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Abstract: The simple lens computational imaging method provides an alternative way to achieve
high-quality photography. It simplifies the design of the optical-front-end to a single-convex-lens
and delivers the correction of optical aberration to a dedicated computational restoring algorithm.
Traditional single-convex-lens image restoration is based on optimization theory, which has some
shortcomings in efficiency and efficacy. In this paper, we propose a novel Recursive Residual Groups
network under Generative Adversarial Network framework (RRG-GAN) to generate a clear image
from the aberrations-degraded blurry image. The RRG-GAN network includes dual attention module,
selective kernel network module, and residual resizing module to make it more suitable for the
non-uniform deblurring task. To validate the evaluation algorithm, we collect sharp/aberration-
degraded datasets by CODE V simulation. To test the practical application performance, we built
a display-capture lab setup and reconstruct a manual registering dataset. Relevant experimental
comparisons and actual tests verify the effectiveness of our proposed method.

Keywords: computational imaging; deep learning; image restoring; non-uniform deblurring

1. Introduction

Computational imaging is a new interdisciplinary subject in recent years, which offers
imaging functionalities and convenient design beyond traditional imaging design [1]. It
emphasizes the task-oriented global optimization design in the full imaging chain, and
systematically balances the system resource dependence in the physical and computing
domain. Computational imaging has many sub-topics according to different imaging
backgrounds [2,3]. This paper will focus on the simple lens imaging system and its
restoring method.

Aberration is not only the main consideration in the optical design stage, but also
a factor limiting the imaging quality in the actual use due to the change of aperture,
object distance, and other factors. To minimize optical aberrations, the manufacturing of
photographic lenses has become increasingly complex. Optical designers systematically
balance optical aberrations and design constraints (such as focal length, field of view, and
distortion). They utilize a combination of several lens elements with various materials and
shapes to achieve a close-to-perfect optical design, which will result in a significant impact
on the cost, size, and weight. The simple lens computational imaging method provides
an alternative way to achieve high-quality photography. It simplifies the design of the
optical-front-end to a single-convex-lens, and delivers the correction of optical aberration
to a dedicated computational restoring algorithm, as shown in Figure 1. As aberration is a
common problem in many optical imaging systems, aberration correction algorithm will
have great significance to improve the quality of other optical imaging systems, and has
broad application prospects.
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Figure 1. The schematic diagram of single-convex-lens computational imaging method.

In this paper, we will build a single-convex-lens imaging system, and further study
the restoring method of aberration degraded image. The contributions of this paper are
as follows:

1. We collect sharp/aberration-degraded datasets by CODE V (https://www.synopsys.
com/optical-solutions/codev.html, accessed on 11 May 2021) simulation and man-
ual registering, which will be publicly released on Github for further researches
(https://github.com/wuzeping1893/RRG-GAN-single-convex-lens, accessed on
11 May 2021). To the best of our knowledge, this is the first dataset for the single-
convex-lens computational imaging field.

2. We propose the application of deep-learning-only-based methods for image denoising
and deblurring to the special case of single-lens camera images restoring, in contrast
with optimization-based methods with great improvement in efficiency and efficacy.

3. By redesigning the generator network, the proposed RRG-GAN network includes
the dual attention module, selective kernel network module, and residual resizing
module. It has better multi-scale feature extraction and fusion ability, which makes
the network have better recovery effect.

The following sections are arranged as follows: Section 2 briefly describes the related
work and the chosen direction of this paper. Section 3 introduces hardware implementation
of single-convex-lens imaging system and our proposed RRG-GAN restoring network.
Section 4 provides the experimental preparation, results, and analysis. Section 5 discusses
our work and future research. Section 6 presents the conclusions of our methods.

2. Related Work
2.1. Single-Lens Imaging System

The idea of single-convex-lens computational imaging was first proposed by Schuler et al. [4].
They utilized a single-convex-lens as the only optical element, measured the non-uniform
point spread function (PSF) grid covering via an automated calibration procedure, and elim-
inated the effect of aberration through a non-stationary convolution [4]. Following Schuler’s
work, Felix improved the restoring method by the proposed cross-channel prior [5].

In order to expand the field of view (FOV), Peng [6] proposed a thin-plate optics
computational imaging method using a single-Fresnel-lens, another construction method
of single lens. Similar to the single-convex-lens computational imaging method, some
scholars proposed dedicated image restoring methods for computational imaging systems
using diffractive optical elements (DOEs) [7,8].

https://www.synopsys.com/optical-solutions/codev.html
https://www.synopsys.com/optical-solutions/codev.html
https://github.com/wuzeping1893/RRG-GAN-single-convex-lens
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2.2. Motion Deblurring Algorithms

Most computational imaging methods are all indirect imaging, which means the source
image data obtained from the sensor is seriously affected by the aberration. Therefore, the
design of robust computational restoring algorithms is the key issue of these computational
imaging systems. Usually, the aberration correcting and restoring methods refer to some
ideas of motion deblurring algorithms. The motion deblurring algorithms are mainly based
on two kinds of theories: one is traditional optimization, the other is deep learning.

The motion deblurring methods based on the optimization framework belong to a
theoretical method driven by the physical model. Image deblurring is a typical ill-posed
problem, the restoration methods usually need to add prior constraints and integrate them
into optimization framework to make ill-conditioned problems solvable. Representative
image priors mainly include L0 gradient [9], gradient sparsity [10,11], dark channel [12],
color-line [13] etc. The optimization framework adopted mainly includes maximum a
posteriori approach (MAP) and variational expectation maximization (VEM).

The motion deblurring methods based on deep learning belong to a data-driven
theoretical implementation method, but the pointcuts and data-driven implementation
methods are different. Chakrabarti [14] used a deep learning network to estimate the
blur kernel Fourier coefficient. Wang trained a discriminative classifier to distinguish
blurry and sharp images as the regularization term in the maximum a posteriori (MAP)
framework [15]. Similarly, based on the MAP framework, Ren et al. [16] further obtained
the image priors and blur kernel priors all by deep learning network, and thus improved
the image restoration effect in the case of complex or large-scale blur kernel. The above
methods are mainly based on the combination of deep learning and traditional optimization:
the traditional optimization method is responsible for the main process, while the deep
learning algorithm is used to improve the robustness of various priors. Due to the joint
application of deep learning and optimization theory, these methods improve the recovery
effect, but there is no improvement in efficiency.

The end-to-end deep network is another way to implement computational recovery.
Nah et al. [17] proposed an end-to-end multi-scale convolutional neural network to realize
the deblurring algorithm. Zhang et al. [18] make use of the feature extraction advantage of
RNN and the weight learning advantage of CNN to realize a non-uniform deblurring neural
network. Zhou et al. [19] proposed a multi-stream bottom-top-bottom attention network,
which can effectively facilitate feature extracting and reduce computational complexity.
With the development of generative adversarial networks (GAN), the implementation
method of directly generating end-to-end restoration images and ignoring the physical
model process is also applied in the field of image deblurring, which is represented as
Deblur-GAN, proposed by Kupyn [20].

2.3. Motivation of This Paper

The motivation of this paper is to utilize the deep learning method instead of the
previous optimization-based methods [4,5] to improve the efficacy and efficiency.

From the perspective of implementation effect, previous methods will fail when the
size of blurry kernel is large. In contrast, our experiments in Section 4 will prove that the
deep learning restoration method has better robustness and better subjective restoration
effect in this aspect.

In terms of operational efficiency, the optimization methods usually require several
iterations, which means they are difficult to apply in practical engineering. In contrast,
the deep learning end-to-end restoring methods are more efficient, although they require
additional hardware resources such as GPU.

We make appropriate improvements on the Deblur-GAN [20] restoring method, which
is originally used in motion blur recovery. The improvements mainly reflect the restructur-
ing of the generator network, which includes the dual attention module, selective kernel
network module, and residual resizing module. These improvements mean the network
restoration has better multi-scale feature extraction and fusion ability, as shown in Section 4.
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3. Methodology
3.1. Hardware Implementation of Single-Convex-Lens Imaging System
3.1.1. Self-Made Optical Lens

The self-made optical lens consists of a flat-convex lens, a gland ring, and a lens barrel.
The flat-convex lens is the only optical element to converge light. The focal length of the
lens is 50 mm with 15◦ field-of-view (FOV), which is larger than the previous work [4,5].
The gland ring is used to fix the lens and act as a simple aperture. Our self-made optical
lens has a corresponding standard single-convex-lens reflex (SLR) lens with the same focal
length and field angle, as shown in Figure 2.
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Figure 2. The procedure of self-made optical lens: (a) The light path of lens using CODE V software; (b) The components of
self-made optical lens; (c) The assemble of self-made optical lens and its corresponding standard SLR lens.

The parameters of our self-made optical lens can be found in CODE V source project
documents, which is available on Github project page. The light path analysis in Figure 2a
and the subsequent simulations are all based on the premise of infinite object distance.
For the case of small object distance, the change of PSF is varied very sharply. We do not
discuss these situations in this paper.

3.1.2. Aberration Analysis and Imaging Model

The aberrations produced by the single-convex-lens will lead to the degradation of
image quality. These aberrations can be divided into on-axis aberrations and off-axis
aberrations. The on-axis aberrations mainly include the longitudinal chromatic aberration
and the axial spherical aberration. The off-axis aberrations mainly include lateral chromatic
aberration, coma, curvature of field, astigmatism, and distortion. The overall influence
of the above aberrations on imaging is reflected in the complexity of the point spread
function (PSF). The PSFs are different in the RGB channels, global non-uniform with large
kernel size.

Affected by optical aberrations, the non-uniform blurry imaging model in RGB channel
is described in Equation (1):

Oc(i, j) = ∑
(m,n)

Ic(m, n)Kc(m, n, i, j) + Nc(i, j), c ∈ {R, G, B} (1)

In Equation (1), Oc(i, j) denotes the source image collected by the imaging system, (i, j)
depicts the pixel position of the observed image space; Ic(m, n) represents the ground truth
image, (m, n) is the pixel position of the ground truth image space; Kc(m, n, i, j) describes
the non-uniform point spread function (PSF) of the motion blur; Nc(i, j) is the CMOS noise.
The observed blurry image Oc(i, j) is known, the ground truth image Ic(m, n), the point
spread function Kc(m, n, i, j), and the CMOS noise Nc(i, j) are all unknown, which means
it is a typical ill-posed problem in mathematics.

Mathematically, the ill-posed problems can be solved by adding prior constraints
under the optimization framework. However, the optimization-based restoring methods
usually require multiple iterations. The computing time of a single image with 1920 × 1080
resolution is usually more than 5 min, which is unacceptable in industrial applications.
With the continuous development of deep learning theory and GPU acceleration hardware
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technology, the restoring methods based on deep learning show great advantages in effect
and performance [21,22]. The restoring method proposed in this paper is based on the deep
learning theory and realizes the image restoration procedure in an end-to-end way.

3.2. Proposed Restoring Method
3.2.1. Network Architecture

We propose a novel generative adversarial network (GAN) to generate a clear image
from the aberrations-degraded blurry image. The generative adversarial network (GAN),
proposed by Goodfellow [23], became one of the most attractive schemes in deep learning
in recent years. GAN utilize a discriminator network as a special robust loss function
instead of the traditional hand-crafted loss function, which improves the performance
and robustness of deep networks [24,25]. Specifically, we adopt the recursive residual
groups (RRG) network [26] as the generative model G, thus our proposed generative
adversarial network is named as RRG-GAN. The discriminator of RRG-GAN is a double
scale discriminator network [20]. The proposed network architecture is shown in Figure 3.
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3.2.2. Discriminator Network: Double-Scale Discriminator Network

The discriminator of RRG-GAN is a double-scale discriminator network. The original
GAN network’s discriminator maps the entire input to a probability of judging whether
the input sample is a real image [20]. However, this method does not work very well for
high-resolution and high-definition detailed images. PatchGAN [27] maps the entire input
to an n*n patch matrix to classify, and then averages them to obtain the final output of the
discriminator. Therefore, PatchGAN can make the model pay more attention to the details
of the local image to achieve better results. The double scale discriminator, proposed by
Kupyn [20], further improves PatchGAN by adding a global image view. The combine use
of local and global view was proved more suitable for deblurring task [20].

The loss function of discriminant network is RaGAN-LS loss, also proposed by
Kupyn [20], as shown in Equation (2), which can be seen as an upgrade version of LSGAN
loss function [28].

LRaLSGAN
D = Ex∼pdata(x)[(D(x)− Ez∼Pz(z)D(G(z))− 1)2]

+Ez∼Pz(z)[(D(G(z))− Ex∼Pdata(x)D(x) + 1)2]
(2)

where x and z respectively represent the real image and generator G’s latent variables
input. Pz(z) is the probability distribution of z, Pdata(x) is the probability distribution of
the dataset. G(z) denotes the generator of z. D(x) represents real image x’s double-scale
discriminator. D(G(z)) represents G(z)’s double-scale discriminator.
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3.2.3. Generator Network: RRG-Net

The generator network is implemented by cascading three recursive residual groups
(RRGs) as shown in Figure 3. RRG is proposed in the structure of Cycle ISP network by
Google Research Institute [26]. Cycle ISP network is an end-to-end network, which can
simulate the real CMOS noise degradation, and then achieve image restoration, it can
realize bidirectional conversion and circulation in sRGB domain and RAW domain. In this
work, there is no cycle in the construction of generation network, we only use the one-way
generation function in Cycle ISP network. The cascading recursive residual groups can be
described as:

T0 = Ms(Iin), Td = RRGN(. . . RRG1(T0)), Iout = ME(Td) (3)

where Ms is the starting convolution operation on the input color image Iin ∈ RH×W×3 to
get the low-level feature parameters T0 ∈ RH×W×C; the high-level features of Td ∈ RH×W×C

are obtained by the iteration of recursive residual groups (RRGs); then Td is performed the
final convolution operation ME on the high-level features Td is to obtain the reconstructed
image Iout ∈ RH×W×3.

RRG’s framework is basically similar to the earlier proposed recursive residual net-
work [29], but the construction of “group network” is more complex. In this paper, we
choose multi-scale residual block (MRB) as the implementation of “group network”. The
multi-scale residual block network contains several popular sub-modules to improve
the performance of feature extraction [30]. These sub-modules include dual attention
blocks [31], selective kernel networks [32], and residual resizing modules [33]. The dual
attention blocks are used in each scale, which can simulate the process of human eyes
searching for important information in the visual scene for centralized analysis while
ignoring irrelevant information in the scene. The selective kernel networks are used in
multi-scale. They can effectively learn to fuse important features extracted by the dual
attention blocks. The residual resizing networks provide additional network parameters
for learning in the inter-scale up-down-sampling operation, so as to further improve the
performance of the whole network.

We use a hybrid three term loss function as the overall loss function for generator net-
work, which is proposed in DeblurGAN-v2 [20]. The loss function is shown in Equation (4).

LG = 0.5 ∗ Lp + 0.006 ∗ Lx + 0.01 ∗ Ladv (4)

where Lp is the similarity between two images, we use the SSIM (Structural Similarity) [34]
measurement; Lx denotes the perceptual loss, which computes the Euclidean loss on the
VGG19 [35] feature maps to make the network pay more attention to learning coding
perception and high-level semantic information; Ladv represents the adversarial loss, which
contains both global and local discriminator losses (for more details in Equation (4), please
refer to Kupyn’s paper [20]).

4. Experiments and Results
4.1. Preparation of Dataset Based on CODE V Simulation Datasets

The optical aberrations are not the only factor of actual image degradation, which we
will discuss later in the paper. The construction of simulation dataset based on CODE V
software (Synopsys Corporate Headquarters, 690 East Middlefield Road Mountain View,
CA, USA) is of great significance, which can provide reference for the evaluation of recovery
algorithm, especially for the supervised learning method.

CODE V software, a famous optical design and analysis tool, has the excellent simula-
tion function for optical aberration. We build a dataset based on the simulation function of
CODE V. All the data sets used in this paper are from MIT Adobe FiveK dataset, which is
mainly used in the research of tone adjustment of deep learning method [36].

The dataset consists of raw camera data and five groups of processed data tuned by
professionals using Adobe professional image processing software. The dataset basically
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covers the natural scene, artificial scene, character photography, and other areas. This work
selects a group of optimized data as the original verification data of the system.

We manually filter out the experimental pictures which show obvious defocusing
images, and finally select 200 experimental pictures including characters, text and natural
scenes. Using the two-dimensional image simulation function of CODE V, we take the
clear images as inputs, and obtain the simulation degraded images. Part of the simulation
dataset is shown in the Figure 4.
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Figure 4. Part of data set based on CODE V simulation.

In this way, we obtain 200 groups of supervised samples with true value and optical
degradation simulation data. Overall, 128 groups are selected as training dataset, 36 groups
as validation dataset and 36 groups as test dataset.

In the network training, we use the online random block strategy for all the comparison
methods (except the optimization-based method). When we read the training samples, we
randomly crop 256 × 256 blocks in the original image during the training. The epoch is set
to 1000 rounds, that is, 128,000 training blocks are used in the network training process.
The batch size is set to 8.

4.2. Algorithm Evaluation Based on CODE V Simulation Dataset

Based on the CODE V simulation data set, we train our network, and obtain 34 M
parameters after 1000 epochs of training, and finally get blurry removal results in test-
dataset, part of them are shown in Figure 5.

Furthermore, we validate our proposed method against several existing supervised
methods which are applicable in the current field. The comparison methods include: the
non-uniform aberration deblurring method [37], Unet-based restoring method [38], FOV-
GAN restoring method [6], DeblurGAN-v2 restoring method [20]. We do not compare
with previous simple lens restoring methods [4,5] owing to the complex calibration process.
We choose a blind non-uniform aberration deblurring method as the representative of the
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optimization-based methods [37]. Other restoring methods are based on deep network,
which can achieve end-to-end image restoration.
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The running environment of this work is: Intel (R) core (TM) i7-6700 CPU @ 3.40GHz,
32GB system memory, NVIDIA GeForce RTX 2080 Ti with 11,264 Mb GPU memory. The
training parameters are set according to the original paper, and the training epoch are all
set to 1000. The recovery results obtained by the above methods are shown in Figure 6.

Figure 6b is the restoring results of optimization-based theory. Although the estimation
of blur kernel has been iterated for many times, it is still not accurate, and thus cannot achieve
good restoration of degraded images. In addition, the running time is more than 20 min
on one test image with 1920 × 1080 resolution. Other optimization-based methods that
can be used in this computational imaging restoration, such as [39,40], the restoring results
and running time are similar to this method. Compared with the traditional methods, the
restoring methods based on deep learning have a greater improvement in the restoration
effect and efficiency. Figure 6c shows the restoration results of Unet, and Figure 6e shows
the restoration results of Deblur-GAN-v2. These methods are not as good as our proposed
method in the restoration of weeds, text and other complex details. Figure 6d shows the
restoration results implemented by FOV-GAN network, which produce some ringing effect
in the complex detail texture. The proposed RRG-GAN network achieves better results
than other deep-learning-based methods in the restoration of complex detail texture. The
restored image edge is clear and natural, and there is no obvious ringing effect, which is
more in line with human subjective visual effect. This is the role played by the fusion of
attention module and feature module in a generative network.
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Since the images in the test dataset are obtained by CODE V simulation, there are true
values that can be used for reference. Several objective evaluation indexes can be used to
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evaluate the above algorithms: Structural SIMilarity (SSIM) [34], Peak Signal to Noise Ratio
(PSNR), Root Mean Square Error (RMSE) [41], and Spectral Angle Mapper (SAM) [42].

The quantitative comparisons of restoring performance are shown in Table 1. As can
be seen from Table 1, the objective evaluation index obtained by the RRG-GAN network
method described in this section is superior to other recovery methods.

Table 1. Quantitative comparisons of restoring performance.

SSIM PSNR RMSE SAM

Original 0.6278 24.4386 16.3857 4.5950
Multiscale 0.6859 25.0048 15.1276 4.7078

Unet 0.7922 28.3427 10.6450 4.1911
Fov-GAN 0.7486 25.2653 14.4563 5.6238

Deblur-GAN 0.7843 28.0252 10.9077 4.5637
RRG-GAN 0.8650 30.4102 8.3224 3.7855

The running time and the parameter-size of the above methods are summarized in
Table 2. Through the comparison, we find that the running time of deep learning methods
is greatly better than the traditional optimization-based method, but worse than other
deep-learning-based methods. Compared with other deep-learning-based methods, our
network structure is more complex, but the recovery effect is better, as shown in Figure 6.
Furthermore, the parameter size of our method is much smaller than other deep learning
methods, which is determined by the recursive structure of the network.

Table 2. Statistics of running time and network parameter size.

MultiScale Unet FovGAN DeblurGAN-V2 RRG-GAN

Runtime 25 min 0.489 s 0.714 s 2.677 s 2.738 s
Para size / 363.701 MB 83.852 MB 238.982 MB 31.494 MB

4.3. Apllication in Real Scene
4.3.1. The Reason of Constructing Manual Registering Dataset

Simulation evaluation is an ideal test scenario, and its significance is to provide a
validation benchmark for algorithm analysis. However, when the single-convex-lens is
actually assembled for imaging, the actual imaging effect is different from CODE V’s
simulation, as shown in Figure 7.
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From Figure 7, the results show that the network parameters trained by the simulation
test set are not effective when deployed in the actual scene. The main reason for this
problem is that the data distribution of the simulation dataset is inconsistent with the real
scene. In addition to the conventional image blur caused by optical aberration, there are
two additional degradation factors, color shift and bright background interference, which
are not simulated in CODE V software.

The color shift is caused by the white balance problem of CMOS camera. The bright
background interference is caused by straylight. The single-convex-lens imaging system
has no special aperture, and the gland ring plays the role of aperture, which makes the
straylight easier to produce and has a direct impact on the image formation. Straylight
will produce bright background, and further reduces the modulation transfer function
(MTF) of the optical system. These two kinds of additional interferences cause the data
distribution difference between the simulation dataset and the actual scene, we further
need to reconstruct a dataset for the actual scene.

4.3.2. The Constructure of Manual Registering Datasets

Similar to Peng [6], we built a display-capture lab setup as shown in Figure 8a. We
display the 200 images in the dataset on an LCD device (52-Inch) and collect them through
our single-convex-lens imaging system. The LCD device is placed 8 m away from the
camera, and the intrinsic discretization of the LCD screen can be ignored at this distant.
There is a large position error due to the mismatch between the original image and the
captured image. Therefore, we specially write a MATLAB script program for interactive
selection of artificial feature points to register two images, as shown in Figure 8b.
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In the manual calibration shown in the Figure 8b, after 10 feature point pairs are se-
lected manually for each image pair, the affine transformation parameters can be calculated
by using the least square method. It is found that a set of fine calibrated affine parameters
can be applied to all images due to the relatively static acquisition environment, and there
is no need to calibrate each image. Therefore, we obtained a dataset contains 200 “true
value-picking up” registered samples.

4.3.3. Algorithm Evaluation Based on Manual Registering Datasets

Again, we select 128 groups as training datasets, 36 groups as validation datasets
and 36 groups as test datasets. After 1000 epochs of training process, the restoring images
are shown in Figure 9. From the effect of image restoration, we can see that our method
can not only eliminate the optical blur, but also correct the color deviation and bright
background interference.

Under the same experimental conditions, we test the effect of our proposed method
and the other two deep learning methods on the manual registering dataset, as shown
in the Figure 10. From the figure, we can see that our method is superior to the other
two methods.
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Figure 10. The results comparison using different deep-learning methods based on manual dataset:
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Furthermore, we apply our restoring method to real scenes, the results are as shown
in the Figure 11. Through the actual imaging experiments, it can be seen that after adopting
the manual registering dataset training, our proposed storing method can well eliminate
three typical image degradation effects of single-convex-lens, including the texture blurry
caused by optical aberrations, the color shift caused by the CMOS camera, and the contrast
reduction caused by the straylight.
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4.4. Imaging Effect Comparison with SLR Camera Lens

In this section, we compare the restoring effect obtained by single-convex-lens imaging
system with the direct imaging effect using conventional SLR camera lens. We stabilize the
camera and capture the scene by these two lenses separately. The imaging effect are shown
in Figure 12.
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From Figure 12, we can see that the experimental images processed by our restoring
method have a good restoration effect for the edge information of the natural scene, and the
restoring effect is close to the direct imaging effect using conventional SLR Lens. However,
for the special texture such as text, fringe pattern, due to the lack of relevant sample set in
the database, it cannot have a good detail recovery effect, which will be improved in the
following work.

5. Discussion
5.1. Improvement Analysis
5.1.1. Efficiency Improvement over Traditional Methods

Due to the indirect imaging mechanism, computational imaging is also faced with
the problems of “accurate description of forward modulation transformation model” and
“robustness of reverse reconstruction algorithm”. With such problems, especially the partic-
ularity of single-convex-lens’s ill conditioned problem, traditional methods need to utilize
many iterations to get the accurate description of forward modulation transformation
model, while requiring other iterations to ensure the robustness of reverse reconstruction
algorithm. However, the deep-learning-based network can avoid the above problems in an
end-to-end way, and efficiently restore the latent images from the blurry source data.

5.1.2. Effect Improvement over Deep Learning Methods

Compared with other restoring networks like U-net [38], our proposed RRG-GAN
network can achieve better recovery effect. This is determined by the adversarial training
process of the generator and discriminator. During training, the generator is trained to
produce latent images which can “fool” the discriminator network, and the discriminator
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is trained to better distinguish the images captured by the single-convex-lens and the latent
images generated from the generator.

Our RRG-GAN network can achieve better detail recovery effect than other GAN
networks like Deblur-GAN [20]. This is due to the use of multi-scale dual attention blocks
module, which can simulate the process of human eyes searching for important information
in the visual scene for centralized analysis while ignoring irrelevant information in the
scene. The selective kernel networks are used combined with the dual attention blocks.
They can effectively learn to fuse important features in multi-scale. The residual resizing
networks provide additional network parameters for learning in the inter-scale up-down-
sampling operation, so as to further improve the performance of the whole network.

5.2. Limitations and Deficiencies

Like most deep learning methods, the data-driven-based methods require the consistency
of the distribution of training data and actual data. However, the mechanism of computational
imaging system determines that it is difficult to obtain the ideal training data which is
consistent with the actual data. Through the experimental results in Section 2.3, we find that
although the color restoration is greatly improved compared with the original image, it
still retains a certain color offset, which is caused by the background light of LCD display.

Furthermore, small errors are inevitable when we manually register the dataset.
Although our RRG-GAN network can overcome this small error, it will still affect the
performance of network. Therefore, how to design the training dataset more reasonably is
also one of our further works.

5.3. Further Work

Aberration is the core problem of optical design. The aberration correction method
based on computational imaging has an important significance in other optical systems.
Especially in some special optical imaging scenes, under the premise of limited cost and
limited optical lens size, the traditional optical design method is difficult to meet the
design needs. In this case, it is a very feasible scheme to allow optical designers to reduce
optical index and keep proper aberrations, and deliver aberration correction work to
calculation and restoration algorithm. Our following work will try to apply our restoring
method to complex optical systems, such as reflective optical systems, to achieve the joint
optimization of optical design and restoration algorithm design, so as to achieve a higher
index of computational imaging system design.

6. Conclusions

In this paper, we propose a novel RRG-GAN network to restore the latent images from
blurry source data captured by a single-convex-lens imaging system in an end-to-end way.
We restructure the generator network, which includes a dual attention module, selective
kernel network module, and a residual resizing module. These improvements make
RRG-GAN more suitable for the non-uniform deblurring task. We collect sharp/aberration-
degraded datasets by CODE V simulation and manual registering. Relevant experimental
comparisons and actual tests verify the effectiveness of our proposed method.
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RRG Recursive Residual Groups
GAN Generative Adversarial Networks
CNN Convolutional Neural Networks
RNN Recurrent Neural Networks
CMOS Complementary Metal Oxide Semiconductor
PSF Point Spread Function
MRB Multi-scale Residual Block
MAP Maximum A Posteriori Approach
VEM Variational Expectation Maximization
MTF Modulation Transfer Function
LCD Liquid Crystal Display
SLR Single-convex-lens Reflex
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