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Abstract: The effectiveness of depth information in saliency detection has been fully proved. How-
ever, it is still worth exploring how to utilize the depth information more efficiently. Erroneous depth
information may cause detection failure, while non-salient objects may be closer to the camera which
also leads to erroneously emphasis on non-salient regions. Moreover, most of the existing RGB-D
saliency detection models have poor robustness when the salient object touches the image boundaries.
To mitigate these problems, we propose a multi-stage saliency detection model with the bilateral
absorbing Markov chain guided by depth information. The proposed model progressively extracts
the saliency cues with three level (low-, mid-, and high-level) stages. First, we generate low-level
saliency cues by explicitly combining color and depth information. Then, we design a bilateral
absorbing Markov chain to calculate mid-level saliency maps. In mid-level, to suppress boundary
touch problem, we present the background seed screening mechanism (BSSM) for improving the
construction of the two-layer sparse graph and better selecting background-based absorbing nodes.
Furthermore, the cross-modal multi-graph learning model (CMLM) is designed to fully explore
the intrinsic complementary relationship between color and depth information. Finally, to obtain
a more highlighted and homogeneous saliency map in high-level, we structure a depth-guided
optimization module which combines cellular automata and suppression-enhancement function
pair. This optimization module refines the saliency map in color space and depth space, respectively.
Comprehensive experiments on three challenging benchmark datasets demonstrate the effectiveness
of our proposed method both qualitatively and quantitatively.

Keywords: saliency detection; absorbing Markov chain; depth information; cross-modal multi-
graph learning

1. Introduction

The salient object detection (SOD) is a fundamental task in computer vision, which
attempts to imitate the human visual attention mechanism to locate and segment the
interesting or attractive regions in a scene. It has been widely applied to a variety of vision
tasks, such as image segmentation [1], resizing [2], enhancement [3], quality assessment [4],
recognition [5], and matching [6]. In fact, the human visual system can not only intuitively
capture the appearance of objects, but also perceive the depth information from the scene.
Benefiting from the development of 3D sensing technology, the depth information can be
captured more conveniently and accurately. Therefore, the RGB-D saliency detection using
depth information is attracting more and more attention. Moreover, the effectiveness of
depth information has been fully proved in other computer vision tasks, such as motion
segmentation [7] and people re-identification [8].

Given a pair of RGB-D (RGB + depth) images, the task of the RGB-D saliency de-
tection aims to predict a saliency map and extract the salient regions by exploring the
complementary information between color image and depth data. Furthermore, existing
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RGB-D saliency detection models mainly use depth information in two ways. One is
based on depth features [9–25], which focuses on taking depth information as an explicit
supplementary feature of color features. In [12], Cheng et al. calculate the saliency map
with additional depth information through color contrast, depth contrast, and spatial
bias extended from 2D to 3D, which also proves that depth information is beneficial to
visual saliency analysis in complex scenes. In order to fully explore the potential color and
depth cues in the whole saliency processing process, Peng et al. [16] propose an evolution
strategy to introduce depth information into super-pixel generation, initial saliency map
generation, and saliency propagation. In [24], Fang et al. propose a united stereoscopic
saliency model, which combines depth-guided background prior, boundary background,
and compactness based on disparity to estimate the initial saliency map. The map is refined
by using the spatial dissimilarity features under reduced dimensions and central preference.
Zhu et al. [17,18] directly use the depth map to generate the depth feature saliency and
merge it with the color features saliency, then optimize the saliency map by combining
the center dark channel prior (CDCP) or background elimination model. In [21], Song
et al. generate different saliency measures based on multi-level features at different scales
and perform discriminative saliency fusion through a random forest regressor to obtain
the final saliency result. Aiming at the problem that the robustness of the saliency de-
tection algorithm is not satisfied in some complex situations containing multiple objects
or complex background, Zhu et al. [20] propose a multilayer backpropagation algorithm
based on depth mining, which extracts depth cues from four different saliency layers to
improve performance.

The other is based on depth measurement [26–36], which aims to obtain implicit
attributes such as shape and contour from the depth map by designing depth measurement
algorithms. Ren et al. [27] propose the normalized depth prior and the global-context
surface orientation prior. These prior can highlight near objects, weaken distant objects
and reduce the saliency of severely inclined surfaces (such as the ground plane or ceilings).
In [26], instead of using absolute depth, Ju et al. propose an anisotropic center-surround
difference (ACSD) measure that considers the global depth structure to calculate and
perceive the depth saliency map. Since the background usually contains the regions with a
large change in depth compared to the neighborhood, this leads to a higher contrast in this
region. In response to this problem, Feng et al. [28] design a local background enclosure
(LBE) feature to capture the spread of angular directions, which quantifies the proportion
of the object boundary that is in front of the background from the depth map. In [33],
Wang et al. propose a multi-stage salient object detection framework based on minimum
barrier distance transformation and multi-layer cellular automata (MCA). The framework
integrates multiple visual features and priors including background prior, 3-D spatial prior
and depth bias. In general, the depth-feature based method is an intuitive and simple to
achieve the RGB-D saliency detection, which ignores the potential attributes in the depth
map. By contrast, the depth-measurement based method aims to refine the saliency results
by using implicit information.

However, limited by the technology of the depth sensor, not all depth information is
accurate and practicable. In another word, when the depth maps are accurate, they can
provide precise depth information to facilitate saliency detection, on the contrary, they may
cause detection failure when the depth maps are poor. In order to handle this problem,
Cong et al. [37] present a depth confidence measure to assess the reliability of the depth
map and control the fusion ratio of depth features and color features in the saliency model.
In addition, in [38], a novel saliency detection model is proposed that combines the implicit
and explicit features of the depth map, its main idea is to transfer the existing RGB saliency
detection model to RGB-D images with the help of depth constraint, so that it can inherit
the saliency performance of RGB image. To a certain extent, the utilization efficiency of
depth information is improved, but it also has a problem that the algorithm greatly relies on
the performance of the RGB saliency detection algorithm. Therefore, how to effectively fuse
depth information to enhance the detection of salient objects is still challenging. Moreover,
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the detection results of the above algorithms are mostly not ideal for scenes where the
object touches the boundary.

To tackle these problems, we propose a saliency detection model with the bilateral
absorbing Markov chain guided by depth information. The model includes three progres-
sive processing stages. At the first stage, we explicitly combine depth features with color
features to calculate the low-level saliency information based on background prior and con-
trast prior. In the second stage, we design a bilateral absorbing Markov chain model based
on the background seed selection mechanism and cross-modal multi-graph learning model.
In this stage, we can obtain mid-level foreground-based and background-based saliency
maps by using low-level saliency cues of first stage. In the final stage, to further improve
the performance of our algorithm, we propose a depth-guided optimization module to
obtain a more homogeneous salient region.

The main contributions of our paper can be summarized as:

1. A multi-stage RGB-D saliency detection framework with the bilateral absorbing
Markov chain model is proposed. The framework can make full use of the explicit and
implicit information in the depth map and explore the complementary relationship
between the modes.

2. The background seed screening mechanism is designed to solve the boundary touch
problem. Moreover, the cross-modal multi-graph learning model is designed for
implicitly fusing color and depth information by the learning.

3. To preferably highlight the salient regions, we design a depth-guided optimiza-
tion module which combines cellular automata and suppression-enhancement func-
tion pair.

2. Methodology

This section describes the proposed method in detail, and the overall framework is
shown in Figure 1. The algorithm mainly consists of four subsections: pre-processing,
low-level saliency cues calculation, mid-level saliency maps generation and high-level
saliency optimization.
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Figure 1. Flowchart of the proposed method. BSSM: background seed screening mechanism; CMLM: cross-modal multi-
graph learning model; bgAMC and fgAMC denote background-based and foreground-based saliency maps based on
absorbing Markov chain respectively; SE function pair represents suppression-enhancement function pair.
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2.1. Initial Two-Layer Sparse Graph Constrution

Given an RGB image and an aligned depth map, we first convert the RGB image to
the CIELAB color space and segment it into N superpixels using mean shift [39] algorithm.
The superpixel is a small region in the image composed of a series of adjacent pixels
with similar features e.g., color, brightness, texture, etc. Then, we construct an initial
two-layer sparse graph G = (V, E) such as [40], where V = {vi|1 ≤ i ≤ N} denotes
the nodes and E =

{
eij
∣∣1 ≤ i, j ≤ N

}
denotes the edges between nodes. The graph is

generated by connecting each node to neighboring nodes and the most similar node
sharing a common boundary with its neighboring nodes. It is worth to notice that the
nodes on the four boundaries of the image are connected to each other to reduce the
geodesic between the background nodes. As [40] proves, compared with the ordinary
two-layer graph, the two-layer spares graph can effectively avoid the interference from
surrounding redundant nodes.

In this work, we utilize the pre-trained FCN-32s network [41] to extract the color
feature vector, the Euclidean distance cij in RGB color space and depth difference dij
between superpixels i and j are defined as

cij =‖ xi − xj ‖ (1)

and
dij =

∣∣di − dj
∣∣ (2)

where xi is the mean color feature vector of superpixel i, and di denotes the mean depth
value of superpixel i. The similarity ai j between superpixels i and j is defined as

ai j = ac
ij ·
(

ad
ij

)ε
(3)

where the coefficient ε adjusts the weight of depth information and set as 0.5, ac
ij and ad

ij
represent the color similarity and depth similarity respectively, and are defined as

ac
ij = e−

cij
σ2 (4)

and

ad
ij = e−

dij
σ2 (5)

where σ2 is a parameter to control strength of the similarity which is set to 0.1. The affinity
matrix W = [wij]N×N of the graph is defined as the similarity between two superpixels,

wij =

{
aij, ifj ∈ Ωi
0, otherwise

(6)

where Ωi is the neighbors of superpixel i based on the initial two-layer sparse graph.

2.2. Low-Level Saliency Cues Calculation Using Color and Depth Cues

In this part, explicitly combining color and depth cues, we calculate low-level saliency
information based on background prior and contrast prior. The saliency prior maps are
shown in Figure 1.

2.2.1. Background Prior Calculation

We adopt boundary connectivity [42] to generate the background prior map, which is
defined as

Sbp(i) = 1− exp(−BndCon2(i)
2σ2

bndCon
) (7)
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in which BndCon(i) refers to the value of boundary connectivity for superpixel i and
σbndCon is a weighting factor for boundary connectivity. Here empirically sets σ2

bndCon = 1.
This background measure is robust to the normal cases and can effectively eliminate most
background regions.

2.2.2. Region Contrast Prior Calculation

Human attention tends to focus on those image regions that contrast strongly with the
surroundings. Therefore, we calculate a region contrast similar with [43], which integrates
depth features and rich color features together. Then, compared to all other regions, we
compute its saliency value by measuring its depth and color combined contrast,

Src(i) =
N

∑
j=1,j 6=i

aijDo(i, j)Area(j) (8)

where Do(i, j) represents the Euclidean spatial distance between the superpixel i and j,
Area

(
vj
)

is the area ratio of superpixel j compared with the whole image.

2.3. Mid-Level Saliency Maps Generation by Bilateral Absorbing Markov Chain

Inspired by [44], we design a bilateral absorbing Markov chain model, which com-
bines multi-layer color features and depth features to obtain learned transition probability
matrixes, and generate mid-level saliency maps. Most of the saliency models have poor
detection results when the salient object is not in the center of the image, especially in
the case of some salient regions touch the image boundary. To handle this situation in
ours model, we propose a background seed screening mechanism (BSSM) to improve the
graph model and better select background-based absorbing nodes. Moreover, we present
a cross-modal multi-graph learning model (CMLM) to obtain the learned affinity and
transition probability matrixes, which can make full use of the complementarity of color
and depth information.

2.3.1. Absorbing Markov Chain for Saliency Detection

To facilitate the understanding, we give a brief introduction to the principle of ab-
sorbing Markov chain [45,46]. For a given set of states S = {s1, s2, . . . , sk}, the probability
of moving from state si to the next state sj is expressed as the transition probability pij,
which does not depend on the chain before the current state. An absorbing Markov chain
contains at least one absorbing state (pii = 1), and starts from every transient state, a
certain absorbing state can be reached. For an absorbing chain with r absorbing states and
t transient states, the canonical form of the transition matrix P is as follows,

P→
(

Q R
0 I

)
(9)

where Q ∈ [0, 1]t×t represents the transition probability of any pair of t transient states,
while R ∈ [0, 1]t×r represents the transition probability between any transient state and
absorbing state. 0 is the r× t zero matrix and I is the r× r identity matrix. Furthermore,
the fundamental matrix N is computed [45],

N = (I−Q)−1 = I + Q + Q2 + · · · (10)

where nij of N can describe the expected number of times from transient state si to transient
state sj in the absorbing chain.

Then the absorption probability for each transient state to reach any absorbing state
can be defined as [46],

B = NR (11)

where bij of B indicates the absorption probability from transient state si to transient state sj.
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Traditional saliency detection models based on absorbing Markov chain generally
mirror image boundary superpixels as absorbing nodes (or states), and all others as tran-
sient nodes. Then, the transition matrix P is constructed according to the similarity (the
transition probability) between nodes. The saliency value is measured by the absorption
probability, the higher the absorption probability of the node, the more similar to the
absorbing nodes.

2.3.2. Background Seed Screening Mechanism

Generally, traditional saliency detection models based on absorbing Markov
chain [44–46] usually mirror image edge superpixels as absorbing nodes and simply con-
nect all edge superpixels in pairs. However, as shown in Figure 2, when the salient object
touches the image boundary, the mirroring will mistakenly regard the foreground nodes
as background-based absorbing nodes, thus suppressing the saliency of the foreground
regions or causing detection failure. Similarly, if the edge nodes contain foreground nodes,
the full connections between them may be poorly robust. To overcome them, we propose a
background seed screening mechanism (BSSM) for improving the two-layer sparse graph
and selecting better background-based absorbing nodes. This mechanism removes the
nodes that may belong to the foreground from the edge nodes. Furthermore, in order
to increase the diversity of the background and restrain the background regions, a small
number of random non-edge background nodes are selected to form a new edge node
set and a background-based absorbing node set. Moreover, to obtain more homogeneous
salient regions, we design the non-local connection similar to [47]. Next, we will introduce
the construction process of the background seed screening mechanism and the non-local
connections in detail.
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To facilitate understanding, we provide a schematic diagram in Figure 3, which
describes the main screening process of the background seeds. First, according to the
attributes of saliency, position and depth, all nodes are classified as three categories. As
shown in Figure 3a, based on the low-level background prior Sbp, we divide all nodes into
background seed set ΩBG, foreground seed set ΩFG and others.

ΩBG =
{

i
∣∣∣Sbp(i) > 0.9

}
(12)

ΩFG =
{

i
∣∣∣S f p(i) > thFG

}
(13)

where S f p represents the foreground prior,

S f p(i) = 1− Sbp(i) (14)

thFG >
3 ·mean(S f p) + max(S f p)

4
(15)
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According to the position attribute, the nodes can be classified as edge node set
Ωedge = {i|i ∈ edge} and non-edge node set Ωnon_edge = {i|i /∈ edge} as shown in
Figure 3b.

Considering that objects far away from the camera are likely to belong to the back-
ground, as shown in Figure 3c, we use the depth threshold to divide the nodes into
depth-based background seed set ΩDep and others.

ΩDep =
{

i
∣∣di > 1.2 ∗ thDep and i /∈ ΩFG

}
(16)

thDep >
3 ∗mean(di) + max(di)

4
, i ∈ ΩBG (17)

To alleviate the boundary touch problem and select background seeds more accurately,
we utilize k-means algorithm to filter out the foreground nodes in the background seed
set ΩBG and edge node set Ωedge. More specifically, we cluster the sets of ΩBG, Ωedge and
ΩFG to find the nodes that are similar with the foreground seeds ΩFG. Figure 3d is the
filtered result: new edge node set Ω′edge and background seed set Ω′BG. In Figure 3e, we
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take depth information into consideration in the process of background seed screening.
In Figure 3f, non-edge background seeds and depth-based background seeds are further
divided into three sub-sets: ΩA, ΩB, and ΩC. It is obvious that the seeds in ΩA satisfy both
background probability and depth with high values, while the seeds in ΩB and ΩC only
satisfy the requirement of high background probability or high depth value, respectively.

Then, for guaranteeing the diversity of the background and suppressing the back-
ground more effectively, we combine a small number of non-edge nodes with Ω′edge and
further form the final edge nodes Ω f _edge. These non-edge nodes are randomly composed
of 50% ΩA, 10% ΩB, and 50% ΩC. In the initial two-layer sparse graph, to reduce the
geodesic distances of nodes, all edge nodes are simply connected together. However, it may
be poorly robust to the case when salient objects touch the image boundaries. Therefore,
instead of the rough connections, we use the final edge nodes Ω f _edge connected in pairs to
obtain a new two-layer sparse graph Gnew. In addition, to obtain more consistent salient
regions, we introduce the non-local connection into the graph. Specifically, it first sorts
the foreground prior S f p and the region contrast prior Src of all nodes, the top 50% of
both are selected as foreground seeds, and the bottom 50% are selected as background
seeds. For each superpixel, we connect it to two nodes that are randomly chosen from the
two seed sets respectively. This connection mechanism is more conducive to highlight the
foreground objects and suppress the background regions. The improved two-layer sparse
graph with the non-local connection is visualized in Figure 4e.
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2.3.3. Cross-Modal Multi-Graph Learning Model 
The two-layer sparse graph constructs the connections among the local regions, 

which will restrict the range of random walk to the local regions. Therefore, the absorption 
time may be inaccurate, especially when the long-range smooth background distributes 

Figure 4. The construction and comparison of the proposed graph model. (a) Input RGB image. (b) Input depth image.
(c) Ground truth. (d) A diagram of the connections of one of the nodes based on initial two-layer sparse graph. A node
(illustrated by a pink dot) connects to its adjacent nodes (blue dots and connections) and the most similar node (dark green
dots and connections) sharing common boundaries with its adjacent nodes. All edge nodes are connected to pairs (yellow
dots and local connections). (e) A diagram of the connections of one of the nodes based on improved two-layer sparse
graph. Different from the initial graph, the new edge nodes first remove some foreground nodes which are in the image
boundary (the nodes at the bottom edge of image), and further join a small number of non-edge background nodes (black
nodes). Each pair of the new edge nodes connects to each other (yellow and black dots and connections). Additionally,
each node connects to the background seeds (light green dots and connections) and the foreground seeds (purple dots
and connections).
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Moreover, Figure 5 demonstrate the effects of the proposed background seed screening
mechanism (BSSM) and non-local connection. In Figure 5e, it is clearly observed that
the background is well suppressed by the improved two-layer sparse graph based on
background seed screening mechanism (BSSM). Figure 5g illustrates that the non-local
connection can achieve more complete and consistent salient regions.
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(c) Saliency maps produced by two-graph neighborhood graph. (d) Saliency maps produced by two-layer sparse graph.
(e) Saliency maps produced by improved two-layer sparse graph based on background seed screening mechanism (BSSM).
(f) Saliency maps produced by improved two-layer sparse graph without the non-local connections. (g) Saliency maps
produced by improved two-layer sparse graph with the non-local connections. (h) Ground truth.

2.3.3. Cross-Modal Multi-Graph Learning Model

The two-layer sparse graph constructs the connections among the local regions, which
will restrict the range of random walk to the local regions. Therefore, the absorption
time may be inaccurate, especially when the long-range smooth background distributes
near the center of image. To overcome it, we have improved the graph model from the
connection relationship in the above section. However, in the absorbing Markov chain
model, another key influencing factor is the weight of the edges between nodes. Similar
to Formula (3), most of the existing graph models directly weight depth and color cues to
measure the similarity between nodes. However, the models do not consider the effect
of color and depth information on saliency detection in different scenarios. For example,
in some scenes, color is more reliable than depth, so a larger weight of color is needed.
Conversely, if depth is more reliable, we need to strengthen the weight of depth. Therefore,
we propose a cross-modal multi-graph learning model (CMLM), which fully explores the
complementary relationship between color and depth in different scenarios. The learning
model constructs a more accurate affinity matrix and captures the optimal fusion state of
color and depth information.

Some algorithms [44,48] have constructed the affinity matrix by the learning. In [48],
the learning model based on the single graph is proposed, which construct an approximate
full affinity matrix by using the following equation,

min
Y

N

∑
i,j=1

wij‖yi − yj‖
2 + µ

N

∑
i=1
‖yi − ii‖2 (18)
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where Y = [yi, y2, . . . , yn] ∈ RN×N is an affinity matrix optimized by unsupervised learning
based on the original sparse affinity matrix. yi = [yi1, yi2, . . . , yiN ]

> is a column vector
indicating the degree of affinity between the node i and all other nodes, ii

> is the i-th
column of an identity matrix I which indicates the similarity with itself. In Equation (18),
the first item is a smoothing constraint item, which indicates the difference between yi and
yj. The two nodes are more similar, the value of first item will be lower. The second item is
a self-restraint item, which emphasizes that no matter how we update the value of yi of
node i, it should not be too different from its initial value. µ is a parameter that balances
the relationship between the two items, µ > 0.

Formula (18) is the learning process under the single-layer graph. To make full use of
the complementarity of color and depth information, we explore feature spaces of multiple
modes and develop a cross-modal multi-graph model to learn an affinity matrix. We use
β = [βc, βd, . . .]> to represent the set of multi-modal vectors, and its values indicate the
importance of the corresponding affinity graph. In this work, we only adopt the modes
of color and depth. βc = [β

(1)
c , β

(2)
c , . . . , β

(m)
c ] is a sub-vector of the color mode and m is

the number of feature maps in color space. βd = [β
(1)
d , β

(2)
d , . . . , β

(n)
d ] is a sub-vector of the

depth mode and n is the number of feature maps in depth space. W(ν)
c = [wc

ij
(ν)]

N×N
is the

graph affinity matrix computed by the ν−th color feature and W(τ)
d = [wd

ij
(τ)]

N×N
is the

graph affinity matrix computed by the τ−th depth feature. Then, the final learning affinity
matrix optimization equation can be defined as

min
β,Y

m

∑
ν=1

(
βc

(ν)
)γ N

∑
i,j=1

wc
ij
(ν)‖yi − yj‖

2 +
n

∑
τ=1

(
βd

(τ)
)γ N

∑
i,j=1

wd
ij
(τ)‖yi − yj‖

2 + µ
N

∑
i=1
‖yi − ii‖2,

s.t.
m

∑
ν=1

βc
(ν) +

n

∑
τ=1

βd
(τ) = 1, 0 ≤ βc

(ν), βd
(τ) ≤ 1 (19)

where the parameter γ controls the weight distribution of all affinity matrices, ensuring
that different-mode features can be fully utilized. Without this parameter, in some cases, it
is possible that only partial features participate in the learning of affinity matrix, which
may utilize the complementarity between different features insufficiently. The parameter µ
and γ are set to 0.001 and 4 respectively. To facilitate the derivation, we rewrite the above
objective function (19) in the form of matrix,

J =
m

∑
ν=1

(
β
(ν)
c

)γ
Tr
(

YTL(ν)
c Y

)
+

n

∑
τ=1

(
β
(τ)
d

)γ
Tr
(

YTL(τ)
d Y

)
+ µ‖Y− I‖2

F (20)

where L(ν)
c = D(ν)

c −W(ν)
c is the graph Laplacian matrix of the ν−th color feature, D(ν)

c

is the degree matrix and dc(ν)
ii =

N
∑

j=1
wc(ν)

ij . Similarly, L(τ)
d = D(τ)

d −W(τ)
d is the graph

Laplacian matrix of the τ−th depth feature, D(τ)
d is the degree matrix and dd(ν)

ii =
N
∑

j=1
wd(ν)

ij .

Tr(·) and ‖ · ‖F compute the trace and the Frobenius norm of the matrix separately. We
can see that there are two unknown items β and Y to be solved in Equation (20), so we
decompose it into two sub-problems to solve this optimization problem by iteration.

Fix β, Update Y:

Y = µ

(
m

∑
ν=1

βc
(ν)L(ν)

c +
n

∑
τ=1

βd
(τ)L(τ)

d + µI

)−1

(21)
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Fix Y, Update β:

βc
(ν) =

(
Tr
(

YTL(ν)
c Y

)) 1
1−γ

m
∑

ν′=1

(
Tr
(

YTL(ν′)
c Y

)) 1
1−γ

+
n
∑

τ′=1

(
Tr
(

YTL(τ′)
d Y

)) 1
1−γ

(22)

βd
(τ) =

(
Tr
(

YTL(τ)
d Y

)) 1
1−γ

m
∑

ν′=1

(
Tr
(

YTL(ν′)
c Y

)) 1
1−γ

+
n
∑

τ′=1

(
Tr
(

YTL(τ′)
d Y

)) 1
1−γ

(23)

To get the optimal solution of sub-problems, we utilize partial derivative and Lagrange
Multiplier Method. The specific derivation process can refer to [48]. With the learned
affinity matrix Y, we can calculate the transition matrixes of absorbing Markov chain. The
final learned affinity matrix WL = [wL

ij]N×N
is obtained by normalization,

WL = diag(Y)−1 × Y (24)

Figure 6d shows the effects of the proposed cross-modal multi-graph learning model
(CMLM). As it is illustrated, compared to single-mode multi-graph learning model (color
mode), the proposed model is more precise to highlight the salient regions.
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Figure 6. Visual comparisons of our proposed cross-mode multi-graph learning model (CMLM).
(a) Original RGB images. (b) Original depth images. (c) Saliency maps based on single-mode multi-
graph learning model (SMLM). (d) Saliency maps based on cross-modal multi-graph learning model
(CMLM). (e) Ground truth.
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2.3.4. Background-Based Saliency Map via Absorbing Markov Chain

In this part, we select background-based absorbing nodes based on the above back-
ground seed screening mechanism. As is presented in Figure 7a, we mirror edge nodes
Ω′edge and some non-edge background nodes as virtual absorbing nodes, and all nodes in
the image as transient nodes. The non-edge background nodes are randomly composed of
50% ΩA, 50% ΩB and 50% ΩC. The number of absorbing nodes is r. Then, the background-
based affinity matrix WL

B = [wL
ij]N×r

can be obtained with Formula (24). Furthermore, the
learned transition matrix is defined as

PB =

[
QN×N

B RN×r
B

0r×N Ir×r
B

]
(25)

where QN×N
B = DB

−1WL, RN×r
B = DB

−1WL
B, DB is the sum of the matrix D1 and

D2, D1 = diag
{

dWL
1 , dWL

2 , . . . , dWL
N

}
is the degree matrix of WL, and dWL

i =
N
∑

i=1
wL

ij.

D2 = diag
{

dWL
B

1 , dWL
B

2 , . . . , dWL
B

N

}
is the degree matrix of WL

B, and dWL
B

i =
r
∑

i=1
wL

ij.

According to Formula (11), we can calculate the absorption probability matrix BB = NBRB,
where NB = (I−QB)

−1. Based on the above work, the saliency of the node i is defined as

Sbg(i) = 1−
r

∑
j=1

bij (26)
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foreground superpixels (blue dots) as virtual absorbing nodes. Both set all superpixels on the entire image as transient nodes.

The background-based saliency map Sbg is shown in Figure 1. Then, we mirror
the nodes with the saliency value greater than the threshold th as the foreground-based
absorbing nodes, which is illustrated in Figure 7b. The number of absorbing nodes is k.

th =
(

mean
(

Sbg

)
+ max

(
Sbg

))
/2 (27)

2.3.5. Foreground-Based Saliency via Absorbing Markov Chain

Similarly, the foreground-based affinity matrix WL
F = [wL

ij]N×k
can be obtained with

Formula (24), and the learned transition matrix is as follows,

PF =

[
QN×N

F RN×k
F

0k×N Ik×k
F

]
(28)
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where QN×N
F = DF

−1WL, RN×k
F = DF

−1WL
F, DF is the sum of the matrix D1 and D2

′,

D2
′ = diag

{
dWL

F

1 , dWL
F

2 , . . . , dWL
F

N

}
is the degree matrix of WL

F, dWL
F

i =
k
∑

i=1
wL

ij. Accord-

ing to Formula (11), the absorption probability matrix BF = NFRF is obtained, where
NF = (I−QF)

−1. In order to calculate the foreground-based saliency more accurately and
eliminate the interference of weak correlated nodes, we sort each row of BF and select the
top 60% of the nodes to calculate the final saliency value,

S f g(i) =
c

∑
i=1

b′ ij (29)

where c = 0.6 ∗ k, and the foreground-based saliency map S f g is shown in Figure 1.

2.4. High-Level Saliency Map Optimization via Depth Guidance

In order to further highlight the salient regions and effectively explore the inner
relationship between depth information and salient information, we design a depth-guided
optimization module which combines cellular automata and suppression-enhancement
function pair.

2.4.1. Optimization via Cellular Automata

We perform a primary fusion of the saliency maps produced by the bilateral absorbing
Markov chain model,

S f b(i) = 0.4 ∗ S f g(i) + 0.6 ∗ Sbg(i) (30)

Based on the improved two-layer sparse graph, we use the cellular automata [49]
propagation mechanism to further optimize the fused saliency map. First, based on the
learned affinity matrix WL and the color similarity matrix Ac = [ac

ij]N×N
, we construct an

impact factor matrix F = [ fij]N×N ,

F = Ac ·WL (31)

Furthermore, all superpixel nodes (cells) are updated simultaneously through the
following iteration rules,

Sh+1 = C∗ · Sh + (I−C∗) · F∗ · Sh (32)

where I is the identity matrix. F∗ = [ f ∗ij ]N×N
and C∗ = diag

{
c∗1 , c∗2 , . . . , c∗N

}
are normalized

impact factor matrix and coherence matrix respectively,

F∗ = D−1
f · F (33)

c∗i = a · norm(1/max( f ∗ij)) + b (34)

where D f = diag
{

d f 1, d f 1, . . . , d f N

}
is the degree of the matrix and d f i = ∑j fij. The

constant coefficients a and b are set to 0.6 and 0.2, respectively, norm(·) means normalization
function. Each cell can automatically evolve into a more accurate and stable state, and
under the influence of the neighborhood, the salient regions are easier to be detected.
The initial Sh when h = 0 is S f b in Equation (30), and the ultimate saliency map after
h = 10 time steps is denoted as SCA, which is visualized in Figure 8g.
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Figure 8. Visualization of the main saliency refinement process. (a) Original RGB images. (b) Original depth images.
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and depth cues. (e) Background-based saliency maps by absorbing Markov chain model. (f) Foreground-based saliency
maps by absorbing Markov chain model. (g) Saliency maps optimized by cellular automata. (h) Saliency maps generate by
the depth selective refinement mechanism based on suppression-enhancement function pair. (i) Ground truth.

2.4.2. Refinement via Depth Information

Cellular automata mainly explores the neighborhood relationship between the nodes
in the color feature space, but ignores the spatial position information in the scene. There-
fore, we use depth cues to enhance and refine the salient regions and suppress the back-
ground regions. In this work, we design a depth selective refinement mechanism by a
suppression–enhancement function pair: the suppression function is used to suppress the
background, and then an enhancement function is used to emphasize the salient regions
through high-confidence depth seeds.

Suppression function: The regions far away from the camera have a higher prob-
ability of being the background and need to be suppressed. Therefore, we defined the
suppression function as follows,

SSF(i) =


SCA(i), if SCA(i) > 0.7and Sd(i) > 0.5and SCA(i) > (thCA + 0.1)

SCA(i) · Sd(i), if SCA(i) ≤ thCA√
SCA(i) · Sd(i), otherwise

(35)

where thCA is the adaptive threshold of the saliency map SCA obtained by Otsu [50]
algorithm, and Sd(i) = norm(di) is the depth prior. After filtering SSF through the Otsu
algorithm, the suppressed saliency map S1 is obtained.

Enhancement function: Although the suppression function inhibits background
information to a certain extent, it may lose some saliency information. The enhancement
function can play a complementary role. First of all, we need to determine which depth
information is reliable and needs to be retained. Here we combine three saliency maps
to filter out the potential depth seed set ΩD with high confidence. The depth seeds are
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all salient in saliency maps of S f g, Sbg and SCA. The enhancement function is defined
as follows,

SEF(i) =


S1(i) + 0.2 · Sd(i), Sd(i) ≥ 0.9, i ∈ ΩD

S1(i) + 0.05 · Sd(i), Sd(i) < 0.9, i ∈ ΩD
S1(i), otherwise

(36)

After the suppression–enhancement function pair, we can get the final saliency map
SEF, which is shown in Figure 8h.

3. Experiments and Discussion
3.1. Datasets

In this part, in order to effectively demonstrate our proposed algorithm, we evaluate
the model in three most popular datasets, including NLPR [13], NJU2K [26], and STERE [9].
The NLPR dataset includes 1000 RGB-D images, where the depth maps are captured by
Microsoft Kinect. The NJU2K dataset contains 1985 RGB-D images which are collected
from the Internet, 3-D movies and photographs taken by stereo camera, and depth maps
are estimated by the optical-flow method. The STERE dataset contains 1000 stereoscopic
images with the corresponding pixel-level ground truth.

3.2. Evaluation Metrics

Following [51], we use the following five popular evaluation metrics to evaluate the
performance of the saliency detection methods comprehensively.

MAE estimates a mean absolute error between a predicted saliency map S and ground-
truth map GT, it is defined as

MAE =
1

W · H
W

∑
x=1

H

∑
y=1
|S(x, y)− GT(x, y)| (37)

where H and W are the height and the width of the saliency map.
PR curve is formed by a series of pairs of precision and recall scores calculated

at fixed thresholds ranging from 0 to 255, which describes the model performance at
different situations.

precision =
|S ∩ GT|

S
(38)

recall =
|S ∩ GT|

GT
(39)

F-measure is a harmonic mean of average precision and recall, which is defined as,

Fβ =
(1 + β2) · precision · recall

β2 · precison + recall
(40)

We empirically set β2 = 0.3.
S-measure [52] is used to measure the spatial structure information, which is de-

fined as,
Sα = α · S0 + (1− α) · Sr (41)

where α is a balance parameter between the object-aware structural similarity S0 and
region-aware structural similarity Sr, and it is set to 0.5.

E-measure [53] is to evaluate the foreground map (FM) and noise, which combines
local pixel values with image-level mean values to jointly capture image-level statistics and
local pixel matching information.

Em =
1

W · H
W

∑
x=1

H

∑
y=1

φFM(x, y) (42)
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where φ is an enhanced alignment matrix for the two properties of a binary map.

3.3. Ablation Study

Our algorithm combines background seed screening mechanism, non-local connection,
cross-modal multi-graph learning model, and depth-guided optimization module. To
further demonstrate the effectiveness of the components, a series of experiments are carried
out. Figure 9 shows all the results of the above experiments intensively. In this part, we will
combine the two-layer graph and the bilateral absorbing Markov chain based on single-
modal multi-graph learning as the baseline model, which is the combination 1 in Figure 9.
As is illustrated in Figure 9, the two-layer sparse graph and the background seed screening
mechanism greatly improve the performance of our algorithm, which can be observed
from the combinations 1, 2 and 3. Compared to the two-layer graph, the two-layer sparse
graph suppresses most of the background better in Figure 5d. From Figure 5d, based on the
background seed screening mechanism, background is further diluted, and the foreground
is further strengthened. Compared with combination 3, the cross-modal multi-graph
learning model has better improvement in precision-recall and S-measure, but the other
evaluation parameters may be slightly lower. From comprehensive perspective, the cross-
modal multi-image learning model and depth guided optimization module can achieve
the best results which can refer to combinations 5 and 6. As Figure 6d shows, compared to
the single-mode multi-graph learning model (color mode), the cross-mode multi-graph
learning model can better pop foreground objects from various scenes. Figure 8h displays
the effect of the depth-guided optimization module. Finally, from combinations 7 and 8, it
obvious that the non-local connection can effectively improve the overall performance of
the algorithm. The saliency maps with the non-local connection are more precise as shown
in Figure 5g.
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Figure 9. Valuation of different components. (a) PR curves. (b) S-measure, E-measure, and F-measure at adaptive
threshold, mean absolute error (MAE). G1: two-layer graph; G2: two-layer spare graph; BAMC (SL): bilateral absorbing
Markov chain based on single-modal multi-graph learning (color mode), CL: cross-modal multi-graph learning model
(color and depth modes); BSSM: background seed screening mechanism; DOM: depth-guided optimization model; NLC:
non-local connection.

3.4. Comparisions with State-of-the-Art Methods

We compare our proposed algorithm with 10 state-of-the-art RGB-D saliency detection
models, including ACSD [26], DESM [12], LHM [13], GP [27], DCMC [37], LBE [28], SE [16],
CDCP [18], CDB [24], and DTM [38]. For fair comparison, we employ saliency maps
provided by the [51]. Table 1 and Figure 10 show the quantitative results of different RGBD



Sensors 2021, 21, 838 17 of 23

saliency detection models. We also report saliency maps with various scenes as shown in
Figure 11.

Table 1. Quantitative comparisons of different RGB-D saliency detection methods on three popular datasets. Red, green
and blue indicate the best, second and third performances. ↑ denotes larger is better, and ↓ denotes smaller is better.

Methods Year
NLPR NJU2K STERE

Sα↑ Em↑ Fβ↑ MAE↓ Sα↑ Em↑ Fβ↑ MAE↓ Sα↑ Em↑ Fβ↑ MAE↓

ACSD 2014 0.6728 0.7418 0.5345 0.1787 0.6992 0.7863 0.6964 0.2021 0.6919 0.7932 0.6607 0.2000
DESM 2014 0.5722 0.6978 0.5633 0.3124 0.6648 0.6824 0.6321 0.2835 0.6425 0.6751 0.5942 0.2951
LHM 2014 0.6298 0.8131 0.6636 0.1077 0.5136 0.7082 0.6383 0.2048 0.5617 0.7700 0.7029 0.1719

GP 2015 0.6545 0.8045 0.6593 0.1461 0.5265 0.7161 0.6554 0.2106 0.5876 0.7842 0.7106 0.1822
DCMC 2016 0.7244 0.7856 0.6141 0.1167 0.6861 0.7905 0.7173 0.1716 0.7306 0.8314 0.7425 0.1476

LBE 2016 0.7619 0.8550 0.7355 0.0813 0.6952 0.7913 0.7400 0.1528 0.6601 0.7485 0.5951 0.2498
SE 2016 0.7561 0.8388 0.6915 0.0913 0.6642 0.7722 0.7335 0.1687 0.7082 0.8250 0.7476 0.1427

CDCP 2017 0.7270 0.8001 0.6076 0.1121 0.6685 0.7472 0.6238 0.1803 0.7134 0.7964 0.6655 0.1489
CDB 2018 0.6286 0.8094 0.6132 0.1142 0.6239 0.7448 0.6484 0.2028 0.6151 0.8079 0.7127 0.1655
DTM 2020 0.6787 0.7656 0.5271 0.1611 0.6490 0.7454 0.6082 0.2217 0.7049 0.7978 0.6585 0.1910
OURS 2020 0.8131 0.8751 0.7845 0.0712 0.7361 0.7925 0.7494 0.1359 0.7774 0.8347 0.7724 0.1110
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We report PR curves of three datasets in Figure 10 and list Sα, Em, Fβ and MAE in
Table 1. As shown in Figure 10, our method achieves better PR curves on the three datasets,
especially on NLPR and STERE datasets. This indicates that our method can obtain higher
precision and recall compared with other methods. On the NJU2K dataset, although the
end of our PR curve drops faster than some methods, we always maintain a robust curve
on each dataset and keep a good balance between precision and recall overall.

As listed in Table 1, we can intuitively observe the superiority of our method among
all the methods, which can be proved with the best results over all the three datasets. This
demonstrates that our algorithm can generate more accurate salient regions and is more
adaptable to various scenes than others.

In addition to the quantitative comparisons, to prove the effectiveness of our model
visually, we also display some saliency maps in Figure 11. As we can see, the most saliency
detection methods can effectively handle the cases with relatively simple backgrounds
and homogenous objects. However, these methods fail to handle the complicated cases.
In contrast, our method can deal with these intricate scenarios more effectively. To make
it more convincing, we compare these methods in the following four aspects: (1) the
effectiveness of dealing with boundary touch issues; (2) the effectiveness of the background
suppression; (3) the effectiveness of solving similar appearances; and (4) the effectiveness
of detection with a poor depth map.
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Here combined with examples to vividly expand the above four aspects. First, as
shown in the 7-th and 8-th rows of Figure 11a, the 3-th, 5-th, and 7-th rows of Figure 11b,
and the 8-th row of Figure 11c, only the GP algorithm has certain resistance to boundary
touch problem, but when the background is complex and the depth map is poor, as shown
in the 3-th rows of Figure 11b, the detection will fail. In contrast, our algorithm achieves
better results in various scenes when encountering this situation. Then, from the 3-th, 4-th,
and 6-th rows of Figure 11a, we can find that most of the algorithms cannot effectively
remove the background in front of the salient objects due to the interference from the depth
near the camera. However, our method can availably eliminate them by using learning
fusion. Moreover, as shown in the 7-th row of Figure 11b, the 8-th and 10-th rows of
Figure 11c, our method works well when the color appearance of salient object is similar to
the background. Finally, our model is still robust under the condition of poor depth map
quality, which is demonstrated in the 3-th and 4-th rows of Figure 11b, the 1-th, 2-th, 3-th,
and 6-th rows of Figure 11c.
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In general, our algorithm has better robustness in the various complex scenarios.
Especially, when the salient objects touch the image boundary or the depth map quality
in the dataset is uneven, our method still has a good performance, which can obtain the
uniform and highlighted salient objects.

Computational complexity. We utilize the computational complexity to prove the
advantages of our proposed method compared to other methods (traditional-based and
deep learning-based). In this paper, we adopt the floating point operations (FLOPs) to
measure the computational complexity of the models. For fair comparisons, we obtain
the deployment codes released by authors and use the same configuration as much as
possible to estimate their computational complexity. As illustrated in Table 2, compared
with the latest deep learning-based methods such as D3Net [51], BBS-Net [54], and UC-
Net [55], our computational complexity is only one tenth or even one hundredth of theirs.
Moreover, compared with the traditional-based methods such as DCMC [37], CDCP [18],
and DTM [38], our model can achieve obvious higher performance in the relatively lower
computational complexity combined with Table 1.

Table 2. Computational complexity comparison with traditional-based and deep learning-based RGB-D saliency detection
methods. Red, green and blue indicate the best, second and third performances.

Methods DCMC CDCP DTM D3Net BBS-Net UC-Net OURS

Year 2016 2017 2020 2020 2020 2020 2020
Platform Matlab Matlab Matlab PyTorch PyTorch PyTorch Matlab

Image size 640 × 480 640 × 480 640 × 480 224 × 224 352 × 352 352 × 352 640 × 480
FLOPs(G) 3.0891 1.2565 0.4104 55.0722 31.1396 16.1502 0.2002

4. Conclusions and Future Work

In this paper, we propose a RGB-D saliency detection model with the bilateral ab-
sorbing Markov chain guided by depth information. Using the explicit combination of
depth and color information, we first generate the low-level saliency cues based on the
background prior and contrast prior. Then, to overcome the existing drawbacks in the
absorbing Markov chain model, we propose a serial of methods: the background seed
screening mechanism (BSSM) for boundary touch cases and the cross-modal multi-graph
learning model for multi-modal fusion. Moreover, considering the limitation of local
intrinsic correlation, a non-local intrinsic correlation is introduced to improved two-layer
sparse graph. Based on the optimized bilateral absorbing Markov chain model, we obtain
the mid-level saliency maps. Finally, we design a depth-guided optimization module to
get more accurate high-level saliency map. The optimization module consists of two sub-
modules: the cellular automata to optimize the integrated saliency map in the color space
and the suppression-enhancement function pair to refine the saliency map in the depth
space. Compared with most of the algorithms mentioned in this article, our method al-
leviates the boundary touch problem well and greatly suppresses the background. The
comprehensive comparisons and ablation study on three RGB-D saliency detection datasets
have demonstrated that the proposed method is effective and robust in various scenarios
both qualitatively and quantitatively.

The literature [51] builds a new salient person (SIP) dataset with quite challenging
which covers diverse real-world scenes from various viewpoints, poses, occlusion, il-
lumination, and background. Moreover, deep learning-based RGB-D saliency detection
methods [51,54,55] have developed vigorously and achieved the qualitative leap. Therefore,
we look forward to extending our work to the deep learning in the future, exploring the
complementarity of depth information and color information more fully, and dedicating
ourselves to the studying of the saliency detection algorithm in real-world scenes.
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