errors between the peak frequencies and the theoretical
frequencies of 1.19 Hz and 53.33 Hz, which were caused by the frequency adjustment error
of the SAS and the test system error.
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The focus here is on the frequency analysis of the disturbance torque to get the peaks
and the amplitudes; therefore, the frequency domain curves of the test and simulation
results are analyzed in the following study. Figure 11 shows a spectrum curve comparison
of the disturbance torques corresponding to states 1–3. The figure shows that the increase
of the fundamental frequency of the SAS does not change the frequency composition of
the disturbance torque when the moment of inertia is constant. Meanwhile, the distur-
bance torque amplitudes at the fundamental frequency increase with the increase of the
fundamental frequency. The reason for this is that the fundamental frequency of the load is
closer to the driving frequency of the motor, so it has a stronger coupling relationship with
the SADA.
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Figure 11. The frequency-domain curve of the disturbance torque in tests 1–3.

Figure 11 shows that the range of the amplitudes at the driving frequency and its
harmonics is no greater than 0.00166 N·m, which indicates that the change of fundamental
frequency has little effect on the driving frequency and its harmonic disturbance torque
component when the moment of inertia of the load remains unchanged.

Figure 12 shows the spectrum curve comparison of the disturbance torques corre-
sponding to tests 1, 4, and 5. As shown in the figure, when the fundamental frequency
of the load is constant, the amplitude of each frequency component increases with the
increase of the moment of inertia of the solar array. The reason for this is that the increase
of load inertia leads to the increase of the driving torque, the fluctuation of the driving
torque increases correspondingly, and the load vibration increases.
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Figure 12. The frequency-domain curve of disturbance torque in tests 1, 4, and 5.
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4.2. Simulation Results

According to the disturbance torque model established in Section 2, the rotation
process of the SADA-driven solar array is simulated by using the Simulink toolbox in the
commercial software Matlab (MathWorks, Natick, MA, USA). The schematic diagram of
the simulation model is shown in Figure 13.
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The disturbance torque generated by the SADA-driven SAS of state 1 is simulated.
The input parameters are mainly composed of two parts: (a) The SADA and its control
system parameters; (b) parameters of the SAS. Table 3 shows the parameters of the SADA
and its control system, which are provided by the manufacturer after test or calculation.

Table 3. Parameters of the SADA.

Symbol Parameter Value (Unit)

z Number of rotor teeth 50
b Beat number 4
n Subdivisions 16
I Current Amplitude 0.6 A

Km Motor torque constant 0.3 Nm/A
Kd Detent torque constant 0.01 Nm/A
Jr Moment of inertia of SADA rotor 0.2 kg·cm2

Jwg Moment of inertia of wave generator 0.052 kg·cm2

R Winding resistance 6 Ω
L Self-induction coefficient 13 mH
h Reduction ratio 100
ω Cruising speed of solar array 0.06◦/s
KP Proportional coefficient 500
KI Integral coefficient 6000
KD Differential coefficient 0
Tc Coulomb friction coefficient for motor 0.0246
Ts Static friction coefficient for motor 0.0462
ωs Stribeck velocity for motor 0.003◦/s
σ Viscous friction coefficient for motor 0.0255

Nc Number of contact pairs of ring and brush 320
p Pressure of a single point 0.042 N
µ The friction factor 1.53
r The radius of conductive ring 0.0265 m

Parameters of the SAS are stiffness matrix, mass matrix, and damping information.
These parameters are extracted from the accurate finite element model of the SAS, as shown
in Figure 14a.

Figure 14b–d show the first three modes of the SAS; the moment of inertia of the finite
element model along the rotation axis was 8.46 kg·m2. On the other hand, the natural
frequency and moment of inertia of the SAS were measured, as shown in Figure 15.
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Figure 15. Modal test and moment of inertia test of the SAS.

The tested moment of inertia of the SAS about the rotation axis, which is 8.19 kg·m2,
was taken as reference; the error of the moment of inertia calculated by the finite element
model was 0.27 kg·m2, and the relative error was only 3.3%. Table 4 shows the frequencies
of the first three modes obtained by finite element method and test. The table shows that
the frequency error is no more than 3.15%, which indicates that the finite element model is
an accurate model of the SAS under test state 1.

Table 4. Comparison of modal frequency.

No. Test (Hz) Finite Element Model (Hz) Relative Error

1 1.189 1.187 0.419%
2 18.72 18.16 2.99%
3 18.76 18.27 3.15%

Figure 16 shows the frequency domain curve comparison between the simulation
results and the test results. Table 5 shows the frequency values of the peaks of the simulation
results and the test results. The frequency error between the simulation results and the test
results is no more than 0.684%. Table 6 shows the amplitudes of simulation results and test
results at each peak; the relative errors of the amplitude of the disturbance torque between
simulation results and test results at each frequency component are not greater than 22.33%.
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The results above indicate that the model established in this paper can accurately simulate
the disturbance torque generated by the SADA-driven solar array.
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Figure 16. Simulation and test results of the disturbance torque.

Table 5. Comparison of simulation/test frequencies.

Components Natural Frequency Driving Frequency 2nd-Order Harmonic 3rd-Order Harmonic

Test (Hz) 1.189 53 106 159.0625
Simulation (Hz) 1.18749 53.31217 106.68683 159.999

Absolute error (Hz) 0.00151 0.31217 0.68683 0.93650
Relative error (%) 0.127 0.589 0.648 0.5888

Table 6. Comparison of simulation/test amplitudes.

Components Natural Frequency Driving Frequency 2nd-Order Harmonic 3rd-Order Harmonic

Experiments (Nm) 0.0038 0.04344 0.01021 0.00181
Simulation (Nm) 0.00399 0.03661 0.01249 0.002198

Absolute error (Nm) 0.00019 0.00683 0.00228 0.000388
Relative error (%) 5.00 15.72 22.33 21.44

5. Conclusions

The purpose of this article was to investigate the disturbance behavior of the sun-
tracking solar arrays. Firstly, a disturbance torque model, which took the friction torque
and the flexibility of the solar array into consideration, was proposed. Secondly, the
dynamic characteristic of a multi-fold solar array was analyzed, with the analysis results
revealing that the torsional mode contributed most of the dynamic response inspired by the
SADA. Based on the finding, a SAS was designed to simulate the torsional mode dynamic
behavior of the solar array. Then, the disturbance torque generated by the SADA-driven
SAS was tested by the micro-disturbance force/torque measurement platform, which was
built based on a Kistler 6-component piezoelectric sensor. According to the results, the
disturbance of the SADA-driven SAS has the following characteristics: (1) The frequency
components of the disturbance torque consist of two parts: (a) the first torsional natural
frequency of the SAS; (b) the motor-driving frequency and its harmonics. (2) When the
moment of inertia is constant, the disturbance torque amplitude at the torsional mode
frequency increases with the increase of the mode frequency. (3) When the torsional
mode frequency of the SAS is constant, the amplitude of each frequency component of
the disturbance torque increases with the increase of the moment of inertia of the solar
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array. Finally, the proposed disturbance torque model was validated by comparing the
simulation and test results, which illustrated that the predicted frequency error of the
model is less than 0.648%, and the amplitude error of the corresponding frequency is less
than 22.33%. Therefore, the model can effectively predict the disturbance torque produced
by the sun-tracking solar array.

The disturbance torque model established in this paper can be used to predict the
disturbance torque at the design stage of sun-tracking solar arrays. The SAS proposed in
this paper makes the ground experiments on the solar array feasible, which serves as a
reference for other research.
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